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Abstract
The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in

part regulated by the recycling of membrane components. We show, using stochastic simula-

tions and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane

components undergoing continuous recycling is strongly influenced by lateral confinement.

This result has significant implications for the clustering of plasma membrane proteins whose

mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of

limited size that generically support material fluxes. We show how the confinement size can

be sensed through its effect on the size distribution of clusters of membrane heterogeneities

and propose that this could be regulated to control the efficiency of membrane-bound reac-

tions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane pro-

tein clustering. The reaction efficiency is found to be a non-monotonic function of the system

size, and can be optimal for sizes comparable to those of cellular organelles.

Introduction
Cell membranes are highly heterogeneous and dynamic structures whose biological activity is
regulated by lateral partitioning [1–3] and recycling [4, 5] of membrane components such as
receptors and enzymes. Domains enriched in glycosphingolipids and cholesterol transiently
assemble at the plasma membrane where they serve as signalling platforms by segregating mem-
brane receptors [6]. These domains are thought to interact in a complex way with the cytoskele-
ton, which could play a role in regulating their size and dynamics, and therefore impact the
biochemical activity of the plasma membrane [7–10]. Membrane heterogeneities have also been
observed in cellular organelles such as the Golgi apparatus [11–13]. It has been argued that they
play an important role in defining the biochemical identity of organelles and help regulate inter-
organelle exchange [14]. As such, they could be involved in the mechanism by which the size of
cellular organelles is sensed and controlled, an open problem in cell biology [15].

Spatial heterogeneities in cellular membranes are typically small and short-lived and differ
from the relatively simple (equilibrium) thermodynamic behaviour of in-vitro artificial
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composite membranes. The latter generally exhibit a sharp transition between an homoge-
neous state and one that supports large and stable membrane macro-domains depending on
the temperature and membrane composition [16–18]. The compositional diversity of cell
membranes [19, 20] could be partly responsible for this difference but it is important to note
that cell membranes are inherently out-of-equilibrium systems, experiencing continuous fluxes
of matter and energy that may either drive or hinder spatial segregation. These fluxes might
include the active transport of membrane proteins by the cytoskeleton [21], the recycling of
membrane components by exocytosis and endocytosis [22] or the activation/inactivation cycle
of GTPases such as Rab proteins [23].

Here, we study the effect of the recycling of membrane components on their ability to form
membrane “clusters”, a generic term referring to either membrane heterogeneities, lipid
domains or protein aggregates. Qualitatively, recycling reduces the lifetime of membrane com-
ponents and therefore the likelihood that they meet preexisting clusters or nucleate new ones.
In the steady-state the typical cluster size should therefore decrease with increasing recycling
rate. Quantitative studies of this effect are often based on reaction-diffusion equations [24, 25],
or the Smoluchowski coagulation equation with an external flux [26–29]. Such approaches
neglect fluctuations due to the stochastic arrival and departure of components recycled in and
out of the membrane, and are in principle valid when the system’s size goes to infinity. In this
limit, a power-law dependence of the characteristic cluster size on the recycling rate is pre-
dicted, and for physiological recycling rates, the characteristic size if of the order of 1μm [29].
This is comparable to the typical size of cellular organelles such as endosomes or the Golgi
apparatus, indicating that finite size effects are expected to influence protein clustering in these
organelles. Finite size effects should also affect the clustering of plasma membrane proteins
corralled by cytoskeleton filaments, which display reduced mobility and are often confined to
explore restricted membrane patches [7, 8]. In this paper we combine stochastic simulations
with an analytical approach to properly account for the effect of lateral confinement on protein
clustering. We show that finite-size effects qualitatively alter the size distribution of membrane
heterogeneities such as protein clusters suggesting that the system size can be sensed (hence
regulated) through the statistics of cluster formation. To illustrate the physiological relevance
of our results, we show that the efficiency of enzymatic reactions that are sensitive to enzyme
clustering strongly depends on the size of the compartment in which this reaction takes place.
For reasonable parameter values, the efficiency is found to be optimal for a system size compa-
rable to the size of cellular organelles.

