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Diabetic nephropathy (DN) is regarded as the leading cause of end-stage renal disease
worldwide and lacks novel therapeutic targets. To screen and verify special biomarkers for
glomerular injury in patients with DN, fifteen datasets were retrieved from the Gene
Expression Omnibus (GEO) database, correspondingly divided into training and testing
cohorts and then merged. Using the limma package, 140 differentially expressed genes
(DEGs) were screened out between 81 glomerular DN samples and 41 normal ones from
the training cohort. With the help of the ConsensusClusterPlus and WGCNA packages,
the 81 glomerular DN samples were distinctly divided into two subclusters, and two highly
associated modules were identified. By using machine learning algorithms (LASSO, RF,
and SVM-RFE) and the Venn diagram, two overlapping genes (PRKAR2B and TGFBI)
were finally determined as potential biomarkers, which were further validated in external
testing datasets and the HFD/STZ-induced mouse models. Based on the biomarkers, the
diagnostic model was developed with reliable predictive ability for diabetic glomerular
injury. Enrichment analyses indicated the apparent abnormal immune status in patients
with DN, and the two biomarkers played an important role in the immune
microenvironment. The identified biomarkers demonstrated a meaningful correlation
between the immune cells’ infiltration and renal function. In conclusion, two robust
genes were identified as diagnostic biomarkers and may serve as potential targets for
therapeutics of DN, which were closely associated with multiple immune cells.

Keywords: diabetic nephropathy, glomerular injury, biomarker, diagnostic model, machine learning algorithm
INTRODUCTION

Diabetic nephropathy (DN) is a serious cause of end-stage renal disease, resulting in heavy
economic and medical burdens. Tubulointerstitial lesions, glomerular basement membrane
thickening, mesangial matrix accumulation, and nodular glomerulosclerosis are the basic
pathological features of DN (1). The current treatment strategy is either to strengthen glucose
n.org May 2022 | Volume 13 | Article 8769601
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control or to reduce glomerular intracapsular pressure to slow
the progression of renal injury (2, 3). In fact, because of the
individual heterogeneity of DN, not all patients can benefit from
these drugs. Genome-wide expression profiles can be easily
obtained from public databases, analyzed, and visualized on
the R platform, thanks to the advancement and widespread
application of bioinformatics analysis and high-throughput
sequencing technology (4, 5). The changes in gene expression
profiles involved in the initiation and progression of DN have
been identified by high-throughput microarray technology (6).

According to the flow chart shown in Supplementary Figure
S1, gene expression profiles of DN patients and normal samples
were obtained and analyzed to identify the differentially
expressed genes (DEGs). Highly associated modules were
identified to determine the critical biomarkers, and a
diagnostic model was developed based on the biomarkers.
Moreover, enrichment analysis was performed to explore the
potential mechanisms of the identified biomarkers in DN. It
particularly illustrates the relationship between the biomarkers
and immune cell infiltration.
MATERIALS AND METHODS

Data Collection and Preprocessing
A total of fifteen human microarray datasets, namely GSE96804,
GSE47183-GPL11670,GSE47183-GPL14663,GSE99339-GPL19109,
GSE99339-GPL19184, GSE104948-GPL22945, GSE104948-
GPL24120, GSE30122, GSE1009, GSE30528, GSE30529,
GSE47184-GPL11670, GSE47184-GPL14663, GSE104954-
GPL22945, and GSE104954-GPL24120, were downloaded from the
Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/). More details of the collected datasets are presented in
Table 1. After eliminating the batch effects by the Surrogate Variable
Analysis (SVA) algorithm (7), seven glomerular DN (GDN) datasets
(GSE96804, GSE47183-GPL11670, GSE47183-GPL14663,
GSE99339-GPL19109, GSE99339-GPL19184, GSE104948-
GPL22945, GSE104948-GPL24120), three GDN datasets
(GSE30122, GSE1009, GSE30528), and five tubulointerstitial DN
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(TDN) datasets (GSE30529, GSE47184-GPL11670, GSE47184-
GPL14663, GSE104954-GPL22945, GSE104954-GPL24120) were
merged, normalized, and utilized as the GDN training cohort, GDN
testing cohort, and TDN testing cohort, respectively. The distribution
patternsbetweenDNandnormal sampleswerevisualizedbyprincipal
component analysis (PCA).

