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Abstract

To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical
properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be
produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to
perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system,
and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the
dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the
adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug
Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales,
integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these
CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of
the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a
narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the
slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them.
The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory
information completely and follows an internal ‘‘goal,’’ emergent from the dynamics, to egest again a strip that proves to be
inedible. Key predictions of this reconstruction are confirmed in real feeding animals.
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Introduction

Recordings from the central nervous system reveal a rich

repertoire of dynamical activity, with a multitude of dynamical

components on many time scales [1–4]. Following a reductionist

strategy as well as practical necessity, these recordings of CNS

dynamics are very often obtained from parts of the CNS, or even

the whole CNS, in vitro. In-vitro analysis has certainly elucidated

many of the cellular mechanisms that generate the dynamics. But

to understand the functional significance of the dynamics, in-vitro

analysis can be expected to be insufficient. The CNS with its

dynamics has evolved to produce adaptive behavior, behavior that

promotes the survival and reproduction of the animal, in the

animal’s environment. The CNS is thus functionally connected to

the environment, both in its sensory and its motor capacity. At

minimum, therefore, we need to consider how the CNS dynamics

that we observe in vitro might correspond to the dynamics of

sensory stimuli and behavioral acts in the environment.

The dynamics of the CNS and environment are not so easily

separable, however. In recent years, a dynamical-systems ap-

proach to neuroethology [5–8] has emphasized that the nervous

system does not simply receive stimuli from the environment, or

produce behavior in it, in a unilateral manner. Rather, the

reciprocal sensory and motor interactions couple the CNS and the

environment into a larger dynamical system (Figure 1). It is the

dynamics of the entire coupled system that produce the adaptive

performance, and that are selected for in evolution. Within the

coupled system, the dynamics of a subsystem such as the CNS can

be very different from those that the subsystem exhibits in

isolation. Thus observations in vitro, while revealing what dynamics

the CNS is intrinsically capable of, may not even show the

dynamics that are actually instantiated in it in behavior, much less

what their functional significance is. To learn this, we need to

study the entire coupled system of the CNS and environment.

One way to do this, and one that ultimately will be required to

test the understanding reached with any other approach, is to

record in vivo from whole animals behaving in their natural

environment. The complexity of the dynamics that can emerge

when the CNS and environment are coupled together, however,

suggests that any observations, whether in vitro or in vivo, will have

to be embedded in a framework of computational modeling and

analysis [6,9].

The coupling suggests, at the same time, a computational

strategy. For successful performance of a behavioral task by the

coupled system, the dynamics of its CNS and environmental

subsystems must, in some, perhaps complex manner, complement

each other (Figure 1). The particular dynamics of any given CNS

will not, indeed cannot, complement all environments. Rather, we

may expect the CNS dynamics to be adapted to complement a

particular subset of environments, those in which the animal,
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performing that behavior, has evolved. And, given the CNS

dynamics, we should be able to predict which environments these

are. We can embed a model of the intrinsic dynamics of the CNS,

derived from the in-vitro observations, in a range of simulated

environments and evaluate the performance of a suitable task.

Success will identify the features of the environment to which the

CNS dynamics are adapted, reveal the dynamics that are actually

instantiated in the coupled system during the behavior, and allow

us to examine the functional roles of various dynamical

components. In this manner we should be able to reconstruct

the entire system by working outward from the observations that

we already have, of the CNS dynamics in vitro. This is the strategy

that we pursue in this paper.

(In the real animal, of course, the coupling between the CNS

and the environment is filtered through the body, whose dynamics

will therefore have to be included in any completely realistic

reconstruction. Here, in our first attempt at this problem, we will

neglect these dynamics, but return to them in the Discussion.)

An analogous reconstruction of the entire CNS-environmental

system from a given part of it is often done in the opposite

direction. Given a task in a particular environment, the aim is to

construct or indeed evolve a neural controller that will perform the

task [10–15]. We, in contrast, start with the real controller that the

animal uses and wish to predict from its properties the task and

environment that it controls.

Here we carry out this computational reconstruction in the

feeding system of the sea slug Aplysia californica. This classic, well-

studied ‘‘simple’’ system [16,17] allows the sensory-motor loop

between the CNS and the environment to be closed in a relatively

tractable fashion. Prominent dynamics on multiple time scales

have recently been described in the feeding CNS in vitro (see

Results). Here, by embedding a model of those dynamics in a

simulated feeding environment, we examine their functional

significance in the entire reconstructed system. We find that the

combination of dynamical components in the system allows the

behavior both to respond efficiently to environmental stimuli and,

when necessary, to disregard them and follow an emergent,

internal goal.

Results

Aplysia feeding behavior
Aplysia eat seaweed, often in the form of long fronds or strips

[16,18]. Once the seaweed has been located and contacted,

consummatory feeding is a rhythmic, cyclical behavior, and many

cycles are required to ingest, in incremental fashion, a long

seaweed strip [19–21]. The cycle period is of the order of seconds

or tens of seconds. (Movies of the behavior can be seen on our

Web site at http://inka.mssm.edu/̃ seaslug/movies.html.) Each

cycle of the behavior is triggered by local contact of the mouth of

the animal with the seaweed [16,22,23]. Ingestion occurs when the

radula, the central grasping organ of the buccal feeding apparatus,

protracts from the mouth open, closes to grasp the seaweed, and

retracts to pull the seaweed into the mouth [16,20,24,25]. This

phasing can be reversed, however, so that the radula protracts

closed, grasping seaweed that has been ingested but judged

inedible, to egest it again [20,26]. Indeed, the feeding apparatus

can produce feeding movements that span the entire range of

ingestive-egestive character from strongly ingestive through

‘‘intermediate’’ to strongly egestive [20,22,27–29].

The feeding movements are driven by patterns of neuronal

activity, or motor programs, generated by a feeding central pattern

generator (CPG) in the buccal ganglia [30]. The feeding CPG

continues to generate these motor programs when the buccal

ganglia are isolated in vitro (Figure 2). As in vivo, each program must

be triggered by a stimulus. Two kinds of stimuli are used as

analogs of the ingestive and egestive stimuli in vivo: electrical

stimulation of the command-like interneuron CBI-2, which in vivo

is activated when seaweed contacts the lips, and stimulation of the

esophageal nerve (EN), which in vivo reports (among other things)

the presence of inedible material in the esophagus [31–35]. The

ingestive-egestive character of the programs is then quantified by

comparing the frequencies of firing of the neurons B8, motor

neurons that close the radula, in the retraction and protraction

phases of the program [36–38]. If the B8 neurons fire, so that in

vivo the radula would close, predominantly in retraction, the

program is ingestive (for example, the top program shown in

Figure 1. The coupled dynamical system of the CNS and environment, as discussed and modeled in this paper. The CNS (right) has
intrinsic dynamics, schematized here by the blue and red circles and the arrows of interconversion between them that may represent, for example,
the dynamics of the evolution toward ingestive and egestive steady states in the Aplysia feeding CPG that are described in the Results. These CNS
dynamics then complement, in a sense explored in this paper, the structure and dynamics of the environment relevant to the production of adaptive
behavior (left). The CNS and the environment are bidirectionally coupled. The CNS perceives the true stimuli present in the environment, but only
through noisy sensory channels (left to right arrow). The CNS then generates the behavior in, and thereby modifies, the environment (right to left
arrow). For simplicity, all noise within the system is lumped here, as in the modeling in this paper, into just one sensory noise source. The
performance of the adaptive behavior emerges from the operation of the entire coupled system of both the CNS and the environment.
doi:10.1371/journal.pone.0003678.g001
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Figure 2), whereas if the B8 neurons fire predominantly in

protraction, the program is egestive (the bottom program in

Figure 2).