Model
We consider here a membrane system populated by a minority species A diffusing in a bulk of
species B with a diffusion coefficient D. The system has a finite size, and contains a total num-
ber Ns of A and Bmolecules. This size is an important parameter of the model which corre-
sponds to the area over which A components are free to diffuse. It can represent the area of the
entire plasma membrane, the area of smaller cellular organelles, or a small region of the plasma
membrane within which membrane components are confined, e.g. by the cytoskeleton.

We are studying an open system of finite size, where some of the components, those belong-
ing to the minority phase, are subjected to fluxes coming in and out of the system. One must
then specify how the size of the system is actually fixed, namely what is the response of the
majority phase (B) to fluxes of the minority phase (A). The mechanisms by which cells regulate
the size of their various organelles are complex and still poorly understood [15, 30, 31]. For the
sake of generality we have studied two extreme scenarios of size regulation. In the “tight regula-
tion” scenario, the system’s size (Ns) remains constant at all time, which implies that fluxes of B
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exactly compensate fluxes of A at all time. In the “loose regulation” scenario, the amount of B
components in the system remains constant at all time, so that the system’s size Ns fluctuates
following the stochastic arrival and removal of A components. These two scenarios are dis-
cussed in detail in Section B in S1 File, and give identical results, provided that the A species is
diluted enough. We thus concentrate here on the tight regulation scenario (Ns constant at all
time).

The system dynamics is described as a sequence of discrete, stochastic events. The Amole-
cules aggregate whenever they meet to form clusters of increasing sizes, which are recycled by
vesicles budding off the membrane. We assume here for simplicity that spontaneous cluster
fragmentation is unfavorable due to a high line tension so that growth by evaporation and con-
densation (Ostwald ripening) may be neglected [32]. In the following, areas are normalised by
the area of a monomeric unit s, and time is expressed in unit of the diffusion time τD = s/D,
where D is the diffusion coefficient of A components. For the sake of simplicity we do not keep
track of the relative positions of the clusters and we simply estimate the diffusional rate of
encounter. For 2D membranes and relatively small clusters [33], the coalescence rate between
two clusters is independent of the cluster sizes and can be estimated by D/(Ns s) which reduces
to 1/Ns using the chosen time unit.

The recycling dynamics is modelled as follows. We assume a constant influx J of monomer
of the A species per unit area occupied by the B species, and the removal of A-clusters by recy-
cling vesicles of a given size nv (in monomer unit), budding off the membrane at a given rate K/
nv per unit area (see Fig 1). A small cluster of size k� nv is removed within a single recycling
vesicles provided the vesicle buds anywhere within an area nv around the cluster, giving a rate
of small cluster removal Knv/nv = K. On the other hand, only an area nv of larger clusters (with
k� nv) is removed in one vesicle recycling. This happens whenever a vesicle buds from the
area k covered by the cluster, hence with a rate Kk/nv. Here, we use a phenomenological func-
tion fk to reproduce the cross-over between these two regimes, and write the rate of cluster

recycling Kfk with the arbitrary choice fk ¼ ð1þ ðk=nvÞ5Þ
1
5. The complete system dynamics are

defined by the following stochastic transitions:

Injection : B !J A1

Growth : Ak þ Al!1=Ns Akþl

Removal : Ak�nv
!Kfk kB

Ak>nv
!Kfk Ak�nv

þ nvB

ð1Þ

8>>>>>>><
>>>>>>>:

where Ak denotes a cluster with kmonomers. Each arrow is to be understood as one possible
stochastic event with the associated rate. The state of the system at time t is given by the set of
stochastic variables O(t) = {n1(t), n2(t), . . .} (nk being the number of clusters Ak) that follows a
Markovian evolution.

