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Survival of patients with metastatic melanoma varies widely. Melanoma is a highly

proliferative, chemo-resistant disease. With the recent availability of immunotherapies

such as checkpoint inhibitors, durable response rates have improved but are often

still limited to 2–3 years. Response rates to treatment range from 30 to 45% with

combination therapy however no improvement in overall survival is frequently observed.

Of the available therapies, many have targeted the BRAFV600E mutation that results in

abnormal MAPK pathway activation which is important for regulating cell proliferation.

Immune checkpoint inhibitors such as anti-PD-1 and anti-PD-L1 offer better success

but response rates are still low. Identifying biomarkers to better target those who will

respond and identify the right combination of treatment is the best approach. In this

study, we utilize data from the Cancer Cell Line Encyclopedia (CCLE), including 62

samples, to examine features of gene expression (19K+) and copy number (20K+)

in the melanoma cell lines. We perform a clustering analysis on the feature set to

assess genetically similarity among the cell lines. We then discover which specific

genes and combinations thereof maximize cluster density. We design a feature selection

approach for high-dimensional datasets that integrates multiple disparate machine

learning techniques into one cohesive pipeline. Our approach provides a small subset of

genes that can accurately distinguish between the clusters of melanoma cell lines across

multiple types of classifiers. In particular, we find only the 15 highest ranked genes among

the original 19 K are necessary to achieve perfect or near-perfect test split classification

performance. Of these 15 genes, some are known to be linked to melanoma or other

cancer progressions, while others have not previously been linked to melanoma and are

of interest for further examination.
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1. INTRODUCTION

Melanoma can be a devastating disease, one in which incidence
is on the rise, and treatment options are limited for the
most aggressive forms of the disease. Several gene mutations
are widely expressed in melanoma incidences. In particular,
the BRAFV600E mutation occurs in ∼60% of patients. This
mutation results in constitutive activation of BRAF signaling in
the ERK/MAP Kinase pathway with a result of increased cell
proliferation and survival (Ascierto et al., 2012). Some of themost
promising treatments have been developed as selective inhibitors
of this or other pathways. However, not all patients exhibit
mutations in these pathways and, of those that do, not all respond
to these therapies. If they respond initially, they may also not
be responsive upon disease recurrence. Malignant melanoma has
shown poor durability overall in response to available treatments.
This raises the question of what other factors drive treatment
response, tumor aggressiveness, and the ability to metastasize
from the original primary lesion site. By identifying subset
populations of melanoma as distinguished by gene expression, we
can gain a greater understanding of the genomic intravariability
in melanoma as well as illuminate potential gene therapy
targets enabling a patient-powered precision medicine approach
to treatment.

One approach to address this question is to profile gene
expression using CDNA microarray screening or transcriptome
analyses from patient tumor libraries. These have the advantage
of providing known information on tumor response to different
therapies, tumor staging, prognosis, and survival data. The
downside to this approach is limited access to tissues, tissue
heterogeneity, and overall tissue availability (Ryu and et al.,
2007). Other approaches include the evaluation of melanoma cell
line data. Having increased availability of open-access databases
with patient and cell line datasets makes this possible. Some
related examples of analyses on this kind of data have been to
use hierarchical clustering, similarity core analysis, and Elastic
Net regression (Ryu and et al., 2007; Garnett and et al., 2012;
Covell, 2015; Rambov and et al., 2015). These methods have
had some success in the ability to identify potential genes that
may be involved in the upregulation of cell proliferation, drug
response, and propensity for metastasis to distant sites. Success
has been limited due to the inability to have a good correlation
of results from one approach to the next. It is clear that general
classes of gene products are identifiable, those being effectors of
the cell cycle, its checkpoints, apoptosis, cell adhesion, tumor
suppressors, and DNA repair. The availability of data through
publicly accessible large databases has provided the ability for
tailored approaches to data mining and machine learning.
Numerous different approaches are highlighted in the literature
often as an effort to assess drug sensitivity data with pathway and
gene expression clustering (Garnett and et al., 2012; Brubaker
et al., 2014; Jang et al., 2014; Covell, 2015). The Cancer Cell
Line Encyclopedia (CCLE) (Barretina et al., 2012; Cancer Cell
Line Encyclopedia Consortium and Genomics of Drug, 2015)
is one such database in which gene expression, copy number,
and drug response data are available for over 1,000 cancer cell
lines (http://www.broadinstitute.org/ccle/home). Having large

