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Pareto optimality between growth-rate and lag-
time couples metabolic noise to phenotypic
heterogeneity in Escherichia coli
Diego Antonio Fernandez Fuentes 1, Pablo Manfredi2, Urs Jenal 2 & Mattia Zampieri 1✉

Despite mounting evidence that in clonal bacterial populations, phenotypic variability origi-

nates from stochasticity in gene expression, little is known about noise-shaping evolutionary

forces and how expression noise translates to phenotypic differences. Here we developed a

high-throughput assay that uses a redox-sensitive dye to couple growth of thousands of

bacterial colonies to their respiratory activity and show that in Escherichia coli, noisy regulation

of lower glycolysis and citric acid cycle is responsible for large variations in respiratory

metabolism. We found that these variations are Pareto optimal to maximization of growth

rate and minimization of lag time, two objectives competing between fermentative and

respiratory metabolism. Metabolome-based analysis revealed the role of respiratory meta-

bolism in preventing the accumulation of toxic intermediates of branched chain amino acid

biosynthesis, thereby supporting early onset of cell growth after carbon starvation. We

propose that optimal metabolic tradeoffs play a key role in shaping and preserving phenotypic

heterogeneity and adaptation to fluctuating environments.
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Heterogeneity between individual bacterial cells growing
under macroscopically identical conditions can have
important functional consequences1. While not always

beneficial2,3, population diversification is a key mechanism to
adapt to fluctuating environments4, in that it can allow genotypes
to persist in the face of adverse conditions. For example, growth
rate heterogeneity in bacterial populations contributes to survival
upon exposure to antibiotics5,6, and differences in the onset of cell
division can favor tolerance and evolution of antibiotic
resistance7–9. A number of different molecular mechanisms can
give rise to phenotypic heterogeneity10–12. Typically, these are
cellular processes such as stochastic gene expression13,14 and
stochastic partitioning of molecules at cell division15, which
ultimately manifest in the variation of protein copy numbers per
cell. Recent experimental evidence showed that fluctuations in the
expression of growth-limiting enzymes can be responsible for
growth fluctuations and the transmission of noise to other
genes10. While mounting single-cell studies have shown gene
expression to vary within a population of genetically identical
cells under constant conditions13,16,17, which cellular processes
are predominantly affected by noisy gene expression and whether
noise propagation is shaped by optimality-based principles are
still open questions.

Despite the expectations that stochasticity of biochemical
reactions should have negligible effect, theoretical models
demonstrate how noise in transcription and translation of
metabolic enzymes can affect levels of metabolic reactants18,19.
However, whether and how fluctuations in metabolite levels can
permeate the metabolic state of a cell and affect the ability to
adapt to changing environments is unclear. While technological
advances enabled monitoring levels of metabolites at single
cell20,21, directly probing cell-to-cell variability in the turnover of
metabolites remains challenging22, ultimately hampering the
study of metabolic heterogeneity and its functional implications.
By developing an assay to directly measure variability in the
respiratory rates among colonies of Escherichia coli growing on
solid media, we show that noisy transcriptional regulation of
lower glycolytic and citric acid (TCA) cycle enzymes can be
readily transmitted to metabolic heterogeneity. Surprisingly, we
found that individual colonies within an isogenic population
exhibit largely different respiratory activities, and that while
costly23, increased respiratory activity facilitates the early onset of
cell growth after starvation by preventing the accumulation of
toxic intermediates. We propose that variability in respiro-/fer-
mentative metabolism can be fitness invariant, allowing cells to
maintain a greater variation in enzyme expression and potentially
employ diverse adaptive strategies to environmental changes.

Results
Enzymes involved in oxidative-reductive reactions exhibit large
cell-to-cell variability compared to proteins with a similar
abundance. To find cellular processes that exhibit large cell-to-
cell variability, we analyzed previously published single-cell pro-
teome data of E. coli13 (Fig. 1A). In prokaryotes, as in unicellular
eukaryotes, variability in gene expression and protein levels
among cells (i.e., noise) is inversely proportional to the mean
expression level of the population13,24,25. However, because on
average, in E. coli essential genes encode for highly expressed
proteins (p-value= 2.64e−10) (Fig. 1B, C)13, we hypothesized
that noise in abundant proteins, even if modest, may have
important consequences for phenotypic heterogeneity. To sys-
tematically compare noise among diversely expressed proteins,
we estimated the deviating noise, here defined as the deviation of
each protein from the average noise levels of proteins with similar
expression levels (Figs. 1A and S1, Supplementary Data 1). Next,