Dynamics of the feeding CPG
It might be expected that the identity of the stimulus that

triggers each motor program would at the same time specify the

character of that program—that CBI-2 stimulation, the ingestive

stimulus, would trigger ingestive programs, and EN stimulation,

the egestive stimulus, would trigger egestive programs. Aplysia

feeding would then be a purely stimulus-driven behavior.

However, this is not the case. Figure 2, right, summarizes the

ingestive-egestive character of 466 motor programs, elicited either

by CBI-2 or by EN stimulation, recorded in vitro by Proekt et al.

[39]—the dataset whose dynamics we will model and investigate

in this paper. In anticipation of the modeling, we have already in

Figure 2 mapped the B8 firing frequencies recorded by Proekt et

al. onto a single normalized variable, the ‘‘behavior’’ B, that ranges

from B = 1, indicating the most ingestive feeding motor program

and, in vivo, the most ingestive feeding behavior, to B = 21,

indicating the most egestive program and behavior (see supple-

mentary Text S1, Section 1.1). Like the observed movements of

the behavior in vivo, the motor programs span the entire ingestive-

egestive range. Furthermore, both the CBI-2- and EN-elicited

programs cover a large, and overlapping, part of the range. At

different times, the same CBI-2 stimulation, in particular, can elicit

a strongly ingestive or a strongly egestive program. Thus, as Proekt

et al. [39,40] concluded, the character of the motor programs is

not directly specified by the stimulus. Neither is it random,

however, or independent of these stimuli. Rather, it is specified by

the internal state of the feeding CPG at the moment of stimul-

ation, which evolves in response to the stimuli with well-defined,

history-dependent dynamics.

These dynamics are revealed when the motor programs in

Figure 2 are plotted over time in Figure 3. Proekt et al. performed

three types of experiments, stimulating CBI-2 alone (Figure 3A),

EN alone (B), or CBI-2 with an embedded period of EN

stimulation (C), in the pattern represented by the ‘‘stimulus’’

variable S. In each case, the first programs were intermediate, with

the behavior B close to zero. Then, as the stimulation continued,

the programs progressively evolved in the ingestive direction,

toward B = 1, with CBI-2 stimulation (filled circles), or in the

egestive direction, toward B = 21, with EN stimulation (empty

circles). When the stimulation was discontinued, the programs

relaxed back toward B = 0. The evolution occurred over several

minutes, over a number of programs and, in vivo, cycles of the

feeding behavior, with what we will therefore call ‘‘slow’’

dynamics. When the programs were made strongly egestive by

EN stimulation and the stimulation was then switched to CBI-2,

the first CBI-2-elicited program remained strongly egestive, and

subsequent programs evolved in the ingestive direction with the

same slow dynamics (Figure 3C, segment ‘‘4’’). In other words,

simply the starting point of the slow evolution of the CBI-2-elicited

programs was displaced in the egestive direction (compare

segments ‘‘2’’ and ‘‘4’’ of Figure 3C). Interestingly, however, the

converse switch from CBI-2 to EN stimulation switched the

programs from strongly ingestive to strongly egestive essentially

immediately, with fast dynamics (Figure 3C, arrow ‘‘3’’), much

faster than was their slow evolution with EN stimulation alone

(compare arrows ‘‘1’’ and ‘‘3’’ in Figure 3, B and C). Evolution in

the egestive direction was thus greatly accelerated by a previous

ingestive history.

We modeled these dynamics with a simple differential-equation

model. The slow dynamics can be fully explained (blue curve in

Figure 3) by a very simple ‘‘1D’’ model with just one dynamical

variable, B itself, that relaxes slowly toward steady states at B = 1,

Figure 2. The Aplysia buccal feeding CPG in vitro. When driven by stimulation of the interneuron CBI-2 or of the esophageal nerve (EN), the CPG,
residing in the paired buccal ganglia (photograph), generates feeding motor programs. The experimental records show two representative programs
from the dataset in Figure 3, each with an intracellular recording from neuron B8 and extracellular recordings from two nerves, the I2 nerve and
buccal nerve 2, whose activities are used as standard markers respectively of the protraction (red) and retraction (blue) phases of the program. It is
then usual to classify the programs as ingestive or egestive depending on whether B8, a radula closer motor neuron, fires at higher frequency in the
retraction phase (as in the top program) or the protraction phase (as in the bottom program), respectively. In this paper (as described in Text S1,
Section 1.1), we have mapped the two B8 firing frequencies onto a single variable, the behavior B, that expresses the ingestive-egestive character of
the programs along a single dimension, from B = 1 (most ingestive) to B = 21 (most egestive). On the right, all of the 466 programs in the dataset in
Figure 3, then broken down into those elicited by CBI-2 or EN stimulation, are plotted along this dimension. Some programs exceed the limits of B = 1
or B = 21 because those limits are defined on average over all of the programs (see Text S1, Section 1.1).
doi:10.1371/journal.pone.0003678.g002
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21, and 0 in response to CBI-2, EN, and no stimulation, represented

by S = 1, 21, and 0, respectively (blue equation in Figure 3; for

details see Text S1, Section 2). B itself thus is the internal state of the

feeding CPG as it is expressed in the ingestive-egestive character of

the feeding motor programs and behavior. The 1D model fails at just

one point: it cannot explain the one component of fast dynamics in

the data. This requires a ‘‘2D’’ model with an additional dynamical

variable, which we call the ‘‘memory,’’ M. To explain the data, M

builds up with its own slow dynamics when B.0 and then, upon EN

stimulation, accelerates the relaxation of B toward B = 21 (red

equations in Figure 3; see Text S1, Sections 1.2 and 1.3). M thus

‘‘remembers’’ ingestive behavior and modifies accordingly subse-

quent egestive behavior. The red curves of B and M in Figure 3 show

the best fit of the full 2D model to the data.

Figure 3. The dynamics of the Aplysia feeding CPG. Data from the experiments of Proekt et al. [39], already mapped onto our model variables.
In the buccal feeding CPG preparation in vitro, Proekt et al. stimulated either CBI-2 alone (A) EN alone (B), or CBI-2 with an embedded period of EN
stimulation (C) in the pattern shown here, represented by the stimulus variable S. From each motor program elicited by the stimulation, Proekt et al.
measured the B8 firing frequencies in protraction and retraction (see Figure S1 and Text S1, Section 6.1), here mapped onto the single ingestive-
egestive dimension of the variable B. Each filled or empty circle (CBI-2 or EN stimulation, respectively) represents the mean6SE of 6–18 programs;
altogether the dataset contains 466 programs. The red curve is the best fit (see Text S1, Section 1.4) of the 2D model (equations summarized above;
for complete model specification see Text S1, Section 1.3). The blue curve shows the corresponding behavior of the 1D model, not an independent fit
to the data but rather simply the behavior of the 2D model with the memory M set to 0 (see Text S1, Section 2).
doi:10.1371/journal.pone.0003678.g003
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These dynamics of the feeding CPG are not confined to the

CPG itself, but emerge in the contractions of the various muscles

and the phasing of the movements of the buccal feeding apparatus

[29]. The question now is, what kind of behavior, in what kind of

environment, are these dynamics adapted for?