Infinite membrane limit
Here we briefly discuss the limit of an infinite membrane, as it is under this assumption that a
number of similar systems have been studied in the literature. We first define the dimensionless
concentrations of clusters ck(t) = nk(t)/Ns for all sizes k. These concentrations are stochastic
quantities fluctuating with time. However if the size Ns of the membrane goes to infinity the
fluctuations become smaller and eventually disappear. The system is then fully described by
the macroscopic concentrations ck(t) and loses its stochastic nature. Cluster growth may in this
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case be studied more simply using the general framework of the Smoluchowski coagulation
equation [34]. The master equation for our system reads [29]:

dck
dt

¼ Jk � ck
X1
l¼1

cl þ
1

2

Xk�1

l¼1

clck�l ð2Þ

where ck is the concentration of clusters containing kmolecules of A and Jk represents the
external fluxes, defined following Eq 1 as:

Jk ¼ Jð1� �Þdk;1 � K fkck � fkþnv
ckþnv

� �
ð3Þ

Fig 1. Left: Sketch of the recycling scheme: The minority phase (red) is brought to the membrane asmonomers (a) and recycled by vesicles of a
given size nv. Clusters of size smaller than nv are recycled entirely in one vesicle (b), while larger clusters are fragmented and loose an area nv during a
recycling event (c). Right: Stationary cluster size distribution in the limit of infinite systems, for different values of the size of a recycling vesicle nv. These
results are obtained by numerically solving the master equation (Eqs (2, 3)). The “whole cluster recycling” limit (nv !1), corresponding to Eq 4, is shown in
red. The “monomer recycling” limit (nv = 1) is shown in blue. Intermediate values of nv are the dashed lines.

doi:10.1371/journal.pone.0143470.g001
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where � � P1
1 kck is the area fraction of A components. At steady state, we can show that the

surface fraction converges to ϕ = J/(J + K). The “vesicular recycling” scheme, defined by the
crossover function fk, has two well defined limits; the “whole cluster” recycling scheme when all
clusters are recycled with the same rate (nv !1), and the “monomer recycling” scheme,
where all monomers are recycled at the same rate, whether in clusters or not (nv = 1). The
whole cluster recycling scheme may be solved analytically (see Section A in S1 File) and is well
approximated by a power-law with an exponential cut-off:

ck �
ffiffiffiffiffiffiffi
�K
2p

r
k�

3
2 exp � k

k

� �
; k ¼ 2�

K
ð4Þ

The cutoff size κ defines a natural cluster size that is completely determined by the recycling
rates J and K[29]. The monomer recycling scheme is less amenable to analytical treatment, but
shares the same features (see Fig 1), with an identical power law behaviour for small clusters
and an exponential decay for large clusters. It is shown in Section A in S1 File that the cut-off
size is in this case κ/2. Fig 1 shows the transition between monomer recycling and whole cluster
recycling upon varying the typical recycling size nv in Eq 3. The choice of function fk is not
expected to qualitatively affect the smooth transition observed in Fig 1.

One intuitively expects that this infinite membrane analysis might be applied to a finite sys-
tem only when fluctuations are negligible, which ought not to be the case when the typical clus-
ter size κ is of order or larger than the system size.

Results

Stochastic simulations of finite systems
We implement a full stochastic version of the non-equilibrium clustering process using a Gil-
lespie algorithm [35] in order to study how the cluster size distribution is influenced by sto-
chastic fluctuations and correlations occurring in systems of finite sizes. We concentrate on the
“cluster recycling” and “monomer recycling” schemes previously described, for which the sys-
tem dynamics satisfy simpler versions of Eq 1:

• for the whole cluster recycling scheme:

Injection : B !J A1

Growth : Ak þ Al!1=Ns Akþl

Removal : Ak !K kB

ð5Þ

8>>><
>>>:

• and for the monomer recycling scheme:

Injection : B !J A1

Growth : Ak þ Al!1=Ns Akþl

Removal : Ak !Kk Ak�1 þ B

ð6Þ

8>>><
>>>:

For system sizes large compared to the natural cluster size (Ns� κ), the numerical results
for the mean cluster size distribution at steady-state are in perfect agreement with the infinite
membrane predictions from Eq 2 (see S1 Fig). However this is no longer the case when Ns is
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close to or smaller than the natural cluster size κ. Snapshots of the cluster size histograms (Fig
2) typically show one large cluster coexisting with a distribution of small clusters. Fig 2 also
shows the evolution of the size of the largest cluster with time. The largest cluster grows contin-
uously until being recycled in the whole cluster recycling scheme or shows smaller fluctuations
around a stationary size dictated by a balance between growth and monomer recycling in the
monomer recycling scheme. This observation supports the analytical treatments developed in
the following sections. Direct comparison with the distribution from the infinite membrane
can be obtained by averaging the instantaneous concentrations ck(t) = nk(t)/Ns (in time or over
a large number of independent simulations). The steady-state average distributions are shown
in Fig 3 for the two recycling schemes. The power-law predicted in the infinite membrane
model (Eq 4) is still valid for small clusters of size k� ϕNs, but large deviations are observed
for larger clusters. Furthermore, the size distributions obtained in the monomer and whole
cluster recycling schemes, which are qualitatively similar for large systems, show qualitative
differences in finite systems. The former exhibits a broad shoulder for large clusters, while the
latter exhibits a (broad) peak at a particular cluster size.

Analytical model
The snapshots of stochastic simulations at a given time t (Fig 2) suggest an hybrid analytical
model where the small clusters can be treated using the deterministic infinite membrane equa-
tion (Eq 2), while the large cluster requires a model that account for its stochastic growth and

Fig 2. Bottom: Snapshot of the cluster size distribution at two different times for the monomer recycling scheme (left) and the whole cluster
recycling scheme (right). The black arrows illustrate the dynamics of the large cluster. Top: Evolution of the size of the largest cluster with time for the two
schemes. The parameters are J = 2.2 � 10−4 and K = 2 � 10−3 (whole cluster recycling) or J = 1.1 � 10−4 and K = 1 � 10−3 (monomer recycling). This ensure in
both cases that ϕ = 0.1 and κ = 100. The system size is Ns = 1000.

doi:10.1371/journal.pone.0143470.g002
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recycling. In the following, instead of introducing a specific size cut-off differentiating small
and large clusters, we simply consider two coexisting populations. The first population is com-
posed of many (small) clusters for which stochastic fluctuations are neglected. It can be
described by average concentrations c0k solutions of the continuous equation Eq 2. The second
population is reduced to a single cluster whose size fluctuates stochastically. It is described by
the probability p(n, t) to observe a cluster of size n at time t, hence an average concentration hp
(n)i/Ns. In principle, the continuous distribution c0k includes clusters whose size goes from 1 to
infinity, and the size of the single stochastic cluster may also vary from 1 to infinity. In practice,

Fig 3. Steady-state distributions of cluster size for small systems, obtained by simulations (averaged over a large number of independent
simulations) compared to the infinite membrane result. Simulations are shown for different system sizes for the whole cluster recycling (a) and monomer
recycling (b) schemes. Comparison with the hybrid analytical model developed in the text for the whole cluster recycling (c) and monomer recycling (d)
schemes show excellent agreement for strong confinement (with Ns = 100). All plots are for ϕ = 0.1 and κ = 180.

doi:10.1371/journal.pone.0143470.g003
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the former distribution represents the small clusters, occupying an average surface fraction
�S ¼

P
kc0k, and the stochastic cluster is on average quite large compared to the continuous

distribution. It occupies an average area fraction ϕL. The full size distribution including both
populations is then given by: cn ¼ c0n þ hpðnÞi=Ns.