we performed a gene set enrichment analysis and compared
biological processes that are enriched for proteins with a large
standard (i.e., squared coefficient of variation) or deviating noise
(Fig. 1D, Supplementary Data 1). While the most significant (q
value ≤ 1e−4) processes affected by standard noise levels consist
of lowly expressed genes involved in DNA repair, DNA recom-
bination, and chemotaxis (Fig. 1B–D), we found that proteins
with the largest deviating noise levels are enriched for metabolic
genes involved in oxidative-reductive reactions (Fig. 1D). More
specifically, we found that genes encoding for enzymes in central
metabolism (e.g., aceE) exhibit larger than expected cell-to-cell
variability relative to other proteins with similar expression levels
(Figs. 1A and S1). On the other hand, essential genes on average
exhibited low deviating noise levels (p-value ≤ 0.05), indicating
that there may be selective pressures for noise reduction26. These
results suggest that, despite the key role in bacterial fitness of
proteins involved in central metabolism, fluctuations in their
expression, translation, or degradation may have been preserved
by evolution and can be a major source of phenotypic hetero-
geneity. To test if deviations of proteins from mean-noise levels
could be the results of stochasticity in their gene expression
regulation, we searched for transcription factors (TFs) regulating
the expression of proteins with large deviating noise. We found
that Cra, a key regulator of flux in lower glycolysis27, is sig-
nificantly enriched (p value ≤ 1e−4 Bonferroni-corrected thresh-
old) for targets that exhibit high deviating noise levels (Fig. 1E).
Altogether, these analyses suggest that noise in protein abundance
can potentially translate into large metabolic cell-to-cell varia-
bility and that such heterogeneity can be at least partially
explained by a few TFs.

Noise propagation to respiro-/fermentative metabolism. Our
results are consistent with other studies reporting on large var-
iations in enzyme levels10,28. However, whether and which noisy
enzymes are able to cause fluctuations in the rates of the corre-
sponding enzymatic reactions, and hence may affect phenotypic
heterogeneity, is still unclear. To address this question, we inte-
grated bulk measurements of protein copy-numbers29 and
metabolic fluxes30 in E. coli growing in minimal media with seven
different carbon sources. By quantifying the linear dependency
between changes in the copy number of 40 enzymes and 25 rates
of the corresponding metabolic reactions, we found that changes
in the abundance of enzymes in lower glycolysis (e.g., Pdh, GapA,
Pgk) and citric acid (TCA) cycle (e.g., GltA) directly scale with
changes in fluxes (Figs. 1F and S2, Supplementary Data 1). Hence,
expression noise in these enzymes can directly translate into cell-
to-cell flux variability and overall is likely to cause large changes
in respiro-/fermentative metabolism.

Experimentally validating noise propagation from enzyme
expression to metabolism remains challenging31,32. Currently,
experimental tools probing the metabolism of single cells are
limited to the monitoring of metabolite abundance33,34, and so
far direct measurements of metabolic fluxes (i.e., metabolite’s
turnover rate) at the single-cell level are lagging behind. As a
result, much less is known about heterogeneity at the level of
metabolism, and whether such variability can have direct
functional consequences. To overcome this problem, instead of
single-cell analytical methods we developed a multiparametric
assay that monitors phenotypic and metabolic heterogeneity of
thousands of colonies-forming E. coli growing on solid agar
media (Fig. S3). Our approach was inspired by studies using a
scanner array coupled with image analysis to monitor colony-
growth35,36. For each colony, we estimated the maximum growth
rate and lag time by fitting colony area over time with a Gompertz
growth function37 (Fig. S3). In addition, we added 2,3,5-
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triphenyl-2H-tetrazolium chloride (TTC) to the agar medium.
Commonly used in viability assays, TCC is a redox-sensitive dye
that is reduced by electron transfer from the respiratory chain
with the formation of 1,3,5-triphenylformazan (TPF), a water-
insoluble red fluorescent intracellular formazan36,38 (Fig. S3). By
measuring the rate at which each colony turns red, TCC allowed
us to directly measure the overall cellular reduction rate, and
hence to estimate the respiratory rate in single colonies (Fig. S3,
Supplementary Data 1). Overall, we found large variability in
growth kinetic parameters among colonies growing on Luria
Bertani (LB) and glucose M9 agar plates (Fig. 2A–D) (coefficient
of variation (CV) ~40 and 15% for growth rate and lag time,
respectively measured in three biological replicates). Moreover,
consistent with proteome-based predictions, we found consider-
able variability also in respiratory rates (Fig. 2E) (CV ~18 and

30% in M9 and LB, respectively). Notably, while on average TCC
inhibits bacterial growth, it does not affect colony-to-colony
variability (Fig. S3). Our analysis of protein noise levels in E. coli
(Fig. 1) predicted that variability in respiratory activity relates to
noise in the regulation of lower glycolytic enzymes. We
hypothesized that using an inducible promoter to control Cra
overexpression would reduce expression noise in its target genes
and overall result in lower colony-to-colony variations. To verify
our hypothesis, we compared the heterogeneity in growth and
respiratory rates among colonies of wild-type, Δcra, and cra
overexpression mutants (cra+) (Supplementary Data 1). Con-
sistent with our expectations, we observed that Cra over-
expression induces a significant (p value ≤ 0.01) reduction in
the variability of respiratory rates as well as lag times (Figs. 2F–H
and S4), indicating that even small variations of the levels of lower