Identification of DEGs
DEGs between GDN and normal subjects in the GDN training
cohort were detected by using the limma R package (8) with |log2
fold change (FC)|>1 and adjusted p < 0.05 as the cutoff threshold.
Meanwhile, Gene Ontology (GO) enrichment analysis of DEGs
was conducted using the clusterProfiler package. Gene Set
Enrichment Analysis (GSEA) was also performed to investigate
the significant differences in Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways between GDN and normal samples,
with the Molecular Signature Database (MSigDB)-derived gene
sets “c2.cp.kegg.v7.4.symbols.gmt” selected as a reference.
Enriched pathways with p < 0.05 and false discovery rate
(FDR) <0.25 were considered statistically significant.

Consensus Cluster Analysis
The ConsensusClusterPlus algorithm (9) was used to perform
clustering analysis to identify potential subclusters of the GDN
samples from the GDN training cohort. The maximum
cumulative distribution function (CDF) index was selected as
the optimal k-value. Meanwhile, principal component analysis
(PCA) was employed to verify this classification based on gene
expression patterns among different subgroups.

Weighted Gene Coexpression
Network Analysis
The Weighted Gene Coexpression Network Analysis (WGCNA)
method (10) was applied to build potential modules related to
different subclusters of the 81 GDN samples. After filtering
abnormal samples and calculating the Pearson correlation
coefficient, the correlation adjacency matrix was constructed.
Highly associated modules were selected for subsequent analysis.
Functional enrichments of the genes within given modules were
TABLE 1 | The essential information of included microarray datasets in this study.

GEO series Normal DN Tissue Data type

GSE96804 20 41 Glomerulus Training
GSE47183-GPL11670 0 7 Glomerulus Training
GSE47183-GPL14663 0 7 Glomerulus Training
GSE99339-GPL19109 0 7 Glomerulus Training
GSE99339-GPL19184 0 7 Glomerulus Training
GSE104948-GPL22945 18 7 Glomerulus Training
GSE104948-GPL24120 3 5 Glomerulus Training
GSE30122 13 9 Glomerulus Testing
GSE1009 3 3 Glomerulus Testing
GSE30528 13 9 Glomerulus Testing
GSE30529 12 10 Tubulointerstitium Testing
GSE47184-GPL11670 0 7 Tubulointerstitium Testing
GSE47184-GPL14663 4 11 Tubulointerstitium Testing
GSE104954-GPL22945 18 7 Tubulointerstitium Testing
GSE104954-GPL24120 3 10 Tubulointerstitium Testing
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performed to interpret the diverse biological effects based on the
KEGG, GO, and Disease Ontology (DO) analyses using the
ClusterProfiler, DOSE, and ggplot2 packages.

Diagnostic Gene Screening and Diagnostic
Model Construction
The Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression (11), Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) (12), and Random Forest (RF) (13)
algorithms were employed independently to screen the diagnostic
genes from the selected modules. Ultimately, genes that overlapped
among the three machine learning algorithms were regarded as
diagnostic biomarkers. A receiver operating characteristic (ROC)
curvewas generated, and the area under the ROC curve (AUC) value
was calculated to estimate the predictive utility of the identified
biomarkers using the pROCpackage. The differential expression and
predictive reliability of the biomarkers were further confirmed in the
external testing cohorts. A diagnostic model was constructed using
logistic regression analysis and visualized as a nomogram (14) to
predict theglomerular injury inDNpatients.TheConcordance index
(C-index), calibration curve, and decision curve analysis (DCA)were
employed to visualize its discriminationperformances. Besides, using
the training datasets (Table 1), the expressions of the identified
biomarkers were also explored in other chronic kidney diseases
(CKD), including hypertensive nephropathy (HN) and systemic
lupus erythematosus nephropathy (SLEN). Furthermore, based on
the median expression level of each gene, 81 GDN samples from the
GDN training dataset were divided into two groups (high- and low-
expression group), and then Gene Set Variation Analysis (GSVA)
was employed to clarify the enriched KEGG pathways withMSigDB
gene sets “c2.cp.kegg.v7.4.symbols.gmt” used as a reference.