datasets available can provide a powerful tool for identifying
pathways and gene expressions that are critical in determining
prognosis and overall sensitivity to treatments. In this study, we
have selected the melanoma cell lines from the high-dimensional
CCLE dataset and used various machine learning methods to
identify genes of interest that distinguish these 62 cell lines into
three discrete clusters. To date, the use of biomarker data from
these databases has provided limited success and will require
confirmation in biologic systems to determine true correlative
benefits. The overall hope is that these analyses will lead to
the development of molecular signatures for targeted therapies
and the ability to individualize the treatments for the most
durable response.

2. CLUSTERING OF MELANOMA CELL
LINES

We used gene expression and copy number features for 62
melanoma cell lines from the CCLE to systematically assess
features of interest for distinguishing genomic clusters of
melanoma cell lines. CCLE skin cancer data included expression
for >19,000 genes, copy number for >20,000 genes and 24
drug sensitivity features. To identify the distinct clusters of the
cell lines, we applied the k-means++ (Arthur and Vassilvitskii,
2007) method with feature sets consisting of gene expressions,
copy number variations, and their combination. The k-means
method is a widely-used clustering technique that seeks to
minimize the average squared distance between points in the
same cluster. Although it offers no accuracy guarantees, its
simplicity and speed are very appealing in practice. The k-
means++ method (Arthur and Vassilvitskii, 2007) introduces
an algorithm that is O(log k)-competitive with the optimal
clustering obtained by augmenting k-means with an improved
initialization technique. Computational experiments showed that
the augmentation improves both the speed and the accuracy
of k-means, often quite dramatically. Likely due to the extreme
scarcity and sparseness of our data, more complex clustering
techniques did not prove useful.

When plotting a goodness-of-fit metric against the number of
clusters specified for the k-means++ algorithm, we can search for
a specific number of clusters, k, that corresponds to an abrupt
shift in the slope of the error curve—called an elbow-point. The
goodness-of-fit metric we use is the within-cluster sum of squares
(WCSS) which reflects the sum of Euclidean distances of cluster
members to cluster centers. An elbow-point with this metric
suggests a natural k in the data such that the clustering explains
a large percentage of variability in the data with a small k. Each
data point corresponding to each candidate k reflects the results
of ten randomized trials. The solution with the minimum error
is selected.

As shown in Figure 1A, an elbow-point at approximately five
clusters exists when considering the gene expression features
alone. In Figure 1B, there was no clear suggestion for the optimal
k when considering the copy number variation features alone
indicated by a near-straight line in the graph. Combining the
copy number variations with the gene expressions, shown in
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FIGURE 1 | WCSS error plotted against the number of cell clusters. (A) 19 K gene expression features showing an elbow-point at approximately five clusters. (B) 20

K copy number variation features did not show a clear point of inflection. (C) The combined features of gene expression and copy number variation was similar to

gene expression alone.

FIGURE 2 | PCA plots of 5-cluster analysis to show how the individual cell lines cluster. Each cluster is identified in a different color. The centroid of each cluster is

shown with a large open circle. (A) 19 K gene expression features. (B) 20 K copy number variation features. (C) Combined features.

Figure 1C, did not affect the elbow-point seen in Figure 1A

nor change the membership of the resulting cluster indices.
This suggests that the copy number variation features are poor
candidates for diversifying the cell lines. Principal component
analysis (PCA) plots corresponding to all three 5-cluster analyses
are presented in Figure 2.

Information from the American Type Culture Collection
(ATCC) suggested the origin of the two cell lines exclusively
clustered together in Figures 2A,C were from a single patient.
A different cluster of cell lines originated from The Naval
Biosciences Laboratory (NBL) collection. Some of those cell lines
were removed from the ATCC and aren’t fully characterized
for morphology or purity. As a result, we removed these two
clusters from further analysis. After removal, 49 cell lines
remained. Moreover, considering the results across Figures 1, 2,
we continued our investigations on the 49 cell lines with the 19 K
gene expression features only. Figure 3 displays the WCSS error
and PCA plot of the three clusters of 49 cell lines based on gene
expression features.