Task 1: prediction of an uncertain environment
One plausible role of such dynamics might be to predict the true

state of the environment, so that the appropriate behavior can be

produced. The true state of the environment is often uncertain.

The ‘‘true’’ environmental stimuli may be incomplete and

ambiguous, and they are perceived by the nervous system through

limited and noisy sensory channels (Figure 1). Furthermore, the

nervous system must often prepare now to execute the behavior

later, in a future environment that is, by definition, unknown.

Thus the behavior cannot simply be driven by the immediately

perceived stimulus. Instead, the dynamics of the nervous system

can act as an internal model that predicts what the true state of the

environment will most likely be when the behavior is executed,

and furthermore—when the dynamics are those of a complete

sensory-motor system such as the Aplysia feeding CPG—it does so

already in behavioral terms, by automatically producing the

appropriate behavior. Proekt et al. [39] proposed that the slow

dynamics of the Aplysia CPG act in this manner, integrating the

perceived stimulus over time to estimate the true environment and

consequently predicting conservatively that, when the next motor

program is triggered, the true environment will most likely not

have changed from that estimate and neither should the behavior.

Thus, in Figure 3C, after the EN stimulation has made the

programs egestive, the next program remains egestive even when it

is triggered by CBI-2 stimulation.

How well do the dynamics of the Aplysia CPG in fact perform

this role? We gave our CPG models such a predictive task in a

simulated environment (Figure 4A). The environment consisted of

a sequence of true stimuli, St, randomly switching between

ingestive, egestive, and none, represented by St = 1, 21, and 0,

respectively, with durations drawn randomly from a Gaussian

distribution with mean t. To model the uncertain perception of

the environment, the true stimulus St was then corrupted by fast

random noise to give the perceived stimulus, Sp, so that at any

moment there was a given probability that if St was 1, say, Sp was 0

or 21. The CPG model was stimulated only with the perceived

stimulus Sp, yet its task was to match its behavior B as closely as

possible to the true stimulus St. Performance was defined simply as

the average difference between B and St (for further details see

Text S1, Sections 3.1 and 3.2).

Figure 4B shows three representative simulations and Figure 4C

maps the performance of the two CPG models over a range of

environments defined by the two parameters t, the characteristic

time scale of the environment expressed in the durations of the

true stimuli St, and f, the fraction of St perceived in Sp—the degree

of certainty of the environment. Cool colors represent poor

performance, warm colors good performance. Consider first the

1D model, incorporating only the slow dynamics. When the

environment was faster—that is, when St switched on average

faster—than the slow dynamics of the model, B did not follow St at

all (Figure 4B, simulation 1), resulting in poor performance (left

side of Figure 4C, left). But when the environment was slower than

the model dynamics, B tracked St well, ignoring a significant

degree of obscuring noise (Figure 4B, simulation 2), resulting in

good performance (top right corner of Figure 4C, left). Thus,

indeed, by not responding to the perceived stimulus immediately

but rather integrating it over time, the slow dynamics can extract

from it a good prediction of the true environment, provided that

the true environment, too, is slow. The slow dynamics are thus

adapted to a slow environment.

The 2D model, however—the full model of the dynamics of the

Aplysia feeding CPG—completely failed to perform this task

(Figure 4C, right). With its fast dynamics in the egestive direction,

the model tracked only egestive stimuli, not ingestive stimuli

(Figure 4B, simulation 3). The model thus failed in a biologically

significant manner: it failed to eat.

Task 2: biologically realistic ingestion and egestion of
seaweed strips

The failure of the 2D model in all environments defined by the

two environmental parameters tested implied that, as far as these

environments were concerned, Task 1 could not be the task to

which the dynamics of the CPG are adapted. In developing a

more relevant task, we were guided by a key feature of the

dynamics themselves. While Task 1 was completely symmetric in

the prevalence and order of ingestive and egestive stimuli, the

observed CPG dynamics exhibit an asymmetric second-order

coupling between ingestion and egestion. Egestion is facilitated by

prior ingestion, but not vice versa. This presumably reflects the

fact that, in vivo, egestion is evoked to expel inedible seaweed only if

the seaweed has previously been ingested, but ingestion has no

such prerequisite. We constructed a correspondingly asymmetric

environment and task—indeed, by incorporating also the other

basic facts of Aplysia feeding, a complete, biologically realistic

feeding scenario.

In this scenario (Figure 5A; for details see Text S1, Section 3.3),

the true environment consists of a large population of seaweed

strips, with lengths drawn from a Gaussian distribution with mean

t, which the CPG model is to eat, necessarily sequentially, strip by

strip. Intrinsically, all of the seaweed is edible, generating a true

stimulus St = 1. However, because of the uncertain perception of

the environment, as in Task 1, St reaches the model only

intermittently, to a degree governed by the parameter f, as the

perceived stimulus Sp. Stimulated by Sp, the model produces the

behavior B, which now explicitly acts on the environment by

translating to a rate of change of the position, P, on the current

strip: ingestive behavior B.0 produces forward movement, and

egestive behavior B,0 backward movement, along the strip. To

eat, the model must move forward along the strip, and through the

sequence of strips, as rapidly as possible since its performance is

judged, in a biologically realistic manner, by the total length of

seaweed eaten per time. In this scenario, therefore, the CPG

model—now, indeed, essentially a simulated agent (cf. [6,14,41])—

moves through the feeding environment, and consequently

perceives that environment, in a manner that depends not only

on the intrinsic properties of the environment, but also on its own

actions in the environment.

This task would be straightforward, were it not for the fact that,

while most of the strips are ‘‘free,’’ some of them (25% in the

simulations in this paper) are ‘‘attached’’ at the end so firmly that,

when ingested, they cannot be broken off. The attachment point

(symbolized by the black color of the ends of the attached strips in

Figure 5 and other figures) generates an egestive true stimulus

St = 21 and the corresponding Sp. The model must then—because

this is tough seaweed that cannot be broken or cut anywhere along

its length—egest the entire strip again, all the way back to the

beginning, before it can continue to feed on another strip.

The model cannot simply avoid ingesting the attached strips in

the first place, because at the beginning, and through the ingestion

of their entire length until they are found to be attached, or not

attached, at the end, all strips appear identical, all intrinsically

edible, with St = 1. This is a consequence of the fact that the
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Figure 4. Simulations and performance of the 1D and 2D models in Task 1. A: Schema of the task, explained in Results. B: Steady-state
excerpts from three representative simulations, with different values of the environmental parameters t, the time scale of the environment, and f, the
fraction of the true stimulus St that is apparent in the noisy perceived stimulus Sp, and with either the 1D or the 2D model. In simulations 2 and 3, Sp is
plotted sampled at 1/s, rather than 10/s as in simulation 1, to allow its structure to show through in these compressed plots. C: Performance of the 1D
and 2D models, color-coded according to the scale shown on the right, over values of t ranging from 1 to 1000 s (note the log scale) and f ranging
from 1/3, where Sp is pure random noise with no information at all about St, to 1, where there is no noise at all and Sp is identical to St (see Text S1,
Section 3.2). The locations of the three simulations in B are marked.
doi:10.1371/journal.pone.0003678.g004
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model, like real Aplysia, perceives only the purely local St and Sp

just from the current point of contact with the environment. This

fact has another interesting consequence. In egesting an attached

strip, the model soon loses contact with the point of attachment

where St = 21 and begins to move back over portions of the strip

that, when the model moved over them earlier in the forward

direction, generated, and now generate again, the intrinsic

ingestive stimulus St = 1. Nevertheless, the model must continue

to egest, following an egestive ‘‘goal’’ that is contrary not just to the

perhaps misperceived stimulus Sp, as in Task 1, but now even to

the true stimulus St. We will refer to this as ‘‘goal-driven’’ behavior,

as opposed to the simple ‘‘stimulus-driven’’ behavior when the

goal agrees with St (Figure 5B). Thus, in Task 2, it is no longer

sufficient to predict the true state of the local environment at any

moment, because the behavior appropriate to the local environ-

ment at any moment may not be the best behavior overall. Instead

of a series of local predictions, the system must make, rather, a

global prediction of the properties of the entire seaweed strip.