Fig. 1 Noise propagation to metabolism. A Time independent protein (p) abundance and noise from single-cells of E. coli13. Average copy number (μp) vs.
protein expression noise (η= σp2/μp2, where σp is the standard deviation) of 1018 proteins (gray dots). A moving average smoothing method is used
to estimate average noise levels at different protein abundance (�ηp) (red line). Deviating noise (blue dots) is calculated as the ratio between the noise
of individual proteins and average noise levels of proteins with similar abundance (εp ¼ ηp=�ηp) (Supplementary materials and Supplementary Data 1).
Highlighted with gene names, proteins that exhibit the highest deviating noise levels. The black dashed line corresponds to zero deviating noise.
B, C Distributions of average protein abundance and deviating noise levels. Asterixis indicate significance, two-tailed t-test: *p value≤ 0.05, **p value≤ 0.01,
***p value≤ 0.001. D Gene ontology enrichment (http://geneontology.org/) reporting biological processes that are significantly (permutation test with
Storey correction q value < 0.001) enriched for proteins with high deviating or standard noise levels. E For each transcription factor (TF) we estimated the
average protein deviating noise of target regulated genes and the significance of the enrichment for target regulated genes with large deviating noise levels.
TFs regulating proteins with a positive or negative median deviating noise is colored in red and blue, respectively. Size of the dot scales with the number of
target-regulated genes. F For each enzyme in central metabolism we used ordinary least square regression analysis to estimate the proportionality and
significance between protein copy number29 and corresponding flux rates30 across seven different conditions. Enzymes are colored by pathway: orange-
glycolysis, blue-pentose phosphate pathway, green-TCA, as indicated by the small schematic on the upper left corner (see Fig. S1 for full details).
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glycolytic enzymes can translate in large phenotypic differences.
Somehow unexpectedly, noise reduction was not observed at the
growth rate level (Fig. 2F).

Pareto optimal tradeoffs between respiration and fermenta-
tion. If noise in gene expression of enzymes in central

metabolism is responsible for fluctuations in respiratory rates, the
next question is whether and how such metabolic fluctuations
propagate and relate to phenotypic heterogeneity. To address this
question, colony-to-colony variability in growth rate, lag time and
respiratory activity of E. coli growing on LB or glucose M9 agar
plates are related to each other by estimating their pair-wise

Fig. 2 Colony-to-colony variation. A, D, E Distribution of maximum growth rates, lag times, and respiratory rates, estimated for 5485 colonies of wild-type
E. coli growing in LB (red) and glucose M9 (blue) agar plates (Supplementary Data 1). Estimates were derived from colonies grown independently in three
different plates with LB and three plates with M9 glucose solid media. B, C 2D density plots in which each dot represents one colony and the red line a
locally weighted smoothed average (i.e., lowess function). On the upper right corner of each panel, we reported the Spearman correlation (Sp) and
corresponding p value (P, testing the hypothesis of no correlation against the alternative hypothesis of a nonzero correlation using the Spearman’s Rho
test) between growth rate, lag time and respiratory activity in LB (B) and glucose M9 (C). F, G, H Distribution of CVs for growth parameters estimated
from 1000 random selections of 400 colonies from wild-type (blue), Δcra (red), and cra+ mutant (green) (Fig. S4). Reported significance was estimated
from a two-tailed t-test.
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Spearman correlation (Fig. 2B, C). Overall, we found that
respiratory activity and growth rates are poorly correlated, and no
correlation was observed between lag time and maximum growth
rate in the LB medium, consistent with previous studies39 (Fig.
2B, C). Surprisingly, we found a strong correlation between
respiratory activity and lag time (Fig. 2B, C), suggesting that the
higher the respiratory activity the shorter is the time needed for
cells to start duplicating. To test whether this phenomenon
generalizes to largely diverse conditions and growth rates, we
monitored growth and metabolic activity in thousands of colonies
(i.e., ~8000) in the presence of 13 different perturbing agents on
independent LB plates. These are mostly antibiotics interfering
with different cellular processes, such as protein/RNA (i.e.,
Chloramphenicol, Rifampicin, Erythromycin, Tetracycline) and
cell wall synthesis (i.e., Bacitracin, Fosfomycin, Ampicillin,
Cefaclor), DNA replication (i.e., Ciprofloxacin, Nalidixic acid,
Nitrofurantoin), and ATP biosynthesis (i.e., Carbonyl cyanide,
Sodium Azide). To test different concentrations of the same
antibiotic in one plate, we spotted the center of the dish with
the antibiotic (Supplementary Data 1), and let it diffuse for 3 h
before inoculation. This way, the closer the colony is to the center
of the plate, the higher is the concentration of the antibiotic
(Fig. 3A). This approach allowed us to test a continuous range of
growth rates, lag times, and respiratory activities in a single petri
dish (Fig. 3A–C). Remarkably, the strong correlation between
respiratory rate and lag time held true in all conditions tested
(Fig. S5), suggesting that the link between heterogeneity in
respiratory activity and the onset time of colony expansion might

reflect a fundamental mechanism at the basis of the decision-
making process of cell division.