3. FEATURE SELECTION AND
CLASSIFICATION

To identify the patterns of gene expressions best separating the
three clusters, we applied a pipeline of various feature selection
and classificationmethods with cluster index used as the response
variable. We tailored our methods to work with our high-
dimensional dataset.

3.1. Identification of Most Significant Gene
Expressions
Feature selection methods consist of three main groups:
filter, wrapper, and embedded methods. Filter methods rank
each feature according to some univariate metric with the
response variable. Wrapper algorithms search for the best
subset of features concerning the classification performance of
an underlying model. The wrapper algorithm typically treats
the classification algorithm as a black box, such that any
classifier is suitable for the wrapper. One can use standard
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FIGURE 3 | Re-analysis of the 49 cell lines identifies three clusters. (A) WCSS error. (B) PCA plot of 3-clusters of 49 cell lines with 19 K gene expression features:

Cluster 1, Cluster 2, Cluster 3.

optimization techniques (hill-climbing, simulated annealing,
or genetic algorithms) as the wrapper algorithm. Embedded
methods search among different feature subsets, but unlike
wrappers, the process is embedded into a classification model
and takes place naturally as a part of learning the classifier.
Decision Trees are a famous example of a classification
algorithm with embedded feature selection properties. For more
information on feature selection methods and their applications
to genomic and proteomic data, refer to Dubitz (2007) and the
references therein.

In part because of the high dimensionality and sparseness of
the CCLE melanoma data, one is often led to finding entirely
different results from applying feature selection on randomized
trials or between different algorithms. The results depend entirely
on algorithm details and not the structures within the data
itself. Also, in part because of the power of various classification
algorithms: using a large enough subset of features, even if
they are simply randomly selected, can yield good classification
accuracy. The classifier can learn patterns in the data that
are circumstantial artifacts as opposed to biologically relevant
information. We propose that the most general features which
distinguish the data will score well across different kinds of
feature selection algorithms and will also yield high classification
performances across many different types of classifiers. To reach
this end, we first employ a statistical univariate technique, called
the Fisher Score (Aggarwal, 2014), and amultivariate SVM-based
technique, called Support Vector Machine Recursive Feature
Elimination Correlation Bias Reduction (Yan and Zhang, 2015),
abbreviated as SVM-RFE+CBR, to reduce the feature set size.
These reduce the feature set size to amanageable level for running
500 randomized trials of a search algorithm, called Sequential
Floating Forward Search (Pudil et al., 1994), abbreviated as
SFFS, wrapped around the k-nearest neighbors (KNN) algorithm.
Specifically, the objective function of the search is the average
test set classification performance of KNN when k is varied from

three to nine. We randomize the training and test splits for each
trial in the last step. Each random trial of the search algorithm
returns a 20 feature subset of the 500 feature pool. We record the
features which occur in the results the most often. This procedure
consolidates the results from three highly varied algorithms.
Feature Selection Pipeline:

S0. Input Data: 49 melanoma cell lines with 19K gene expression
features.

S1. Apply the Fisher Scoring method (univariate correlation-
based method extended to multiple features) on Input Data
and select the top 500 gene expressions with the highest
scores.

S2. Perform the SVM-RFE+CBRmethod (Yan and Zhang, 2015)
on Input Data and select the top 500 gene expressions based
on the SVM-RFE+CBR ranking.

S3. Reduced Data: Combine the top 1,000 gene expressions
obtained in (S1) and (S2). After eliminating duplicates, the
resulting reduced data contains 49 cell lines with 928 gene
expressions.

S4. Perform 500 randomized trials of SFFS wrapped around
KNN on Reduced Data and record the genes that occur most
often in the resulting optimal 20 feature subsets.

S5. Output Data: 49 cell lines with the top 15 genes
obtained from the randomized sequential trials of k-Nearest
Neighbors in (S4).