The 2D model, with both slow and fast dynamics, was able to

perform Task 2, over a sharply defined range of environments,

exceptionally well, indeed with performance approaching the

theoretical maximum (see Text S1, Section 3.3) of ,1/3

(Figure 5C, left). The 1D model, with only the slow dynamics,

was not able to perform the task at all (Figure 5C, right).

Performance emerges from an interaction of slow and
fast dynamics

The region of high performance in Figure 5C, left, is

conspicuously curved. This is because the performance depends

not on t or f separately, but on their product tf (see supplementary

Figure S3 and the accompanying Text S1, Section 6.3). The

performance is low when either t or f is small (in region ‘‘a’’), and

increases as tf increases (from left to right, and bottom to top,

through region ‘‘b’’). The highest performance occurs around

tf<17 (along the edge of region ‘‘b’’ facing region ‘‘c’’). Above this

(in region ‘‘c’’), the performance abruptly collapses.

Figure 5. Performance of the 2D and 1D models in Task 2. A: Schema of the task, explained in Results. B: Local ingestive stimulus and global
egestive goal oppose each other, driving the behavior in opposite directions along the same seaweed strip. C: Performance of the 2D and 1D models,
color-coded according to the scale shown on the right, over values of t ranging from 1 to 250 and f ranging from 0, where the true stimulus St is not
perceived at all, to 1, where St is always fully perceived (see Text S1, Section 3.3).
doi:10.1371/journal.pone.0003678.g005

Behavior from CNS Dynamics

PLoS ONE | www.plosone.org 7 November 2008 | Volume 3 | Issue 11 | e3678



What behaviors of the model underlie this performance map,

and how do the dynamics shape these behaviors? Figure 6 shows a

simulation in which all of the characteristic modes of behavior of

the model can be seen, by chance, at the same t and f. (An

interactive Java implementation of the simulation program, in

which t and f can be varied, can be found on our Web site at

http://inka.mssm.edu/̃ nata/simulations/ode.html.)

Consider first the left half of Figure 6. The statistics of the

environment specify a sequence of several free seaweed strips,

three on average (e.g., strips 4, 5, and 6), between each pair of

attached strips (strips 3 and 7). The slow dynamics of the model

are slow enough to integrate the perceived stimulus Sp not just

within each strip, but over the entire sequence of free strips. As a

result, the behavior B, and so the rate of movement through the

sequence, builds up in the ingestive direction to an amplitude that

reflects the total amount of ingestive stimulus that has been

perceived since the last attached strip—a function of the product tf

(see further Figure S3 and Text S1, Section 6.3). If tf is small, for

example if the strips are short (see Figure S2 and Text S1, Section

6.2), B remains small, the model moves slowly, and the

performance is low. But with larger tf, as in Figure 6, B can

build up to a sufficiently large positive amplitude for the model to

move forward at nearly the maximal rate, for near-maximal

performance. Here, therefore, the slow dynamics are playing a

role much like that in Task 1. Based on the accumulated

perception of an ingestive environment, they set the state of the

system for the most efficient continued ingestion.

At the same time, the memory M also builds up, enabling the fast

dynamics that, when a strip eventually proves to be attached and

generates an egestive stimulus, rapidly displace B to a sufficiently

large negative value to begin rapid movement back along the strip.

Away from the point of attachment, however, the stimulus

becomes ingestive and the slow dynamics begin to build B up in

the ingestive direction again. Egestion, now goal-driven (vertical

Figure 6. Characteristic modes of behavior of the 2D model in Task 2. Representative simulation at t= 200, f = 0.1, showing (top to bottom)
the goal G, the true stimulus St, the perceived stimulus Sp, the behavior B, the position P on the seaweed strip (the red arrows show the direction of
movement), and the memory M. The vertical green bars show the lengths of seven seaweed strips presented at those times, some of the strips (1, 4,
5, and 6) being free and others (2, 3, and 7) attached, the latter indicated by the black color of their ends. The model proceeds through the simulation,
completely ingesting all of the strips and, on finding strips 2 and 3 to be attached, egesting them again completely, but then fails to completely egest
strip 7 and continues to oscillate back and forth on it, egesting part of it and then ingesting it again, essentially indefinitely. The vertical grey bars
indicate periods of goal-driven egestion, that is, when, with G = 21, B,0 even though St = 1.
doi:10.1371/journal.pone.0003678.g006
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grey bars in Figure 6), nevertheless continues as long as B remains

negative. If the entire strip is egested before B reaches zero, the

model can go on to feed on further strips. Goal-driven egestion

must therefore necessarily have been successful, repeatedly

throughout the simulation, everywhere in the high-performance

region ‘‘b’’ in Figure 5C, left. In Figure 6, strips 2 and 3 were thus

successfully egested.

The egestion of strip 7, however, failed. In this case, conversely, B

reached zero before the entire strip was egested. The right half of

Figure 6 then shows the characteristic prolonged consequences of

such a failure. As the model ‘‘forgets’’ the egestive goal and responds

to the local ingestive stimulus again, the strip is ingested once more,

and the model becomes trapped in oscillations back and forth over

the same portion of the strip that can continue indefinitely. This

failure is seen, naturally, with longer strips, more precisely above

tf<17 (see Figure S3 and Text S1, Section 6.3), explaining the

collapse of performance in region ‘‘c’’ of Figure 5C, left.

The slow relaxation of B from the initial negative value at the

beginning of egestion back toward positive values can thus be

pictured as acting like a count-down timer of the duration of the

egestion, expiring when B reaches zero and thereby setting the

maximal length of strip that can be egested. M, too, relaxes slowly

during this period (Figure 6), and such timing would seem to be

the natural function of a slow ‘‘memory.’’ But, in fact, the

countdown is performed almost entirely by the intrinsic slow

dynamics of B (Figure S4 and Text S1, Section 6.4). M contributes,

instead, by controlling the initial negative value to which B is

displaced by the fast dynamics—the value from which the

countdown begins. That value depends on the speed of the fast

displacement and its initial value. These, in turn, are products of

the previous ingestion of the strip. The combination of fast and

slow dynamics thus functionally links the successive phases of

ingestion and egestion in a rather complex manner. Even though

the model has only a few kinetic parameters, it would already be

very difficult to predict its behavior, and to understand its

adaptation to the environment, except by explicitly performing

simulations and mapping its performance in a range of

environments, as we did in Figure 5C, left.