Mounting evidence has shown that respiration, although being
a more efficient way for E. coli to utilize available nutrients for
energy generation, requires larger investments in proteins23.
Hence, for the same ATP production, fermentation consumes
more carbon but requires smaller investment in catalytic
machinery allowing faster growth23,40. Coherently, the fastest
growing colonies in M9 with glucose exhibited relatively low
respiratory activities (Fig. 2C). On the other hand, colonies with
the highest respiratory activities, while generally showing lower
growth rates, featured the shortest lag times (Fig. 2B, C). This
finding suggests that maximization of growth rate and mini-
mization of lag time are competing cellular objectives and that the
regulation of respiro-/fermentative metabolism can favor one
objective over the other—i.e., while fermentation allows for faster
growth23, respiration fosters quicker initiation of cell growth.
Moreover, instead of a large population of equally fast-growing
individuals and a small unfit sub-population that could ensure
survival upon unfavorable environmental changes (e.g., persis-
ters), we observed a continuum of colonies exploiting different
metabolic strategies. How can this metabolic diversity be
maintained? While in a given constant environment, only
one strategy is optimal, in a naturally fluctuating environment
the advantages of short lag time or fast growth rate might average
out. We hypothesized that variability in respiro-/fermentative
metabolism is fitness-neutral—i.e., cells can be equally optimal in
spite of different metabolic strategies. Colonies that find an
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optimal compromise between two competing objectives are called
Pareto optimal41—i.e., a colony is Pareto optimal if there exists no
other colony that is at least as good in all objectives, but strictly
better in at least one objective. By using a simple exponential
model of bacterial growth, one can derive that in equally fit cells
—i.e., cells able to reach the same number of divisions in a fixed
period of time—growth rate and lag time are inversely related
(Supplementary text). Hence, according to our hypothesis, the
space of feasible growth rates and lag times should be delimited
by a Pareto front41 approximating an inverse relationship
between the two. Moreover, natural selection of optimal fitness
will force colonies to operate metabolism in the proximity of the
optimal tradeoffs42, and hence colonies shall not randomly
occupy the space of feasible growth rates and lag times. Moreover,
because of the already known direct proportionality between
fermentative metabolism and growth rate23, we expect that in
Pareto optimal colonies, growth rate negatively scales with the
respiratory rate (Supplementary text: lag time vs. growth rate).
Our theory is consistent with growth kinetics observed in wild-
type E. coli colonies growing on glucose as the sole carbon source
(Fig. 4A). We empirically found that the space of growth rates

and lag times occupied by the vast majority of colonies is
delimited by a front which is well described by approximating
colony fitness as growth rate over lag time (Fig. 4A). Moreover, as
hypothesized, colonies’ growth rates and lag time are not
uncoupled and hence are not uniformly distributed over the
space of feasible growth parameters (Fig. 4B). Rather, most of the
colonies operate in the proximity of a constant ratio between
growth rate and lag time (Fig. 4B). Consistent with this front
being Pareto optimal, we found that only in its proximity, growth
rate exhibits a significant monotonic decrease with the increase of
respiratory rate, in agreement with the theory of optimal
proteome allocation23 (Fig. 4B, C). Hence, we propose that
fitness in a natural environment is largely invariant to fluctua-
tions in respiratory activity, and as a consequence, expression
noise in central metabolic enzymes had not been counter selected
by evolution3.

Higher respiro- vs. fermentative metabolism prevents accu-
mulation of toxic branched-chain amino acid intermediates.
The coexistence of diverse but equally optimal metabolic strate-
gies that diversify cells towards fast growth or early growth
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initiation is consistent with the evolutionary trajectories of E. coli
evolved in batch liquid cultures containing glucose and acetate as
sole carbon sources43. During adaptive diversification, two
coexisting ecotypes emerge: one exhibiting fast growth in glucose
but long lag time when switching from glucose to acetate, and one
exhibiting shorter switching lag time and slow growth43. In
addition to previous work demonstrating that fast-switchers
(FSw) operate metabolism so as to require a minimum adjust-
ment between growth on glucose and acetate42, we predicted that
FSw would favor respiratory metabolism, while slow-switchers
(SSw) would feature higher fermentative metabolism (i.e., acetate
overflow). To test our predictions we used previously published
data42 measuring growth rate, glucose-uptake, and acetate
secretion for seven FSw and eight SSw randomly selected clones
grown in liquid glucose minimal medium. In agreement with our
predictions, we found that FSw on average have significantly (p
value= 0.028) higher respiratory activity and slower growth rates
than SSw (Fig. 4D–F).