Verification and Clinical Correlation
Analysis of the Identified Biomarkers
The expression patterns of identified biomarkers were
reconfirmed by the Nephroseq v5 online database (http://v5.
nephroseq.org) (15). A correlation analysis between the
biomarkers and renal function was also carried out.

Evaluation of Immune Cell Infiltration
Based on the single-sample Gene-Set Enrichment Analysis
(ssGSEA) method and the 29 gene sets of immune-related
responses (16), the ssGSEA scores were quantified and
designed to represent the activity and infiltrating fractions of
immune cells and pathways in the GDN training cohort and the
TDN testing cohort. The result of ssGSEA was shown as a
heatmap. Furthermore, the cell-type identification by
estimating relative subsets of RNA transcripts (CIBERSORT)
algorithm (17) was performed to calculate the relative proportion
of the infiltrating immune cells in each sample from the GDN
training cohort and the TDN testing cohort. The abundances of
infiltrating immune cells in DN patients and normal subjects
were compared and visualized using the vioplot package. The
differences in immune characteristics between the samples with
low and high expression of the identified biomarkers were
clarified. In the GDN training cohort, using the corrplot
Frontiers in Endocrinology | www.frontiersin.org 3
package, the correlations between the enrichment levels of
infiltrating immune cells and the expressions of the diagnostic
genes were also investigated.

Animal Experiments
A total of 15 male C57BL/6 mice (8 weeks old; ~25 g) were
purchased from the Chongqing Medical University Animal
Experiment Center (Chongqing, China). Mice were randomly
divided into normal groups (n = 5) and high-glucose-induced
renal injury models (n = 10) and given access to a normal chow
diet (NCD) or a high-fat diet (HFD) for 4 weeks. A mouse model
of hyperglycemia was induced by an intraperitoneal injection of
streptozotocin (STZ; Sigma-Aldrich, USA). The random blood
glucose levels ≥16.7 mmol/L 72 h after the injection were
considered a successful establishment (18). At the end of
8 weeks, five NCD mice and six HFD/STZ-induced mice were
fasted overnight, blood and 24-h urine samples were collected,
and then mice were sacrificed. The kidney was harvested for
subsequent study. All animal experiments were carried out
following the Guide for the Care and Use of Laboratory
Animals, and the procedures were approved by the Research
Ethical Committee of Chongqing Medical University.

Blood glucose levels were measured using the Roche Dynamic
Blood Glucose Monitoring System (Roche, Mannheim, Germany)
by blood sampling from the tail vein. Urine albumin, blood urea
nitrogen (BUN), and serum creatinine (Scr) were detected using an
automatic biochemical analyzer (Hitachi, Tokyo, Japan). The
obtained renal tissues were fixed, embedded, and cut into slices.
Subsequently, hematoxylin and eosin (H&E), Masson, Periodic
Acid-Silver (PAS), Oil Red O staining, and immunofluorescence
(IF) staining for the selected biomarkers were performed. The
stained slices were visualized and pictured with a light or
fluorescence microscopy (Olympus, Tokyo, Japan). According to
themanufacturer’s instructions, the RT-qPCRwas performed. The
2−DDCt method was used to quantify protein kinase cAMP-
dependent regulatory type II beta (PRKAR2B) and transforming
growth factor-beta-induced (TGFBI) expression with GAPDH as
an internal control. The primer sequence is shown in
Supplementary Table S1. A Western blot analysis was carried
out. Primary antibodies against PRKAR2B (Santa Cruz, CA, USA)
and antibodies against TGFBI (Abcam, Cambridge, UK) were
used, respectively.

Statistical Analysis
All statistical analysis was performed using the R software (version
3.6.3) or GraphPad Prism 8.0 (GraphPad Software, CA, USA). A
Wilcoxon test was performed to compare immune cell infiltration
and the identified biomarker expressions between normal subjects
and DN patients. The logistic regression algorithm was used to
develop the predictive model. A ROC curve was used to judge the
diagnostic accuracy of selected biomarkers. Correlation analysis was
realized by Pearson’s analysis. Moreover, an unpaired t-test was
used to analyze the RT-qPCR, Western blot data, biochemical
detection data, the differential expression levels of the two
biomarkers from the Nephroseq v5 online database, and the
differential expression levels of the two biomarkers in other CKD.
May 2022 | Volume 13 | Article 876960
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If not specially indicated, p < 0.05 was defined as
statistical significance.
RESULTS