In some environments, the model achieves near-maximal

overall performance. This implies that not only the ingestion,

but also the egestion is near-maximally efficient. In this regard, we

can see that the superposition of the fast dynamics converts to

efficient use what is normally an inefficient aspect of slow

dynamics. Slow dynamics filter out spurious changes in stimulus,

but by the same token they respond to real changes slowly, with a

delay, transiently producing behavior that is inappropriate with

respect to the true stimulus (see, e.g., Figure 4B). The fast

dynamics exploit this property. They rapidly displace the state of

the system so as to create a slow transient of behavior that, while

inappropriate with respect to the true stimulus at that moment, is

appropriate with respect to the overall goal.

The particular combination of fast and slow dynamics found in

the Aplysia CPG appears to be tuned specifically to the range of

environments in region ‘‘b’’ in Figure 5C, left. Given Task 2, these

are the environments that this combination is adapted to. It is in this

region, too, that the dynamics correctly predict the global properties

of the entire seaweed strip, indeed, over the long run, act as if they

instantiate a correct model of the statistics of the environment in

which they are operating (Figure S5 and Text S1, Section 6.5).

The CPG and the environment act as a coupled
dynamical system

Although the intrinsic kinetic parameters of the CPG model are

fixed, the dynamics that are actually observed are plastic because

they are elicited from the model only through its reciprocal

interaction with the environment. In response to stimuli from the

environment, the model moves through the environment and

thereby modifies, in turn, the stimuli that it receives. The

dynamics, and their performance, are the product of the entire

coupled system comprising both the CPG and the environment.

Indeed, the performance map in Figure 5C, left, is the product

of two fundamentally different dynamical modes in which the

entire system operates: a ‘‘successful’’ mode at tf,17 in which the

model continues to progress through the environment (albeit, at

small tf, slowly so that the performance is low), and a ‘‘failed’’

mode at tf.17 in which it ceases to progress. These two modes

were the origin of the distinct behaviors seen in the left and right

halves, respectively, of Figure 6. In Figure 7, the modes are

demonstrated in an analytical version of the system in which all

stochasticity is absorbed to reveal the fundamental dynamical

structure (see Text S1, Section 4). Under these circumstances, as

the simulation progresses, the system tends toward one of two

limit-cycle attractors. Figure 7A shows examples of these attractors

in the space of the three dynamical variables B, M, and P, the

position on the seaweed strip. Figure 7B maps the cycle periods of

the attractors over the range of environments, with a represen-

tative section through the map and the corresponding perfor-

mance plotted underneath. At any particular f, short strips elicit

the ‘‘successful’’ attractor, consisting of a series of successful

ingestions and egestions (green and red, respectively, in

Figure 7A1–3; red in 7B). But as the strips grow beyond a certain

length, they suddenly elicit the ‘‘failed’’ attractor, the failed

egestive oscillation back and forth on the same strip (blue in

Figure 7A4 and 7B). Thus, different environments induce the CPG

model to express dramatically different dynamics—some, such as

the failed oscillation, completely unanticipated from the kinetics of

the CPG model alone—and consequently impart different

dynamics to the environment itself, as seen from the vantage

point of the model.

With strips of intermediate length, the two attractors coexist

(Figure 7C; for details see Figure S6 and Text S1, Section 6.6).

Switching between the two dynamical modes can then be induced

by perturbations. Indeed, the rapid displacement of B by the fast

dynamics at the beginning of egestion (black arrows in Figure 7C)

can itself be thought of as such a perturbation. If B is displaced to a

sufficiently negative value, relative to the length of the strip to be

egested, then the system follows the successful attractor (green and

red in Figure 7C). But if the displacement of B falls even slightly

short, then the system spirals instead to the failed attractor (blue in

Figure 7C). In the full system, such switching, from the successful

to the failed mode and (less often) back, is then promoted by the

stochasticity of the system, the variability of the lengths of the

successive strips and the noise in the perceived stimulus that

randomly perturbs the trajectories of the system around the

underlying attractors (causing, for example, the variations in the

successive oscillations in the right half of Figure 6, as compared

with the unique attractor in Figure 7A4).

Model predictions confirmed in real animals
In Task 2 we have described, in effect, the behavior and

functional performance of a simulated Aplysia in a simulated

feeding environment. Do we see similar behavior and performance

when real Aplysia are feeding in a real environment?

First, how do the units of the model translate to real-world

units? Although time is measured in seconds in the model, the

units of length are formally arbitrary. They can, however, be

converted to real units of length as follows. We know that the

model ingests long seaweed strips at a maximal rate of 1 unit/s
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(Text S1, Section 3.3). In a real animal, the corresponding rate,

although very variable, might be ,0.5 cm per ingestive cycle

lasting ,5 s [21], or ,0.1 cm/s. Thus 1 length unit is equivalent

to ,0.1 cm. What f might be in reality is unknown, but at f = 0.1,

the maximal ,170-unit length of a seaweed strip that can be

ingested as well as egested successfully translates to ,17 cm. This

value is entirely consistent with the body size of adult Aplysia

californica and the dimensions of the seaweed that they eat in the

wild, both of which are of the order of centimeters to tens of

centimeters [18,42].

Figure 7. The CPG and the environment as a coupled dynamical system. All simulations in this figure used a 3-dimensional analytical system
in which the fast noise in the perceived stimulus Sp was absorbed into the 2D model, which was then driven in Task 2 through the space spanned by
the behavior B, the memory M, and the position P by the true stimulus St (see Text S1, Section 4). To reveal the canonical dynamics, all variability of
the true environment was also eliminated in this figure, so that the environment consisted simply of repeats of the single canonical sequence of three
free and one attached seaweed strips, all exactly of length t. All simulations started from the initial conditions B(0) = 0, M(0) = 0, P(0) = 0. A:
Representative steady-state limit cycle trajectories reached by the system with different values of t, all with f = 0.1. The time required to complete one
such cycle is the ‘‘limit cycle period’’ in this figure (see also C, bottom). B: Values of the limit cycle period, color-coded according to the scales shown
on the right, over values of t ranging from 1 to 250 and f from 0 to 1. In the red region, the limit cycle reached from the initial conditions B(0) = 0,
M(0) = 0, P(0) = 0 consists of three successful ingestions and a successful egestion, as in simulations 1–3 of A; in the blue region, it consists of a failed
egestion, as in simulation 4 of A. The locations of the four simulations in A are marked. Below is shown a representative section through the plot,
again at f = 0.1, and under it the corresponding performance, given by 3t/(limit cycle period) for a ‘‘successful’’ limit cycle and 0 for a ‘‘failed’’ limit
cycle. With no variability, the smallest possible period of the successful limit cycle is exactly 9t and the highest performance therefore exactly 1/3
(Text S1, Section 3.3). C: Over an intermediate range of t, the two kinds of limit cycle coexist. Here, with t= 150 and f = 0.1, a small perturbation
moved the system from the successful to the failed limit cycle (see further Figure S6 and Text S1, Section 6.6). The corresponding time series of the
behavior B is shown below.
doi:10.1371/journal.pone.0003678.g007
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The performance map in Figure 5C, left, then predicts that long

strips will be ingested more efficiently than short strips. Applying

the conversion factor just determined, 15-cm strips, for example,

should be ingested several-fold more efficiently than 2-cm strips.

Indeed, when we allowed real animals to feed ad libitum on seaweed

cut into either 2-cm or 15-cm strips, they ate, over a similar period

of time, about 5-fold more seaweed in the latter case (Figure 8A).