The size distribution of small clusters is obtained using the equation for an infinite mem-
brane (Eq 2), modified to account for the fact that an average fraction ϕL of the membrane is
occupied by a large cluster and for the fact that small clusters disappear both by direct recycling
and by coalescence with the large cluster. Thus c0k is simply given by Eq 4, in which ϕ is replaced
by ϕS and K is replaced by K + 1/Ns.

The stochastic evolution of the size n(t) of the large cluster is obtained as follows: We
assume that the size distribution of small clusters adjust rapidly to the stationary distribution
for any value of the surface fraction taken by the large cluster ϕL = n/Ns. The rate at which a
small cluster coalesces with the large one is 1/Ns and we assume for simplicity that each coales-
cence event with the large cluster increases its size by one monomer unit. Each recycling event
either removes the entire cluster (whole cluster recycling), or reduces its size by one unit
(monomer recycling):

n ! nþ 1 At rate �ðNs � nÞ

and

n ! 0 At rate K ðwhole cluster recyclingÞ

or

n ! n� 1 At rate nK ðmonomer recyclingÞ

ð7Þ

8>>>>>>>>>><
>>>>>>>>>>:

with � = J/(1 + Ns(J + K)). The corresponding steady-state probability distributions are derived
in Section B in S1 File, and are given by:

pclusterðnÞ �
K
�Ns

1� n
Ns

� �K
��1

pmonomerðnÞ ¼
�n

�

K
þ 1

� �Ns

Kn

� Ns!

n!ðNs � nÞ!
ð8Þ

The average surface fraction occupied by each population is identical in both recycling schemes
and given by:

�S ¼ �
KNs

KNs þ 1

� �
; �L ¼ �� �S ð9Þ

Fig 3 shows a comparison between the hybrid model described above and the stochastic
simulations. The agreement is excellent for both recycling schemes for small systems
(Ns=k≲1). The common feature of both schemes is a strong reduction of large size clusters as
compared to the infinite membrane results, and the concomitant increase of probability of
intermediate size clusters. This probability smoothly decreases with the cluster size in the
whole cluster recycling scheme, reflecting the fact that the large clusters continuously grow
until they get abruptly recycled. In the monomer recycling scheme, a broad peak is visible at an
intermediate cluster size, indicating smaller fluctuations of the size of the largest cluster. This
difference is also apparent in the temporal evolution of the largest cluster size is shown Fig 2.
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For larger systems, the size distribution predicted by the analytical treatment remains in
excellent agreement with the numerics for the whole cluster recycling scheme, but deviations
are observed for the monomer recycling scheme (see S3 Fig). In particular, the broad peak pre-
dicted by the analytical model disappears in the simulation. This discrepancy under moderate
confinement is likely due to the failure of the approximation that there exists only a single
large-size cluster.

It is noteworthy from Fig 3 that lateral confinement of membrane proteins (finite size
effects) affect the average probability of all but the smallest protein clusters present on the
membrane. One may thus expect confinement to impact on any physiological activity of the
membrane that relies on clustering of membrane components. In order to illustrate the biologi-
cal relevance of this results, we study how the system’s size impact the efficiency of a model of
enzymatic reactions taking place inside clusters.

Application to enzymatic reactions
The co-localisation of enzymes in membrane compartments is thought to improve the effi-
ciency of membrane-bound enzymatic reactions, in particular those involving several steps. If
the product of a reaction is the substrate of a subsequent reaction, enzyme clustering can pre-
vent the loss of the intermediate product by diffusion and degradation (a concept sometimes
termed metabolic channeling) [36, 37]. Moreover, it was recently shown that maximum reac-
tion efficiency and reliability can occur at an optimal cluster size [38, 39]. The results presented
above and summarised in Fig 3 show that the size distribution of membrane clusters is strongly
affected by lateral confinement. This raises the exciting possibility that the size of the system
could influence, and thus be sensed through, the efficiency of biochemical reactions requiring
enzyme clustering. In the cellular context, the system size can represent either the size of an
organelle in the membrane of which a reaction takes place, or the size of corrals hindering pro-
tein diffusion at the plasma membrane.