The evidence presented so far is mostly correlative. Hence, it is
still unclear whether differences in respiratory activity are causal
for changes in lag times, and whether they are sufficient to explain
the tradeoff between growth and lag time. To test the causality of
this relationship, we used a knockout strain of arcA (ΔarcA) with
an isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible
promoter to modulate the arcA expression (arcA+). ArcA is a
key repressor of genes involved in the TCA cycle and oxidative
phosphorylation. While arcA deletion causes an increased carbon
flux into the TCA cycle44, respiration is inhibited and acetate
fermentation increased upon arcA overexpression45. Hence, we
expect lag times to increase with an increased expression of arcA.
To test this hypothesis, we grew wild-type E. coli, the ΔarcA and
arcA+ strains in batch liquid cultures of glucose minimal medium
up to mid-exponential phase (optical density at 600 nm (OD600)
~1), washed the cells, and incubated them in M9 medium without
carbon sources together with the IPTG inducer (0.02 mM) for 2 h.
Next, we resuspended cells in M9 medium with glucose and
monitored OD600 in a plate reader using different levels of IPTG
inducer. Consistent with a previous study45, mild induction of
arcA (below 0.03 mM IPTG) is able to improve growth rate with
respect to the wild-type (Fig. 4G). In addition, while ΔarcA grows
slower than the wild-type, it also exhibits the shortest lag time,
despite similar energy metabolism (Fig. S7). Overall, arcA
expression levels directly correlate with the length of the lag.
This phenomenon is similar when cells are resuspended in an M9
medium with a glycolytic (i.e., fructose) or gluconeogenic (i.e.,
acetate) substrate as sole carbon sources (Fig. S6). Altogether, this
additional experimental evidence supports a key role of
respiratory activity in facilitating rapid growth resumption and
reveals the conflicting roles between respiration and fermenta-
tion, in preparing cells for rapid growth resumption and
maximization of growth rates, respectively. Such a tradeoff might
explain why at the population level E. coli cells are neither
optimized for growth rate nor for lag time exclusively42,45, but
rather tend to adopt optimal tradeoffs, which may vary within the
cell population (Fig. 4B, D).

Finally, we investigated how increasing respiro vs. fermentative
metabolism in ΔarcA can affect the length of the lag period. To
this end, we use metabolomics46 to characterize the differences in
the abundance of ~1000 metabolites between wild-type and
ΔarcA in glucose M9 at exponential growth and during 2 h of
carbon starvation (Supplementary Data 1). We found that expo-
nentially growing ΔarcA mutants exhibit significantly (q value <
1e−2) lower levels of biosynthetic intermediates in branched-
chain amino acids (BCAA) (e.g., 2-methylmaleate, 2-isopropyl-
maleate), including the main precursor pyruvate and the end
product valine (Fig. 5A, B). On the other hand, dynamic

metabolic changes upon carbon starvation are largely consistent
between wild-type and ΔarcA, resulting in fewer and smaller
metabolic differences, with the notable exception of non-
degradable amino acids, such as valine and (iso-)leucine (Fig. 5C).
Non-degradable amino acids accumulate during starvation47

(Fig. 5D), but to a lower extent in ΔarcA than in the wild-type.
Imbalance in the levels of BCAA intermediates can be highly
toxic for E. coli, especially valine and leucine48,49. Intracellular
accumulation of amino acids inhibits their own biosynthesis
together with the biosynthesis of related amino acids48 and the
uptake of carbon sources49–51. Hence, we hypothesized that by
maintaining lower levels of BCAA, ΔarcA is able to more rapidly
resume the biosynthesis of biomass precursors once carbon
becomes available. To test this hypothesis, we measured the lag
time of carbon starved E. coli wild type and ΔarcA after
supplementing glucose together with different amino acids:
leucine, isoleucine, leucine+iso-leucine+valine, tryptophan,
methionine, and glutamate (Fig. 5E, F). ΔarcA and wild-type
exhibit a radically different response to supplementation of
glucose and leucine after carbon starvation. While leucine
sensibly prolongs lag time in wild-type, in ΔarcA leucine has a
mild but beneficial effect (Fig. 5E, F). Moreover, BCAA
supplementation in wild-type is able to reduce the lag-time by
nearly 40%, more than costly amino acids49, such as methionine
(Fig. 5E). Altogether, experimental evidence suggests that the
homeostasis of BCAA metabolism plays a crucial role during the
initial growth of bacteria after starvation. We previously found
that intracellular levels of the BCAA precursor pyruvate decrease
with an increase in respiro vs. fermentative metabolism49

(Fig. 5G). Metabolic changes induced by arcA deletion fit very
well with the previously established relationship (Fig. 5G). We
propose that by increasing respiratory capacity, ΔarcA has lower
pyruvate levels (Fig. 5A) and consequently can maintain lower
levels of BCAA intermediates (Fig. 5A), thereby reducing the risk
of their toxic accumulation.

Discussion
Here we monitored phenotypic and metabolic heterogeneity
arising at a single colony level. A key advantage of this approach
is the ability to directly monitor the variability in metabolic rates
rather than reporting on the level of individual metabolites. It is
worth noting that bacterial colonies develop in complex 3D
structures in which individual bacteria can experience different
metabolic gradients52–54. However, in E. coli, the first phase of
radial colony growth is not limited by nutrient gradients53, sug-
gesting that fundamental characteristics of colony-forming cells,
such as protein levels, can propagate to daughter cells and gen-
erate spatial correlations54,55 detectable at the colony level.
Moreover, transcriptional regulation of metabolism (e.g., Cra)
often involves negative feedback loops in which metabolites can
directly regulate transcription factors activity56. Such type of
regulatory interactions can function as negative integral feedback
and provide quasi-adaptation to small perturbations57,58, thereby
increasing the number of generations that are necessary for
daughter cells to significantly diverge from the transcription
factor activity of the ancestor. Therefore, while clearly different
from single-cell measurements, by simultaneously monitoring
thousands of colonies and their variation in growth kinetic
parameters and respiratory rates, we could make experimentally
testable predictions on the functional impact of metabolic
diversity on phenotypic heterogeneity.