The most striking prediction of the model is that, when a strip

that has been ingested but now must be egested exceeds a certain

length, the animal will ‘‘forget’’ the egestive goal and enter into the

‘‘failed’’ mode of ingestive-egestive oscillations back and forth on

the strip. We tested this prediction with plastic tubing, a traditional

seaweed substitute [20,26] which Aplysia perceive as a (mild)

ingestive stimulus and which remains physically unaltered, and so

continues to present the same stimulus, upon repeated passage in

and out of the animal. As in the model, the tubing was attached at

the end so that it could be ingested, but it could not then be broken

off and swallowed and had to be entirely egested again. We found

that when the length of the tubing exceeded ,10 cm, indeed, the

ingestive-egestive oscillations appeared. Figure 8B shows a

representative example in which the oscillations continued for

more than an hour.

Discussion

The reconstruction strategy
In this work we have pursued a reconstruction strategy, which,

from a known part of a system, seeks to deduce the other,

unknown parts and so reconstruct the whole system. In this case

we have sought to reconstruct the whole CNS-environmental

system that produces an adaptive behavior from the known

dynamics of the CNS. More commonly, the reconstruction of the

CNS-environmental system is performed in the opposite direction:

for a given behavioral task in the environment, the CNS controller

is sought (for examples that are most comparable to our work, see

[10–15]). Because degenerate solutions very often exist [9,14],

however, the reconstruction in that direction cannot guarantee

that it will not yield a CNS controller that functions quite

differently from the real biological one. This is one problem that

we avoid, since we know that the CNS dynamics that we start from

are in fact those of the real system. On the other hand, the

reconstruction in our direction introduces the converse possibility

of degenerate solutions in the environmental space, or, more

generally, solutions that may depend also on other dimensions of

the environment apart from those investigated. The selection of

the environmental dimensions to investigate, like that of the task

(see below), must therefore be guided to some extent by our basic

understanding of the real system.

The reconstruction strategy relies on the constraints that the

known part of the system imposes on the unknown parts, and will

be more likely to yield meaningful results as these constraints

increase. The constraints will increase as the parts of the system

become more tightly intercoupled. With its closed-loop, feedback

coupling between the CNS and the environment, our Task 2

apparently incorporates such constraints to a sufficient degree,

judging by the emergence of the two distinct dynamical modes

(Figure 7) and the sharply defined region of high performance in

the environmental space (Figure 5C, left).

Since it proceeds by means of quantifying performance in a

behavioral task, the reconstruction will be meaningful only if the

task is meaningful. However, the task itself may not be completely

understood. To some extent the task, too, may be inferred from

Figure 8. Two predictions of the model confirmed in real feeding Aplysia. A: Real Aplysia eat more free seaweed when it takes the form of
long strips (corresponding to the high-performance region ‘‘b’’ in Figure 5C, left) than short strips (corresponding to the low-performance region ‘‘a’’).
The experiments were done as part of the work in [74], using the general methods described in [21], with animals chronically implanted with wire
electrodes so that the cycling of the feeding CPG could be monitored. The experimental animal was placed in a ,3-liter seawater tank with a surface
area of 450 cm2, on which 150 cm2 of flat seaweed, cut into either 75 short (261 cm) or 10 long (1561 cm) strips, was then randomly scattered. The
animal was allowed to eat a complete ‘‘meal’’ [22] until the cycling of the feeding CPG spontaneously stopped; the number of remaining strips, and
so the number of strips eaten, was then counted. From 21 such experiments with short strips and 12 experiments with long strips, the results
(mean6SD) were as follows. Duration of the meal (min): short 53.5619.4, long 49.0615.1. Number of CPG cycles during the meal: short 144.7671.2,
long 198.1698.0. Number of strips eaten: short 7.7164.97, long 5.0863.09. Total amount of seaweed eaten (cm2): short 15.4269.94, long
76.25646.33 (plotted in the figure). None of the differences between the short- and long-strip experiments were statistically significant (Mann-
Whitney rank sum test) except the difference in the amount of seaweed eaten (whether over the entire meal, per cycle, or per minute), which was
highly significant (P,0.01). B: Real Aplysia, like the model, can fail to egest a length of material completely and continue to oscillate back and forth on
it indefinitely. Left: the experimental arrangement, described in detail in [21]. The animal ingested or egested material hanging vertically down to it
from the arm of a length transducer, which recorded the movement. In this case, the material was 2 mm-diameter flexible plastic tubing, which
(especially after prior arousal of the animal by seaweed chemical stimuli) appears to be perceived as an ingestive stimulus and is ingested [20,25], and
which, unlike seaweed, remains physically unaltered throughout long experiments such as this. Right: an example of the ingestive-egestive
oscillations continuing for .1 hour. In the latter part of the sequence, the switch from ingestion to egestion was triggered by the apparent
attachment of the material signaled by the increased tension when the transducer arm reached the limit of its range of motion (horizontal dashed
line).
doi:10.1371/journal.pone.0003678.g008
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the known part of the system that performs it. Here we thus

inferred an ingestive-egestive asymmetry in the task from the

ingestive-egestive asymmetry of the observed CNS dynamics. But

usually a reconstruction of the whole system and the task will not be

sufficiently constrained by the information available just within the

system. External information will be required as further constraint.

Here we used such external information by modeling Task 2 to

agree with the basic facts of Aplysia feeding.

While simplified, Task 2 is realistic, except perhaps in one

respect. When Aplysia encounter increased resistance when

ingesting an otherwise edible strip of seaweed, they will attempt

to cut or break off the strip at that point [19]. In Task 2 we have

supposed that they do not succeed in doing so, and so must egest

the entire strip again. This would be the case with tough seaweed

or indeed plastic tubing (Figure 8B). In more general terms, Task 2

can be seen as a formalization of the regurgitation or vomiting

scenario, in which the animal realizes only with a delay, after it has

ingested a considerable amount of material, that that material is in

fact indigestible or even harmful, and must egest all of the material

again. Regurgitation or vomiting is observed in many kinds of

animals [43] including at least some slugs [44], and its dynamics

share many features with those that we have observed in Task 2

(see below).

Roles of the slow and fast dynamics of the Aplysia
feeding CPG

In the experimental work that we modeled here, the ingestive-

egestive state of the Aplysia feeding CPG was found to have

intrinsic dynamics that are generally slow, but exhibit one fast

component when, after a period of ingestion, the feeding stimulus

becomes egestive. In the realistic Task 2, we have observed and

analyzed the functional consequences, and thus inferred the

functional roles, of the slow and fast dynamical components and of

their interaction.

The slow dynamics integrate the perceived feeding stimulus

over long times, over multiple cycles of the feeding behavior and

even from one ingested seaweed strip to the next. Conservatively,

ignoring any fast changes in the perceived stimulus, the slow

dynamics thus produce in each cycle behavior similar to that

produced in the previous cycle. As Proekt et al. [39] proposed, this

can be seen as the function of filtering the noisy perceived stimulus

to extract an estimate of the ‘‘true’’ stimulus, the true state of the

environment, and producing the behavior that is appropriate to it.