To explore this, we consider a generic two-step reaction similar to the one studied in [37–
39] and shown in Fig 4a: a substrate S is transformed by enzyme E1 into an intermediate I that
is then transformed by enzyme E2 into the product P. Metabolic channeling is obtained by
assuming that the enzymes co-localize within clusters. For simplicity, we assume that there are
no enzymes outside the clusters and that their concentration within clusters is fixed to a given
value. They are also considered to process the substrate and intermediate at the same rate α.
The substrate is brought to the membrane homogeneously with a flux K0 per unit area, and
both substrate S and intermediate I are removed from the membrane at the same rate β.
Removal may be due to stochastic detachment from the membrane, reaction with another
competing pathway or thermally activated spontaneous change of conformation. In this frame-
work, the total number of enzymes in the system is proportional to the area occupied by all
clusters. Therefore the average number of enzymes per unit of membrane area is proportional
to the cluster surface fraction ϕ.

The reaction efficiency η is defined as the ratio of the number of product molecules synthe-
sised per unit area and time over the incoming flux of substrate molecules per unit area. The
efficiency can be computed analytically in the absence of clustering (denoted η0), i.e for
enzymes homogeneously distributed over the whole membrane, and for the case of complete
clustering, where all enzymes are inside a single large cluster (denoted η1). In an homogeneous
system (no clustering), a successful reaction is the result of two (identical) reactions where the
rate at which an enzyme is found and reacted with (ϕα) competes with the rate of degradation
(β). If all enzymes are clustered into a single large cluster (perfect clustering), a successful reac-
tion requires first that the substrate is delivered into the cluster (this has a probability ϕ). It is
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then the result of two (identical) reactions where catalysis (rate α) competes with degradation
(rate β). The full derivation, given in the Section C in S1 File, leads to:

Z0 ¼
�m

1þ �m

� �2

; Z1 ¼ �
m

1þ m

� �2

ð10Þ

where μ� α/β is the ratio of the reaction rate to the degradation rate.
Enzyme co-localisation into clusters is beneficial because it increases the likelihood that the

intermediate I, produced inside a cluster by an enzyme E1, meets an enzyme E2 before it gets
degraded. On the other hand, clustering leaves large membrane patches free of enzymes, which
increases the likelihood that the substrate S is degraded before it meets an enzyme E1. One intu-
itively expects that the balance between these competing effects favours clustering if μ and ϕ
are very small, since most substrate and intermediate molecules are degraded before encounter-
ing an enzyme in this case. Analysis of Eq 10 indeed shows that η1 > η0 if ϕμ

2 < 1.
The efficiency of enzymatic reaction for the full range of cluster sizes may be derived be

dividing the system into subunits of size Rc containing one cluster of size Rd ’ Rc

ffiffiffi
�

p
sur-

rounded by a membrane free of enzymes. The concentrations cS(r) and cI(r) of S and I are
given by classical reaction-diffusion equations:

dcS
dt

¼ K0 � bcS � cSaYðRd � rÞ þ DmDcS

dcI
dt

¼ �bcI þ ðcS � cIÞaYðRd � rÞ þ DmDcI

ð11Þ

where Dm is the diffusion coefficient of S and I and Θ is the Heaviside step function, expressing

Fig 4. Efficiency of a two-step enzymatic reaction taking place on the membrane of an organelle as a function of the organelle’s size. (a): Sketch of
the reaction described in the text, in which a substrate S is transformed into a product P via and intermediate I, each reactions being catalysed by different
enzymes E1 and E2, both confined within clusters. (b1–b3) Reaction efficiency for a single membrane unit, defined as a circular cluster of size Rd in a circular
membrane patch of size Rc ¼ Rd=

ffiffiffi
�

p
, for ϕ = 0.1 and for different value of the ratio of reaction to degradation rates μ (Rd is given in unit of

ffiffiffiffiffiffiffiffiffiffiffiffi
Dm=b

p
). (c)