In this study, we showed that the regulation of key proteins
involved in funneling carbon into the TCA cycle plays a fun-
damental role in the phenotypic heterogeneity of colonies
growing on solid media. While not all regulatory solutions can
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be equally optimal, the existence of multiple and largely diverse
metabolic tradeoffs that are fitness-invariant can be a major
driving force preserving and shaping phenotypic heterogeneity
and plasticity—i.e., the ability to develop varied phenotypes

under fluctuating environmental conditions. Independent
experimental evidence of planktonic cultures that evolve in
coexisting subpopulations exhibiting the same predicted tra-
deoffs between lag time, growth rate, and respiratory activity,
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suggests that the same concepts can be generalized to largely
diverse growth conditions.

Moreover, explaining colony-to-colony variations in growth
rate and lag time by changes in respiro-/fermentative metabolism,
together with the observation that an arcA deletion significantly
suppresses resistance evolution59, provides a basis to link inde-
pendent experimental evidence relating lag time and energy
metabolism6,60,61 to antibiotic tolerance and resistance7. Con-
sistent with our findings, mounting evidence associated evolu-
tionary adaptation of bacterial persistence to mutations in
enzymes of the respiratory metabolism, such as the proton-
pumping NADH:ubiquinone oxidoreductase (Nuo complex)61,62.
We demonstrated that homeostasis in BCAA can play a funda-
mental role during the early growth phases. We propose that
valine/leucine and isoleucine and possibly intermediates in their
biosynthesis can function similarly to toxin–antitoxin systems
mediating bacterial dormancy. Toxin–antitoxin modules, such as
HipAB63, have well-established roles in regulating the bistability
of clonal populations64 and in the formation of growth-arrested
persisters63. In a similar way, the accumulation of toxic BCAA
intermediates in clonal cells with different metabolic activities can
lead to cellular stasis by inhibiting BCAA biosynthesis and/or
carbon uptake49, ultimately affecting the biosynthesis of essential
components for cell growth and division. The existence of dif-
ferent Pareto-optimal metabolic strategies within a clonal bac-
terial population, on the one hand, could represent a form of
metabolic «division of labor»65 and, on the other hand, could
provide a bet-hedging strategy to withstand unforeseen chal-
lenges, such as periods of nutrient limitations or antibiotic
treatments6.

Overall, our findings can have important implications in
diverse theoretical and applicative fields. Understanding the ori-
gin and functional impact of metabolic heterogeneity can open
new opportunities in metabolic engineering and synthetic biol-
ogy, to incorporate noise transmission in the design of more

efficient biosynthetic strategies. Moreover, fluctuations in
respiro-/fermentative metabolism can be of particular significance
in the design and interpretation of experimental evolution7,8. The
existence of a tradeoff between shortest lag time and maximum
growth rate and the ability to shift between these cellular objec-
tives by modulating respiro-/fermentative metabolism can pave
the way to alternative therapeutic strategies fighting the emer-
gence of tolerant cells and eventually the appearance of drug
resistance66,67, potentially beyond antimicrobial treatments68.

Methods
Strains and media. For all growth experiments, E. coli BW25113 or mutants listed
in Table 1 were initially grown overnight in LB or M9 minimal medium. LB
medium consists per liter of deionized water of: 10 g Bacto-Tryptone (Becton
Dickinson and Co.), 10 g NaCl, 5 g Yeast extract (DIFCO laboratories). The M9
medium contains per liter of deionized water: 7.5 g of Na2HPO4 2H2O, 3.0 g
KH2PO4, 1.5 g (NH4)2SO4, and 0.5 g NaCl and was adjusted to pH 7 before
autoclaving. The following components were filter-sterilized separately and then
added (per liter of final medium): 1 mL of 1M MgSO4, 1 mL of 0.1 M CaCl2, 1 mL
0.1 M FeCl3, and 10 mL of a trace element solution containing (per liter) 180 mg
ZnSO4 7H2O, 120 mg MnSO4 H2O, 180 mg CoCl2 6H2O, and 120 mg CuCl2 2H2O.
Carbon source solutions were filter-sterilized and added separately to the medium,
5 g/L glucose, fructose, acetate. Agar plates were made by adding 15 g/L of Agar.

Strains used for the experiments discussed in the main text, their origin, and
corresponding reference.

Growth rate measurements. The growth rate and lag time in batch liquid culture
were measured by monitoring OD600 in 96-well plates with the multiwell reader
Infinite (Tecan, Switzerland) at 37 °C with shaking. The growth rates were
extracted by fitting the exponential part of the growth. An iterative approach was
used to find the time window of at least 100 min with the maximum exponential
growth rate. The intersection between the initial OD of the inoculum and the
extension of the exponential growth curve yielded the lag time69.