Furthermore, since the function extrapolates from the past into the

future, it can operationally be said to form a prediction or

‘‘expectation’’ of the future environment and an ‘‘intention’’ to

produce the appropriate behavior [39]. With the slow dynamics,

this function predicts a slowly changing environment, and so is

adaptive if the environment is indeed slow. We demonstrated this

function in isolation in our Task 1. Then in Task 2, as the animal

ingests successive free seaweed strips, this function plays the key

role of progressively building up the behavior in the ingestive

direction for the most efficient continued ingestion.

In Task 2 the slow dynamics play also another, perhaps more

surprising, role. When the true stimulus does change rapidly, the

slow dynamics inevitably continue to produce for some time a

transient of the old behavior, not yet reflecting the new stimulus.

Normally this would represent an inefficiency inherent in the

nature of slow dynamics. In Task 2, however, such a slow transient

is in fact actively created and used to perform efficiently the most

challenging part of the task—the phase of goal-driven egestion

after the animal has found that an ingested seaweed strip is

attached. Then, the slow transient continues to produce egestive

behavior for a considerable time even after the local true stimulus

generated by the animal’s contact with the intrinsically edible

seaweed has, once away from the point of attachment, resumed its

ingestive character. In this egestive behavior, the system in effect

expresses an estimate, no longer of the local stimulus, but of the

global properties—the attached nature and the length—of the

entire seaweed strip.

The transient is created by the fast dynamics. Having been

enabled by the previous ingestion, the fast dynamics, on encounter

with the point of attachment, rapidly displace the behavior to a

strongly egestive state, the starting point of the slow transient.

Together, the slow and fast dynamics thus implement, in effect,

a simple count-down timer. The fast dynamics set the initial value

from which the countdown begins, and the slow dynamics govern

the rate of the countdown. Both together determine how long the

countdown—the phase of goal-driven egestion—lasts. This can be

seen as a primitive analog of the function of interval timing that

has long been studied in the vertebrate CNS [45], which,

according to one proposal, may likewise keep track of the passage

of time on the time scales of seconds and minutes through the

decay of a slow memory [46].

Formally, the dynamics and their roles do not depend on the

particular neurophysiological mechanisms that implement the

dynamics within the CPG. Nevertheless, it is worth mentioning

that recent studies have begun to reveal some of these

mechanisms. Briefly, in the CPG some neurons appear to lie

functionally on the input side and others on the output side, in that

their activities track the ingestive-egestive character of the stimulus

and of the behavior, respectively [40,47]. The slow dynamics

probably emerge in the connections between these two types of

neurons through such mechanisms as activity-dependent synaptic

plasticity [39,40]. To some extent, also, alternative sets of neurons

may become active as the character of the stimulus and/or

behavior changes [38,47,48]. Finally, because these various

neurons release in an activity-dependent manner different

combinations of neuropeptides that modulate the activity of the

CPG, the ingestive-egestive state of the CPG may in fact reside

partly in its state of neuromodulation [38,49].

Stimulus- and goal-driven behavior
The different dynamical mechanisms that underlie ingestion

and egestion, together with the asymmetry in the statistics of the

environment where most seaweed strips are free and only a few are

attached, mean that the phases of ingestive and egestive behavior

are fundamentally asymmetrical.

Ingestion is stimulus-driven. The ingestive goal coincides with

the ingestive true stimulus generated by the seaweed, and so

matching the behavior to the true stimulus is all that is required.

Because the slow dynamics integrate the stimulus from one

seaweed strip to the next, as the animal ingests successive free

strips it does so more and more efficiently, and becomes more and

more primed to immediately begin ingesting the next strip that it

encounters. The default state of the system is thus ingestive. The

ingestion can go on indefinitely, as long as the ingestive stimuli

continue to arrive.

Eventually an ingested strip is found to be attached, however.

Then the dynamical timer mechanism executes a self-delimited,

discrete phase of egestion that disregards, indeed opposes, the true

ingestive stimulus and follows instead an internal egestive goal that

emerges from the dynamics. This egestion has many of the

characteristics of a stereotyped reflex or fixed-action pattern. Once

triggered, it proceeds automatically. Its duration is preset by the

amplitude of the initial egestive displacement by the fast dynamics,

which, since they are enabled by the previous ingestive history, can

to some extent tailor the duration to that history—if a great deal of
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seaweed has recently been ingested, the egestion will last longer.

But otherwise the duration is relatively resistant to modification. If

the egestion of the strip is completed early, the system nevertheless

persists for the remainder of the duration in an egestive state in

which (exhibiting a loss of ‘‘appetite’’) it will not ingest another

strip (this can be seen in Figure 6, and especially clearly following

strips 18 and 21 in Figure S2). If, on the other hand, the duration

is too short to egest the strip completely, the duration is not

prolonged, but rather the entire egestive reflex is repeated anew

(right half of Figure 6). Many of these characteristics are shared by

vertebrate vomiting [50], which too is considered to be a complex

reflex or fixed-action pattern that, indeed, may be orchestrated by

a CPG-like network [43,51].

Such interweaving of phases driven by an external stimulus and

an internal goal is observed in the behavior of many other real

animals, as well as their models [8,11,13,14].

The ingestive and egestive phases impart opposite tendencies to

the overall feeding performance mapped in the environmental

space. The ingestion increases in efficiency as the scale of the

environment, the average length of the seaweed strips, grows

longer. The egestion, on the other hand, loses all efficiency when

the strips become too long to egest completely. We confirmed both

of these tendencies with real animals (Figure 8, A and B,

respectively). Between the two tendencies, there is a relatively

narrow range of environments (region ‘‘b’’ in Figure 5C, left) in

which the overall performance is high, indeed near the theoretical

maximum for Task 2. It is in this range that the CPG dynamics

correctly estimate the global properties of the seaweed strips,

indeed act as if they instantiate a correct model of the statistics of

the environment in which they are operating (see Figure S5 and

Text S1, Section 6.5). The seaweed lengths in this range are

entirely consistent with those that Aplysia encounter in the wild.

These are the environments that, according to our analysis, the

dynamics of the Aplysia feeding CPG are adapted to, presumably

because they have evolved in them. This conclusion reflects the

basic concept that natural selection operates only on those sensory

capabilities and behavioral acts that the animal actually expresses

in its ecological niche, and tends to optimize those particular

capabilities and acts even if others that normally are not expressed

are thereby degraded (see, e.g., [8], Chapter 1).

Dynamical modes of the entire coupled system
As has been emphasized in previous dynamical-systems work in

neuroethology [5–8], it is not the dynamics of the CPG alone, but

rather of the entire reciprocally coupled system of both the CPG

and the environment, that produce the performance. Indeed, in

Task 2, once the Aplysia ‘‘agent’’ is placed in the environment, the

motions of the coupled system proceed completely automatically.

Setting aside noise and variability, the entire system tends to one of

two dynamical attractors (Figure 7). If the agent is placed in an

environment of seaweed strips that are not too long, the system

tends to a ‘‘successful’’ attractor in which the agent continues to

ingest, and if necessary egest, one strip after another. If, however,

the agent is placed in an environment of long strips, the system

tends to a ‘‘failed’’ attractor in which the agent, remarkably,

becomes trapped in an oscillation back and forth on the same strip.

Guided by the modeling, we were in fact able to observe this failed

mode of behavior in real animals (Figure 8B). The successful and

failed modes of behavior represent emergent, collective properties

of the entire dynamical system (see, e.g., [8], Chapter 6). They

would not easily have been predicted by studying its parts, either

the CPG or the environment alone, without our combined

analysis.

Further work
Three extensions of the present work naturally suggest

themselves.