Identification of DEGs and
Enrichment Analysis
There was a clearly pronounced discrimination between GDN
and normal samples (Figure 1A). A total of 140 DEGs were
identified including 75 upregulated and 65 downregulated genes,
displayed in the Volcano plot and heatmap (Figures 1B, C).
Frontiers in Endocrinology | www.frontiersin.org 4
These DEGs were mainly involved in the biological processes
associated with the extracellular structure organization and
tumor necrosis factor production (p < 0.05, Figure 1D).
The results of GSEA illustrated that metabolism-related
pathways were enriched in the normal samples, while the
immune-related signaling pathways were enriched in the GDN
subjects (Figure 1E).

Unsupervised Cluster Construction and
Key Module Identification
With the batch effects stripped, the consensus clustering was
performed based on the gene expression profiles of the merged 81
A B

C

E

D

FIGURE 1 | Identification of DEGs in the GDN training cohort. (A) The principal component analysis (PCA) for the samples. (B, C) Heatmap and the Volcano plot of
the DEGs. (D, E) Six enriched signaling pathways in normal or DN samples.
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GDN samples in the GDN training cohort, and when k = 2, the
classification was highly reliable and stable (Figures 2A–C). PCA
confirmed that there was a distinct difference between the two
subclusters (Figure 2D). GDN samples were divided into cluster 1
(C1, N = 48) and cluster 2 (C2, N = 33). With the soft-threshold
power of b = 12 (scale-free R2 = 0.906) set and the corresponding
Frontiers in Endocrinology | www.frontiersin.org 5
Pearson’s correlation coefficient calculated (Figure 2E), four
modules were identified (Figure 2F). Brown and blue modules
had the highest correlation with the subclusters, and therefore were
selected as the associated modules for further analysis. The genes
from the two selected modules were mainly responsible for
extracellular structure organization and cytokine chemotaxis
A B

C D

E F

FIGURE 2 | Unsupervised consensus clustering and WGCNA analyses in the GDN training cohort. (A) Cumulative distributive function (CDF) for k = 2 to 9. (B) Delta diagram
showing the variations of the area under the consensus clustering CDF curve for k = 2 to 9. (C) Heatmap exhibiting the two clusters of DN samples with k = 2. (D) The
principal component analysis (PCA) based on the results of consensus clustering analysis. (E) Analysis of the network topology for various soft-threshold powers. (F) Heatmap
displaying the module-trait correlations.
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reactions (Supplementary Figure S2A). KEGG analysis indicated
that they were significantly enriched in complement and
coagulation cascades, PI3K-Akt signaling pathway and cytokine–
cytokine receptor interaction (Supplementary Figure S2B). DO
analysis revealed that the genes were mostly involved in urinary
system disease, urinary system cancer, and lung disease
(Supplementary Figure S2C).
Frontiers in Endocrinology | www.frontiersin.org 6
Diagnostic Biomarker Identification
and Verification
Using the LASSO regression algorithm, 22 genes from the
selected modules were identified as potential diagnostic
biomarkers (Figures 3A, B). By SVM-RFE algorithm, 13 genes
were extracted from these modules as candidate biomarkers
(Figure 3C). Two diagnostic genes were identified by the RF
 A  B

C D

E

FIGURE 3 | Identification of the diagnostic biomarkers from the selected modules. (A, B) LASSO regression analysis. (C) SVM-RFE algorithm. (D) RF algorithm.
(E) Venn plot exhibiting the reliable biomarkers among LASSO, SVM-RFE, and RF.
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algorithm (Figure 3D). Two genes (PRKAR2B and TGFBI) were
then overlapped via a Venn diagram, and served as robust
diagnostic biomarkers (Figure 3E). Compared with normal
control, decreased PRKAR2B expression (p < 0.001) and
increased TGFBI expression (p < 0.001) were observed in the
Frontiers in Endocrinology | www.frontiersin.org 7
glomerular samples from the GDN training cohort (Figure 4A).
The results were validated in the GDN testing cohort, and the
consistent gene expression patterns were obtained (Figure 4B).
Interestingly, the expression of TGFBI was still significantly
upregulated in tubulointerstitial samples from the TDN testing
A B C