Statistical analysis. Statistical analyses were performed using Matlab R2018b
(MathWorks). Gene ontology and metabolic pathway enrichment analysis, and
enrichment of noisy enzymes in TF-target genes were based on an iterative
hypergeometric test described in Ref. 70. When necessary, p values were corrected
for multiple tests by q value estimation71. The network of TF-target genes reported
in72 was used to identify TF regulating proteins with large deviating noise.

Image acquisition and analysis. Overnight cultures were diluted in LB or M9
media 1:1000. Cells were grown up to an OD of 1 before plating at appropriate
dilutions on solid agar medium. Standard PC scanners (i.e., Epson Perfection V370
Photo) were used to acquire images at 800 dpi resolution of Petri dishes every 10
min. Acquired images were analyzed with an in-house image analysis software
implemented in ImageJ IJ1 Macro and Python. In order to improve the accuracy in
detection of bacterial colonies the software corrects for changes in light across
plates (i.e., Otsu thresholding over each plate), performs colony segmentation (i.e.,
watershed algorithm over the standard variation of the experiment’s Z-stack

Fig. 5 Interplay between respiro-/fermentative metabolism and BCAA biosynthesis. A Results from the metabolome-based analysis. Each dot in the
volcano plot represents the relative difference in ion abundance for 955 putatively annotated metabolites between wild-type and ΔarcA, averaged across
three biological replicates. Metabolites with significant differences (q value≤ 0.05, estimated by Storey correction of p values from two-tailed t-test) are
highlighted in red. B KEGG pathway enrichment analysis reporting metabolic pathways that are significantly (q value < 0.01, estimated by Storey correction
of p values from permutation test) enriched for metabolites with a large difference between wild-type and ΔarcA. C Volcano plot of metabolic differences
between wild-type and ΔarcA after 2 h of carbon starvation (i.e., glucose deprivation), averaged across six biological replicates. For each metabolite, the
color of the dot reflects the metabolite fold change in wild-type between 5 and 120min of carbon starvation. Dots marked in black are metabolites that
exhibit a significant (q value≤ 0.05, estimated by Storey correction of p values from two-tailed t-test) difference between wild-type and ΔarcA. D Time
course profiles of metabolite levels from 5 to 120min of carbon starvation in wild-type (blue) and ΔarcA (red). We report the mean (thick line) ± standard
deviation (shaded region) across six biological replicates. E Lag time of wild-type and F ΔarcA, 2 h after carbon starvation. Cells were resuspended in M9
glucose with 1 mM of: leucine (Leu), isoleucine (iso-Leu), valine+leucine+iso-leucine (Leu+ Iso-Leu+Val), tryptophan (Tryp), methionine (Met), and
glutamate (Glt). We report the lag time of individual replicates relative to the average lag time in M9. G Difference in the abundance of pyruvate between
ΔarcA (green dot—GLC) and wild-type in M9 glucose (panel (A)) against difference in respiro-/fermentative metabolism calculated as the ratio between
acetate secretion and glucose uptake (mmol/gDW/h) estimated in44. Differences in ΔarcA were overlaid on previously acquired49 relative changes in
pyruvate levels and respiro-/fermentative metabolism in wild type across different nutritional environments: minimal medium with either glucose (GLC) or
glucose minimal media supplemented with casamino acids (CAA), synthetic amino acid mix (SAA), SAA deprived of following amino acids: threonine,
glycine, and serine (STG), threonine, glycine, serine, tryptophan, cysteine, and alanine (STGTCA), glutamate, glutamine, proline, and arginine (GGPA),
aspartate and asparagine (AA), and glucose minimal medium with 0.125 g/L of glutamate (GLT). The red line represents the result from linear least
squares regression analysis and 95% confidence intervals (shaded region). Reported data are average ± standard deviation over three biological replicates.

Table 1 List of E. coli strains.

Bacterial Strains Collection Reference

E. coli BW 25113 KEIO collection 79

Δcra/ΔarcA KEIO collection 79

Cra/arcA overexpression
plasmid

Obtained from the ASKA
clone collection

80
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projection of all images) and tracking. Finally, outliers/artifacts are filtered out. The
final data returns for each colony x and y coordinate on the plate, size at each time
point, and RGB intensity. Full details and computer codes are available on GitHub
https://github.com/Dfernand1795/PetriScanner2.

Estimation of deviating noise. Here we used time-independent protein (p)
abundance and noise from single-cells of E. coli from13. Consistent with other
studies, at low copy number (μp) the noise (ηp= σp2/μp2, where σp is the standard
deviation) is dominated by intrinsic noise (e.g., stochastic effects in gene expres-
sion), while at high expression levels noise is dominated by extrinsic factors, such
as fluctuations in ribosomes, polymerase, transcription factors and partitioning of
the population between the cell-cycle stages73–75. To estimate average noise levels
at different protein abundance, we used a moving average smoothing method on
the data reported for 1018 proteins13. Specifically, we used the malowess function
in Matlab, where for each protein, the expected average noise level (�ηp) is estimated
from the average of the 5% closest proteins:

�ηp ¼
∑

Ω¼lbp ≤ μi ≤ ubp
ηi

jΩj
ð1Þ

Deviating noise is calculated as the ratio between the noise of individual
proteins and average noise levels of proteins with similar abundance: εp ¼ ηp=�ηp .