The Fisher Score has been used in several studies on genetic
datasets due to its computational simplicity (Yang et al., 2016; Sun
et al., 2018; Li and Xu, 2019). The Fisher Score of the ith feature
is calculated as

Si =

∑
j nj(µij − µi)

2

∑
j njσ

2
ij

,
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FIGURE 4 | Gene expression features ranked by frequency of occurrence over

500 randomized trials of SFFS.

where µij and σij are the mean and standard deviation of
the ith feature in the jth class, respectively. nj is the number
of instances in the jth class while µi is the mean of the ith
feature (Aggarwal, 2014). This produces a rank among the
features. However, being a function of single features, it does
not capture any relationships between features. Support Vector
Machine Recursive Feature Elimination (SVM-RFE), originally
proposed by Guyon et al. (2002), is an embedded feature selection
algorithm that uses criteria derived from the coefficients in SVM
models to assess feature importance. The algorithm features
a backward search that begins with the full feature set and
recursively removes the features with the lowest importance.
SVM-RFE+CBR is an extension to SVM-RFE that addresses the
problem that the importance of highly correlated features is likely
to be underestimated. SVM-RFE+CBR introduces a correlation
bias reduction step to reintroduce a representative feature from a
correlated group that has been possibly removed entirely due to
correlation bias. This is important to capture as our full feature
set has a large number of correlations. SFFS, first introduced
in Pudil et al. (1994), is a forward search algorithm that begins
with the empty set and incrementally adds features based on the
objective function, in this case, the classification performance of
k-nearest neighbors on the test set. The candidate feature set is
floating in the sense that after each forward step, the algorithm
performs conditional backward steps. It removes features starting
with the one that increases the objective function the most if
any such feature exists. The backward steps will continue as long
as the objective function increases. The algorithm terminates
when the floating subset of features reaches the desired size. This
algorithm adds and removes features one at a time, so it is not
practical to apply it to all 19 K features.

The features which occurred most often in our randomized
trials of SFFS are the features we regard as the most compact and
generalizable descriptors of our clusters. Multiple randomized
trials help us avoid results emergent from artifacts present in any
single run of the feature selection pipeline. The drop in frequency

TABLE 1 | Top 15 genes for CCLE skin cell line tumors.

TBC1D16 SEMA6A AVPI1

TRIM9 ARHGEF6 GSTO1

DYNC1I1 GPR137B AHR

YPEL2 PIK3CD C16ORF52

CD274 SPATA13 SMTN

of occurrence among the most frequent genes is very steep as
shown in Figure 4.

3.2. Top 15 Most Significant Genes
Our analyses showed that only the top 15 genes obtained from the
SFFS algorithm in (S4) were sufficient for perfect or near-perfect
classification performance across various classifiers. These genes
are displayed in order of frequency (importance) in Table 1. The
heatmap of 49 cell-lines with the expression levels of the top 15
genes is shown in Figure 5.

Of these 15 genes, some have links to melanoma prognosis.
While other genes have links to other cancers, their relationship
to melanoma was never previously shown. Here are brief
descriptions of some of the genes which have recently been
linked to various cancers and have the potential to serve as
prognostic biomarkers:

• TBC1D16 a GTPase-activating protein for RAB family
proteins is suggested to regulate EGFR in melanoma as a
result of a hypomethylation event. This may confer poor
survival but at the same time may increase BRAF and MEK
response (Vizoso and et al., 2015). Recently it has been linked
to epithelial ovarian cancer (EOC) as a positive predictive
marker for favorable outcomes for EOC. Impact is thought
to be conferred by effects on angiogenesis through vascular
endothelial growth factor (VEGF) signaling (Yang et al., 2018).
Rodger et al. (2019) have also reported epigenetic changes
in DNA methylation in TBC1D16. Loss of methylation was
noted in metastatic melanoma when compared to primary
tumors. Similar changes in methylation between primary and
metastatic tumors were noted in other cancers such as breast,
prostate, and colorectal cancer, suggesting that TBC1D16 may
be an epigenetic driver for tumor metastasis (Rodger et al.,
2019).