D E F

FIGURE 4 | Verification of the identified biomarkers. (A–C) Box plots for the differential expression analysis in the GDN training cohort, GDN testing cohort, and TDN
testing cohort, respectively. (D–F) ROC curves for evaluating the diagnostic ability in the GDN training cohort, GDN testing cohort, and TDN testing cohort,
respectively. p < 0.05 was considered statistically significant.
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cohort (p < 0.001), while the expression of PRKAR2B had no
significant change (Figure 4C). To estimate the predictive utility,
the ROC curve was performed and found that the PRKAR2B and
TGFBI illustrated a remarkably distinguishing efficiency with
AUC values of 0.952 (95% CI: 0.910–0.985) and 0.952 (95% CI:
0.915–0.982) in the GDN training cohort, respectively
(Figure 4D). Consistently, in the GDN testing cohort, the
AUC value of PRKAR2B was 1.000 (95% CI: 1.000–1.000) and
that of TGFBI was 0.785 (95% CI: 0.640–0.908) (Figure 4E).
Unlike the low AUC value of PRKAR2B (0.548, 95% CI: 0.411–
0.668), TGFBI still maintained a high AUC value of 0.899 (95%
CI: 0.826–0.955) in the TDN testing cohort (Figure 4F).
Furthermore, the similar expression patterns were also
observed in HN and SLEN (Supplementary Figure S3).

Establishment of Nomogram
Based on the expressions of PRKAR2B and TGFBI from the
GDN training cohort, a diagnostic model was constructed by
logistic regression and visualized as a nomogram (Figure 5A).
The C-index of the diagnostic model was 0.976 with an
appropriate calibration plot. Also, the model showed a high
AUC value (0.965), confirming the excellent prediction
performance (Figures 5B, C). Additionally, DCA curves
indicated the combined nomogram model showed the highest
efficacy in predicting glomerular damage in DN patients
compared with other single biomarker models (Figure 5D).
Frontiers in Endocrinology | www.frontiersin.org 8
Expression Patterns and Clinical
Correlation of the Biomarkers
Based on the Nephroseq v5 online tool, the expression patterns of
both PRKAR2B and TGFBI in the glomerular and tubulointerstitial
tissues of DN patients were further confirmed (Figures 6A, B).
When compared with normal subjects, PRKAR2B expression was
downregulated in DN glomerular tissue but not in DN
tubulointerstitial tissue. The TGFBI expression was upregulated in
both glomerular and tubulointerstitial tissue of DN patients.
Correlation analysis revealed that PRKAR2B expression in DN
glomerular tissue was positively correlated with glomerular filtration
rate (GFR) (r = 0.687, p = 0.013) and negatively correlated with Scr
(r = −0.699, p = 0.011) (Figure 6C). The TGFBI expression in DN
tubulointerstitial tissue was found to be negatively correlated with
GFR (r = −0.749, p = 0.0005) and positively correlated with Scr
(r = 0.664, p = 0.003) (Figure 6D). Curiously, the expression of
TGFBI in DN glomerular tissue was not associated with GFR and
Scr. It suggested that the biomarkers were related to renal function
in patients with DN, whereas their roles may be different.
Correlation Between the Two Biomarkers
and Immune Cell Infiltration
The immune infiltration landscape in DN was obviously changed
(Supplementary Figure S4). According to the GSVA results, the
gene sets in the GDN samples with high PRKAR2B expression
A