Estimation of colony maximum growth rate, lag time, and respiratory rate. For
each colony, the sigmoidal changes in the area over time were fitted by a Gompertz
function76

f ¼ Amin þ
ðAmax � AminÞ

eekðtm�tÞ ¼ Amin þ
AΔ

eekðtm�tÞ

f 0 ¼ AΔe
�ekðtm�tÞ � kekðtm�tÞ

f 00 ¼ AΔk
2e�ekðtm�tÞ � ekðtm�tÞðekðtm�tÞ � 1Þ

f 0ðt¼tmÞ ¼
AΔ

e
k

Tlag ¼
Amin þ AΔ

e ð1� ktmÞ
AΔ
e k

ð2Þ

The Gompertz function is able to describe asymmetrical growth curves assuming
that at the time of inflection tm the maximum growth rate is achieved. Parameter k
represents the maximum relative growth rate. Amax and Amin the maximum and
minimum area respectively. For simplicity, we assume colony size at inoculation to
be equal to zero. By fitting this function to each colony growth curve we can
analytically estimate maximum growth rate (fI) and lag-time (Tlag). Fitting was
performed in Matlab 2018b using the lsqcurvefit function using the Truest-region
algorithm for optimization from 50 multiple start points (i.e., MultiStart function).
To determine the maximum respiratory rate we use a linear model and found the
time interval (consisting of at least ten time points) with the largest proportional
coefficient between time and average red intensity of a colony. f ¼ αt þ β, where α
is the estimate for maximum respiratory rate (AU/h) and β is an offset value.

ATP reporter assay. The low concentration ATP reporter plasmid pRS-
QUE7mu21 was transformed into E. coli bacterial strains BW25113 and BW25113-
ΔarcA (Keio:JW4364) expressing a T7 RNA polymerase (araB::T7RNAP-tetA). For
each sample, a single bacterial colony was grown in LB medium for 6 h at 37 °C
under agitation (170 RPM). 30 microliters of culture were pelleted, resuspended in
3 ml of M9 medium and further diluted 1:10 in 3 ml of M9 medium supplemented
with Glucose 0.5%, ampicillin 50 µg/ml and arabinose 0.01%. Cultures were grown
for 16 h at 37 °C under agitation (170 RPM) and typically reached OD600 values
between 0.05 and 0.3. For the starvation procedure, cells were washed twice and
resuspended in 3 mL of M9 medium only supplemented with ampicillin 50 µg/ml.
Samples were brought back to the shaker for two hours before addition of glucose
at 0.5%. Cultures were sampled for FACS analysis right before the starvation phase,
after 30 and 120 min of starvation and after one and 15 min after addition of
glucose. 30 µl of sampled culture was diluted in PBS containing propidium iodide
(1 µg/ml, ThermoFisher:P3566). FACS measurements were performed on a BD
FACSaria III Cell sorter. Fluorescence was measured with the following channels
Ex488_LP495_BP514/30-H, Ex405_LP502_BP530/30-H and
Ex488_LP610_BP616/23-H (for viability; propidium iodide).

Metabolome profiling. Wild-type and ΔarcA E. coli overnight cultures growing on
M9 minimal medium were diluted in fresh M9 glucose minimal media and grown at
37 °C until exponential phase and an OD600 of 1. Cells were washed twice with M9
medium without carbon source and 700 μL cell cultures were distributed in 96 deep
well plates and incubated at 37 °C until shaking at 2 RCF. Samples for metabolomics
profiling were taken during exponential growth prior to carbon deprivation and 5, 10,
15, 30, 60, 90 and 120min after carbon starvation. In total, 50 μl of whole cell broth
was directly transferred to 150 μl extraction liquid solution containing 50% (v/v)
methanol and 50% (v/v) acetonitrile at −20 °C. The extraction was carried out by
incubating the samples for 1 h at −20 °C. Samples were centrifuged for 5min at 1789

RCFand 80 μl of the supernatant was transferred to 96 well storage plates and stored
at −80 °C (Supplementary Data 1). The mass spectrometry analysis was performed
on a platform consisting of an Agilent Series 1100 LC pump coupled to a Gerstel
MPS2 autosampler and an Agilent 6550 Series Quadrupole Time of Flight mass
spectrometer (Agilent, Santa Clara, CA) following the protocol described in77. Mass
spectra were recorded from m/z 50 to 1000 using the highest resolving power (4 GHz
HiRes). All steps of mass spectrometry data processing and analysis were performed
with MATLAB (The Mathworks, Natick). Detected ions were matched to a list of
metabolites based on the corresponding molar mass78. For the full list of metabolites
used for annotation see Supplementary Data 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article as
Supplementary Data 1. A detailed description of all data analysis steps is published in this
article in the Methods section and Supplementary Information. Source data are provided
with this paper.

Code availability
Python code for the image analysis software is available for download at http://www.
imsb.ethz.ch/research/zampieri-group/resources.html and https://github.com/
Dfernand1795/PetriScanner2.
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