• TRIM9 Tripartate motif containing 9 is part of the TRIM
family of proteins, several of which are associated with
oncogenesis. TRIM9 is expressed normally in brain neurons
and recently has been linked to lung cancers. TRIM9 is an
ubiquitin ligase and may regulate tumor proliferation through
VEGFA and angiogenesis (Wang et al., 2016).

• DYNC1I1 Cytoplasmic Dynein 1 protein regulates
intracellular transport and mitotic spindle localization.
These activities may promote cell migration and cell cycle
progression. Recently it has been reported to play a role in
gastric cancer progression (Gong et al., 2019).

• CD274 Gene codes for Programmed death-ligand 1 (PD-
L1) which is currently the target of several large trials
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showing substantial benefit with anti-PD-L1 for late-stage
melanoma (Ascierto and Marincola, 2015). PD-L1 expression
is associated with overall better response rate and survival

when treated with the PD-1 checkpoint inhibitors. PD-L1
is the ligand for PD-1 receptors on T-cells and suppresses
anti-tumor T-cell mediated immune responses. CD274/PD-L1

FIGURE 5 | Heatmap of 49 melanoma cell lines with top 15 genes.

FIGURE 6 | Clustering of the 49 CCLE skin cancer tumors using the top 15 genes only. (A) WCSS error. (B) PCA plot of 3-clusters using only the top 15 genes:

Cluster 1, Cluster 2, Cluster 3. The colors are used to distinguish each Cluster. This color scheme is carried through on Table 2 and 5 to make it easy to distinguish

each cluster.
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TABLE 2 | Cluster membership and genomic characterization of cell lines.

Cluster 1

cell lines

Mutations Cluster 2

cell lines

Mutations Cluster 3

cell lines

Mutations

IPC298 NRAS Q61L COLO829 BRAF V600E LOXIMVI BRAF V600E

I1208V

K029AX BRAF V600E SKMEL24 BRAF V600E RPMI7951 BRAF V600E

SKMEL3 BRAF V600E HS695T BRAF V600E WM793 BRAF V600E

MALME3M BRAF V600E WM115 BRAF V600D

V600E

IGR39 BRAF V600E

MELJUSO HRAS G13D

NRAS Q61L

COLO800 BRAF V600 CJM HRAS

SKMEL2 NRAS Q61R UACC62 BRAF V600E GRM KRAS

BRAF I326V

COLO679 BRAF V600E A375 BRAF V600E BJHTERT N/A

SKMEL5 BRAF V600E HS294T BRAF V600E

UACC257 BRAF V600E WM2664 BRAF V600D,

V600E

IGR37 BRAF V600E COLO849 N/A

MELHO BRAF V600E C32 BRAF V600E

G361 BRAF V600E RVH421 BRAF V600E

COLO741 BRAF V600E HT144 BRAF V600E

SKMEL30 NRAS Q61K

BRAF D287H

E275K

SKMEL31 BRAF V600E

SKMEL1 BRAF V600E A101D BRAF V600E

COLO792 RAF1 S352L

S352F

COLO783 BRAF V600E

MEWO BRAF L255L WM983B BRAF V600E

IGR1 BRAF V600E MDAMB435S BRAF V600E

SKMEL28 BRAF V600E WM1799 BRAF V600E

SH4 BRAF V600E WM88 BRAF V600E

COLO818 BRAF V600E

A2058 BRAF V600E

expression is reported in TP53-mutated melanoma, non-small
cell lung cancer, colorectal cancer, and renal cell carcinoma
(Huang et al., 2018; Thiem et al., 2019).

• PIK3CD The catalytic subunit of phosphoinositide 3-kinase
(PI3K) is encoded by PIK3CD. PIK3CD has been reported to
be overexpressed in colorectal cancer (CRC) and associated
with poor survival and may be a prognostic biomarker for
CRC but no relation to melanoma has been observed to date
(Chen et al., 2019).

• GSTO1 Glutathione S-transferase omega-1 polymorphisms
are associated with the increased risk of developing breast
and liver cancer and have very recently been implicated in
squamous cell, colorectal, and melanoma as a modulator of
cell growth and immune response (Xu et al., 2020). Elevated
expression levels of GSTO1 have been correlated with drug
resistance.