B C D

FIGURE 5 | Establishment of the diagnostic model in the GDN training cohort. (A) Nomogram for the diagnostic model of glomerular injury. (B) Calibration curve.
(C) ROC curves to evaluate the discrimination ability. (D) DCA for the diagnostic model.
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were markedly associated with multiple activated metabolism-
related pathways and immune suppression biological functions, as
well as the GDN samples with low expression of TGFBI
(Figure 7A). Thus, given the roles of PRKAR2B and TGFBI in
immune regulations, their effects on the immune cells’ infiltration
and biological processes were also explored. A proliferation of
neutrophils, regulatory T cells (Tregs), macrophages, and
plasmacytoid dendritic cells (pDCs) were observed. In addition,
the activities of check-point, tumor-infiltrating lymphocytes (TIL),
chemokine C-C-Motif receptor (CCR), T-cell coinhibition, and
type II interferon (IFN) response were markedly enhanced in the
GDN subjects with low PRKAR2B expression or subjects with high
TGFBI expression (Figure 7B). Correlation analysis revealed that
the infiltration of naive B cells was most positively correlated with
PRKAR2B and was most negatively correlated with TGFBI.
However, the infiltration of gamma-delta T cells was most
negatively correlated with PRKAR2B and was most positively
correlated with TGFBI (p < 0.001). More details were exhibited
in Figure 7C.
Frontiers in Endocrinology | www.frontiersin.org 9
Validation in Animal Models
According to the treatment schedule (Figure 8A), four mice in
the HFD+STZ group did not meet the established protocols and
were excluded. The levels of blood glucose, Scr, BUN, and 24 h
urinary protein were significantly elevated in the HFD/STZ-
induced mice compared with the NCD mice (p < 0.01,
Figure 8B). As shown in Figure 8C, glomerular hypertrophy,
proliferation of glomerular mesangial cells, dilation of the
mesangial matrix, and irregular thickening of the glomerular
and tubular basement membrane were observed in the renal
tissue of HFD/STZ-induced mouse model. Masson staining
revealed the formations of renal blue-stained extracellular
collagen, mostly in the glomerular tissue. Oil Red O staining
showed the number of lipid droplets increased, and the lipid
accumulation in the glomerulus was more obvious than that in
the tubuleinterstitium. Thus, the HFD combined with high-
glucose-induced renal injury model was considered successfully
established. The downregulated PRKAR2B expression in
glomerular tissue (Figure 8D) and the upregulated TGFBI
A B

C D

FIGURE 6 | Verification of the two identified biomarkers. (A, B) The expression patterns of the identified biomarkers. (C, D) Correlation analysis between the
expression of the biomarkers and renal function indexes. ***p < 0.001 vs. healthy subjects. ns, not significant.
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expression in both glomerular and tubulointerstitial tissues of the
mouse model were observed (Figure 8E, F). Moreover, the
reduced PRKAR2B expression and increased TGFBI expression
were also confirmed in the renal tissues of the mouse model by
RT-qPCR and Western blot (p < 0.01, Figure 8G, H).

DISCUSSION

Diabetic nephropathy results from the interactions of multiple
genes. However, its potential mechanisms remain unclear.
Recently, a large number of studies have focused on the screening
Frontiers in Endocrinology | www.frontiersin.org 10
of related biomarkers. Wang et al. analyzed five DN-associated gene
datasets and identified fibronectin 1 (FN1) and complement
component 3 (C3) as the immune infiltration-related biomarkers
for DN (19). Wang et al. revealed the different pathological
abnormalities between glomerulus and kidney tubules in DN and
indicated that the changes of key regulated genes in methylation
status might contribute to the pathogenesis of DN (20). However,
although many efforts have been made to explore novel targets for
DN, the present knowledge seems to be insufficient. Potential
biomarkers with high specificity and sensitivity are still
urgently required.
A

B

C

FIGURE 7 | The association between the biomarkers and immune infiltration in the GDN samples. (A) Heatmap of metabolism and immune-related gene sets by
GSVA. (B) Heatmap of the immune landscape by ssGSEA. (C) Heatmap of the correlations between the biomarkers and infiltrating immune cells. ***p < 0.001;
**p < 0.01; *p < 0.05.
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PRKAR2B is a cAMP-dependent protein kinase (PKA) (21)
regulatory subunit that is abundantly expressed in various tumor
tissues (22). However, there are few studies on the role of
PRKAR2B in the progression of DN. Our study identified that
PRKAR2B, with an excellent diagnostic value (AUC >0.95), was
downregulated in the glomerulus but there was no significant
change in the tubulointerstitium. TGFBI is a secretory protein
induced by TGF-b in various cells and can be detected in serum
and urine (23, 24). It was demonstrated that TGFBI was involved
Frontiers in Endocrinology | www.frontiersin.org 11
in the fibrotic processes of chronic cyclosporine-induced
nephropathy by affecting the synthesis and degradation of the
extracellular matrix (25). In the present study, the expression of
TGFBI was upregulated in both glomerular and tubulointerstitial
tissues, and it was proved to have a reliable diagnostic ability for
DN. It was reported that the expression of TGFBI was
prominently increased in the kidneys of diabetic patients,
whereas the concentration of TGFBI in urine was also raised
(26). Elevated urinary TGFBI concentration has been shown to
A B