First, we have neglected in this work the dynamics of the body

through which the interactions between the CNS and the

environment necessarily pass [7]. The intrinsic dynamics of the

musculature that performs the behavior, in particular, can

considerably modify the dynamics of the behavior [52,53]. In

the Aplysia feeding system, the buccal musculature exhibits

complex intrinsic dynamics, with slow and fast components of its

own, that are due to the actions of neuromodulators released

within the musculature as the behavior proceeds [54–57]. We

were able to neglect these peripheral dynamics here because, to a

first approximation, the dynamics of the CPG do still emerge in

the contractions of the muscles and the phasing of the feeding

movements [29]. In other words, the dynamics of the body appear

to be relatively transparent to such basic features of the CNS

activity as its ingestive-egestive character. Nevertheless, the

peripheral dynamics must now be added to our model for a

complete examination of the dynamics of the entire coupled

system of ‘‘brain, body, and environment’’ [7]. Indeed, certain

details of our modeling (see, e.g., Text S1, Section 3.3) can already

be interpreted as a rudimentary differentiation between the

ingestive-egestive character of the motor programs and that of

the actual behavior of the animal.

Second, we have neglected, too, yet another component of the

CPG dynamics: a large quasi-random variability of essentially all

parameters of the motor programs, including their ingestive-

egestive character, from one cycle to the next [58]. The CPG

dynamics of Proekt et al. [39] that we modeled here represent just

the average through this variability. This variability, too, emerges

in the muscle contractions, feeding movements, and indeed the

experimentally measured cycle-to-cycle performance of the

feeding behavior [21,59]. The variability must likewise now be

added to the model. In preliminary simulations in which we added

a simple model of such variability (Figure S7 and Text S1, Section

6.7), we found that the variability significantly broadened the high-

performance region in the environmental space, especially (in the

manner of the perturbations discussed in the Results) by allowing

long attached strips, which otherwise would have triggered an

indefinite period of the failed oscillations, to be successfully egested

sooner or later. This is consistent with the idea that, in an

uncertain feeding environment, the variability serves to implement

a trial-and-error diversification of the feeding movements until a

movement succeeds [21,58]. From the perspective of variability,

indeed, the plot of the performance in the environmental space

can also be regarded as a plot of the variability in the feeding task

that the CNS dynamics can deal with successfully.

Third, it should now be possible to connect the behavior of the

model with that of the real Aplysia in more specific, mechanistic

terms. The model makes specific predictions that can be tested.

For example, in the experiments in Figure 8A the real Aplysia, just

like the model, performed better with the long as compared to the

short seaweed strips in terms of the overall measure of the amount

of seaweed eaten over a long time. But in the model, this is

specifically because, as the behavior is integrated by the slow

dynamics progressively more in the ingestive direction, each cycle

is more strongly ingestive. In the real Aplysia, we should therefore

find, if we use a method like that in Figure 8B to continuously

record the movement of the seaweed, that the better performance

with the long strips is accounted for by a greater length of strip

pulled in per cycle, rather than more cycles each pulling in the

same length of strip.
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Conversely, finer details of the real behavior can be added to the

model. For example, the plastic tubing used in Figure 8B, although

traditionally used for such experiments [20,26], was clearly not

physiological. These experiments must now be repeated with real

seaweed, which the animal will presumably be able to cut, rather

than need to egest completely, more often. The probability of

cutting can be incorporated into the model. [Indeed, the model

already contains a probability that the strip will break at any point,

although in the simulations presented here that probability was set

at a negligibly low value (see Text S1, Section 3.3).]

Cognitive-like operations in simple circuits
Altogether, the Aplysia feeding system interprets sensory

information in the light of past experience and the current

functional goal of the animal to formulate predictions, ‘‘expecta-

tions,’’ and ‘‘intentions’’ concerning the immediate future [39] and

express them in the optimal adaptive behavior. If performed by a

mammalian CNS, these would be regarded as intelligent,

‘‘cognitive’’ functions. Yet here they are performed by a simple

motor network, when coupled to the environment.

We can see the operational similarity, and use such terms as

‘‘expectations’’ and ‘‘intentions,’’ when both cognitive processes

and processes that normally would not be considered cognitive are

expressed in a common language, in particular that of dynamics

[8,41,60–64]. In terms of dynamics, the system is no longer viewed

as having any such specific internal representation as, for instance,

of the fact that an attached seaweed strip of a certain length has

been ingested and must now be egested. Rather, the dynamics of

the system simply cause it to act so as to egest the strip. The

dynamics have evolved to perform adaptive behavior, ‘‘the essence

of intelligence’’ [5]. When operationally compared in this manner,

many other simple systems can be seen to perform basic intelligent

or cognitive-like operations [11,13,15,65,66]. Quite sophisticated

operations of the same kind are performed even by bacteria and

genetic, biochemical, and protein-protein interaction networks

within cells [67–69]. In humans and animals that normally are

credited with cognitive capabilities, by the same token, it may be

that the cognitive operations, and other such high-level operations

as the internal representations of the body and the environment in

sensory-motor transformations [70–73], are in fact implemented in

a distributed manner throughout the entire dynamical system: the

nervous system, including its low-level circuits, the nonneural

structures that are involved in the behavior, and the environment,

whose structure may indeed serve as a ‘‘scaffolding’’ essential to

many human cognitive capabilities [8,60].

Methods

All modeling and analysis of the modeling results was done in

Mathematica (Wolfram Research, Champaign, IL) or during the

preparation of the figures in SigmaPlot (SPSS, Chicago, IL).

Specific details of the numerical integration methods are given in

Text S1, Section 5. The experimental methods used in Figure 8

were closely based on those used previously by Lum et al. [21];

specific details are given in the legend to Figure 8.

Supporting Information

Text S1 1. Construction of 2D model. 2. 1D model. 3. Modeling

of environment, tasks, and performance. 4. Analysis of 2D model

in Task 2. 5. Numerical integration methods. 6. Supplementary

figure legends and discussion. 7. Supplementary references.

Found at: doi:10.1371/journal.pone.0003678.s001 (0.24 MB

PDF)

Figure S1 Experimental data and fit of the 2D model.

Found at: doi:10.1371/journal.pone.0003678.s002 (1.24 MB TIF)

Figure S2 Low performance of the 2D model in Task 2 in a

short environment.

Found at: doi:10.1371/journal.pone.0003678.s003 (1.08 MB TIF)

Figure S3 Complete analysis of the shape of the region of high

performance of the 2D model in the Task 2 environment.

Found at: doi:10.1371/journal.pone.0003678.s004 (0.33 MB TIF)

Figure S4 The slow dynamics of the behavior B, rather than the

decay of the memory M, determine the longest seaweed strip that

can be egested.

Found at: doi:10.1371/journal.pone.0003678.s005 (0.92 MB TIF)

Figure S5 Prediction of the environment by the 2D model in

Task 2.

Found at: doi:10.1371/journal.pone.0003678.s006 (1.71 MB TIF)

Figure S6 More detailed dynamical analysis of the success or

failure of the ingestion and egestion of seaweed strips of different

lengths.

Found at: doi:10.1371/journal.pone.0003678.s007 (1.39 MB TIF)

Figure S7 Added variability enhances the performance of the

2D model in Task 2 simulations.

Found at: doi:10.1371/journal.pone.0003678.s008 (1.64 MB TIF)
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