• AHR The aryl hydrocarbon receptor initially was studied for
its role in response to environmental pollution and toxicity.
In recent studies it has been identified as playing a key role
in malignant cell progression, tumor aggression, and poor
prognosis (Wang et al., 2021).

3.3. Validation of the Top 15 Genes
We reran k-means++ clustering on the 49 CCLE skin cancer
tumors with the top 15 genes only. We found the elbow-point
at exactly three clusters was greatly accentuated as shown in
Figure 6A compared to Figure 3A. Figure 6B presents the PCA
plot of the three clusters using the top 15 genes. All cell lines
clustered together in the same way as when considering all
original 19 K genes as previously shown in Figure 3B.

Heatmap of the clustered cell lines with top 15 genes
is presented in Figure 5. Cluster membership and genomic
characterization of the reduced data is shown in Table 2.

In all 20 of the cells lines found in Cluster 1, there is an
identifiedmutation in a gene that is characteristic of the canonical
MAPK pathway. This includes genes such as NRAS, HRAS,
BRAF, and RAF1. In fact, 14 out of 20 cell lines express the classic
BRAF V600E mutation, which is a missense mutation found
in many neoplasms. Furthermore, patients with BRAF V600E
mutated melanomas respond to FDA-approved BRAF inhibitors,
such as atezolizumab. A dependency on the essential SOX10
transcription factor in CRISPR and/or RNAi loss-of-function
screens is shown in 13 out of 20 Cluster 1 cell lines.
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In our identification of the top 15 genes that helped identify
the three clusters, TBC1D16, DYNBC1l1, SEMA6A, GPR137B,
PIK3CD, AVPl1, and GST01 are found to be high expressing
genes (relative to the other clusters) for Cluster 1. TRIM9,
ARHGEF6, C16orf52, and SMTN are also lower expressing genes
for Cluster 1.

There are 22 cell lines that partitioned into Cluster 2. Of these,
21 are catalogued for mutations. All 21 are positive for the BRAF
V600E mutation. We observe that none of these cell lines have
mutations in any of the RAS genes, which stands out from the
cells in Cluster 1.

Examples, of preferentially essential genes in some of the cell
lines in Cluster 2, as determined by CRISPR and/or RNAi screens,
included BRAF, MAPK1, SOX10, MDM2, and DUSP4.

Based on our analysis, TRIM9, YPEL2, ARHGEF6, SPATA13,
AHR, C16orf52, and SMTN are high expressing genes present
in the cell lines of Cluster 2. Of this group, RIM9, ARHGEF6,

TABLE 3 | Classification accuracy for top 15 genes using six different

classification techniques.

Cluster Multilayer

perceptron (%)

Logic

regression (%)

Naive Bayes

multinomial (%)

1 100 100 100

2 100 100 100

3 100 85.70 100

Average 100% 95.23% 100%

Cluster k-Nearest

Neighbor

Logic model

tree

Random

forest

1 100 85 100

2 100 100 100

3 100 100 100

Average 100% 95% 100%

TABLE 4 | Tabular description of the decision tree classification model.

Cluster Decision tree rules

1 GSTO1 ≥ 12.7765 & TBC1D16 ≥ 7.28245

2 GSTO1 < 12.7765 & TRIM9 ≥ 5.03635

3 GSTO1 ≥ 12.7765 & TBC1D16 < 7.28245

3 GSTO1 < 12.7765 & TRIM9 < 5.03635

Each rule specifies required levels of gene expression (as measured in the CCLE database)

to fall into the given cluster. There was only one pattern that defined Clusters 1 and 2,

respectively. Cluster 3 was defined by two patterns, as shown.

TABLE 5 | Cross-validation accuracy of the decision tree classification model.

Average

accuracy

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)

98.33 95 100 100

C16orf52, and SMTN are low expressing genes in cell lines of
Cluster 1.

There are seven cells lines that partitioned into Cluster
3. One is a fibroblast cell line and is not represented in
the Cancer Dependency Map portal from the Broad Institute
(depmap.org/portal). Of the six represented cells lines, five had
mutations in the BRAF gene: four with the typical BRAF V600E
mutation and one with BRAF I326V, which has been found in
other cancers (colorectal, breast, and lymphoid).