C D

E G

F

H

FIGURE 8 | Verification in animal experiments. (A) The treatment protocol for mouse model. (B) Blood glucose, Scr, BUN, and 24 h proteinuria levels. (C) Renal pathological
sections stained with H&E, PAS, Masson, and Oil Red O. (D) Immunofluorescence staining of PRKAR2B in renal glomerular tissue. (E, F) Immunofluorescence staining of
TGFBI in glomerular and tubulointerstitial tissues. (G) The mRNA expression of PRKAR2B and TGFBI in kidney tissue (RT-qPCR). (H) The protein levels of PRKAR2B and
TGFBI in kidney tissue (Western blot). **p < 0.01 vs. NCD mice. NCD, normal chow diet; HFD, high-fat diet; STZ, streptozotocin.
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predict the prognosis of DN (27). This evidence enhanced the
accessibility and feasibility of the clinical applications of TGFBI
as a diagnostic marker. However, it is unclear why there was no
significant correlation between TGFB expression in glomerular
tissue and renal function indexes (such as GFR and Scr) in DN
patients. Most notably, a novel diagnostic model combining the
two biomarkers was developed with a high AUC value and
favorable calibration, which exhibited excellent accuracy and
reliability for estimating the glomerular damage in DN patients.
Compared with any other single biomarker, the above model
showed the highest efficacy for glomerular injury prediction in
the GDN training cohort.

In this study, we found that the downregulated PRKAR2B
expression in glomerular tissue may indicate the deterioration of
kidney function in patients with DN, and so did the upregulated
TGFBI in tubulointerstitial tissue. However, similar expression
patterns of PRKAR2B and TGFBI were also found in patients
with HN or SLEN, which suggested the differential expressions of
PRKAR2B and TGFBI were not specific for DN but related to the
renal injury.

It had been reported that extracellular matrix organization and
extracellular matrix structural constituent lead to the accelerated
deposition of extracellular matrix and renal fibrosis in DN (28). In
this study, DEGs were demonstrated to be involved in this process
in DN glomerular tissue. Multiple metabolism-related pathways
were mainly enriched in normal samples, while immune
inflammation pathways were mostly concentrated in GDN
samples. It confirmed the notion that metabolic disorders and
abnormal immune inflammation responses play a critical role in
DN (29). Meanwhile, both PRKAR2B and TGFBI were disclosed
to be involved in immune-related pathways and cell functions in
the glomerular injury of DN. Moreover, both of them were
associated with various immune cells such as naïve B cells,
gamma delta T cells, Tregs, resting NK cells, resting mast cells,
and macrophages. Previous studies reported that the deposition of
macrophages, an important feature of DN, could be discovered in
the kidney tissue of DN patients, indicating a decline in renal
function (30). Mast cells were reported to participate in renal
interstitial fibrosis, and the density of mast cells was related to
serum creatinine levels in DN (31). It was reported that increased
Tregs contributed to the improvement of DN and promoted the
transplant tolerance to DN-induced renal allografts (32, 33).
However, the roles of naïve B cells and gamma delta T cells in
the pathological processes of DN have not been reported. Overall,
the infiltrating immune cells are involved in the development and
progression of DN. Improving abnormal immune status by
targeting PRKAR2B and TGFBI may be a promising approach
for the treatment of DN.

Some limitations need to be considered. First, different
pathological stages of DN may affect the results of the study.
Second, because of the potential heterogeneity from different
annotation platforms and clinical covariates of samples, the batch
effects cannot be completely eliminated among datasets. Third, the
sample size may not be large enough. Finally, the present study was
based on public data, so the biological functions of the two
biomarkers need to be verified by further experiments.
Frontiers in Endocrinology | www.frontiersin.org 12
In this study, using WGCNA, LASSO, SVM-RFE, and RF
algorithms, PRKAR2B and TGFBI were identified as the
potential biomarkers of DN. A diagnostic model combining
PRKAR2B and TGFBI was established to evaluate the risk of
diabetic glomerular injury with high sensitivity and accuracy.
The potential association with infiltrating immune cells was also
demonstrated, providing a fresh perspective on their roles in DN.
Therefore, the findings may shed light on the management and
treatment of patients with DN.
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