Only one of the six cell lines show preferentially dependent
genes in the MAPK pathway. None of the other five out of six cell
lines showed dependency on proteins from the MAPK pathway
in Cluster 3.

Only CD274 is found to be high expressing in the cell lines in
Cluster 3. However, Cluster 3 has the most representatives of the
15 genes as low expressing genes, including TBC1D16, DYNC1l1,
YPEL2, SEMA6A, GPR137B, SPATA13, and AVPl1.

To validate the discriminating power of the top 15 genes
among our three clusters we applied various classification
techniques on 49 cell lines with the 15 genes. Table 3 shows
the perfect or near-perfect accuracy of different classification
algorithms implemented in the machine learning software
WEKA (Hall and et al., 2009).

3.4. Decision Tree Classification Model
We built a Decision Tree classification model on data consisting
of the 49 cell lines with the top 15 genes to obtain combinatorial
patterns of gene expression that led to the separation of the
clusters. Decision Tree is a non-parametric supervised learning
method used for classification and regression. The goal is to
create a model that predicts the value of a target variable by
learning simple decision rules inferred from the data features
(Quinlan, 1993). The decision tree model shown in Table 4

consists of just one pattern for Cluster 1, one for Cluster 2, and
two patterns for Cluster 3. The decision rules include only three
genes: GSTO1, TBC1D16, and TRIM9.

We evaluated the performance of the Decision Tree model
through 10 times k-folding (10-folding in this case) cross-
validation experiments: Randomly partition the data into k = 10
approximately equal parts. Designate one of these subsets as a test

TABLE 6 | Drug response analysis for the 49 melanoma cell lines.

Drug analysis AZD6244

(MEK) ActArea

PD-0325901

(MEK) ActArea

Cluster 1 Sample size 13 13

Mean 2.9335 4.1911

Standard deviation 1.0908 1.3765

Cluster 2 Sample size 16 16

Mean 2.6125 3.7534

Standard deviation 1.1446 1.5811

Cluster 3 Sample size 4 4

Mean 1.5511 2.1695

Standard deviation 0.8569 0.8631
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set. Build a model on the remaining k − 1 = 9 subsets that form
the training dataset. Then, evaluate classification performance on
the test set. Finally, average performance while using each fold as
the test set once. Table 5 displays the cross-validation accuracy of
the Decision Tree.

4. DRUG RESPONSE ANALYSIS

Analysis of the drug response data provided by the CCLE
suggests that these 15 genes also play a role in predicting
drug responses. The CCLE reports drug response in a subset
of the cancer cell lines as ActArea—the area above the fitted
dose-response curve—and includes responses across 24 different
anti-cancer drugs. Of these 24 anti-cancer drugs, we focused
on two MEK inhibitors. These are believed to be crucial
in the treatment of melanoma. Upon analyzing the mean
response of these two drugs across all three of our clusters
separately, we found a decreasing response from cluster 1
to cluster 3 across both drugs as shown in Table 6. Given
that our study illuminates what genes distinguish our clusters,
one can reasonably hypothesize that these same genes are
possibly responsible for this decreased response. However,
further analysis is needed before making any conclusions in
regards to this.

5. CONCLUSION

Through a machine learning pipeline of clustering and feature
selection, our study identifies 15 genes whose levels of expression
categorize melanoma into three genomic clusters. A Decision
Tree model needs only three genes—GSTO1, TBC1D16, and
TRIM9—to reliably classify nearly all of the cell lines into their

respective clusters. These results shed some light on the globally
relevant genetic intravariability among melanoma cell lines.
These results may indicate extra considerations in choosing a
cancer therapy in addition to the treatment of the BRAFmutation
that exists in 42/48 (one of the 49 cell lines used in this study lacks
analysis) of the CCLE cell lines across all clusters (Ghandi et al.,
2019). Further research may include applying our same feature
selection pipeline with drug response as an outcome variable
to discover key gene expression patterns for predicting drug
response levels.
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