Average reaction efficiency for the full systems, consisting of clusters with fluctuating sizes. The average size distribution (sketched) depends on the level of
confinement (the system’s size), as quantified in Fig 3. The average efficiency η* (Eq 13) is normalised by that of an homogeneous system η0 Eq 10. All
parameters are given in the text.

doi:10.1371/journal.pone.0143470.g004
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the fact that enzymes are fully segregated inside clusters. The efficiency of the subunit is:

ZðRd; �Þ ¼
a
R
r<Rd

d~rcIð~rÞ
K0pRc

2
ð12Þ

The efficiency of a single cluster depends on two parameters: ϕ and μ, in addition to the dimen-

sionless cluster size �Rd � Rd

ffiffiffiffiffiffiffiffiffiffiffi
b=Dm

p
. It is derived in Section C in S1 File, and shown on Fig 4b

for different value of the ratio of reaction to degradation rates μ. The asymptotic efficiencies
given by Eq 10 for vanishingly small clusters (corresponding to an homogeneous membrane)
and one large cluster are recovered in the limit of �Rd � 1 and �Rd � 1. As expected from the
analysis of Eq 10, we find that full segregation is more efficient than no segregation at all if μϕ2

< 1. Remarkably, we find that optimal efficiency is obtained for a finite cluster size if the
parameters satisfy both μ> 5/4 and ϕμ< 1 (this is demonstrated in Section C in S1 File). This
situation, corresponding to a relatively small number of enzymes performing at high reaction
rate, is likely to be of physiological interest.

The results of the previous section show that when membrane clusters undergo coalescence
and recycling, the cluster size distribution ck is influenced both by the recycling kinetics and by
the system’s size, as shown in Fig 3. In order to derive the efficiency of the two-step enzymatic
reaction in this case, we assume that clusters diffuse and are recycled slowly compared to the
kinetics of enzymatic reaction, so that the cluster size distribution is stationary at the time scale
of enzymatic reaction. In this case, the efficiency for the full distribution of cluster size can be
approximated by:

Z	ðNs; �Þ ¼
1

�

XNs

k¼1

kckZðk; �Þ ; � ¼
XNs

k¼1

kck ð13Þ

where η(k, ϕ) is given by Eq 12 with k ¼ pR2
d=s. As discussed in Section C in S1 File, the effi-

ciency given Eq 13 should be seen as the time average of the instantaneous efficiency, which
follows the fluctuation of the cluster size distribution.

The variation of the efficiency with the system size must be evaluated numerically. It is
shown on Fig 4c for a particular set of parameters. For the membrane parameters, we choose a
unit size s = 1nm2[40] and a cluster diffusion coefficient D = 0.1 μm2 s−1[33], giving a typical
diffusion time τD = s/D’ 10−5 s. Cellular organelles (the Golgi apparatus or endosomes) typi-
cally have their membrane fully renewed every few minutes [41]: K = 0.1 min−1. Choosing
J = 102 μm−2 s−1 gives a surface fraction ϕ’ 5% and a cluster cutoff size (for an infinite system)ffiffiffiffiffiffiffiffiffiffi
sk=p

p ’ 1:5mm. For the enzymatic reaction, we choose a diffusion coefficient Dm = 1 μm2

s−1, ten times larger than the cluster diffusion coefficient D in order to be in the range of valid-
ity of our approximation, but within a biologically relevant regime. We further choose β = 5 s−1

and α = 25 s−1 which gives ϕ< 1/μ = 0.2. With this choice of parameters, the efficiency of a sin-
gle unit (Eq 12) shows a maximum for intermediate-size clusters Rd = 0.28 μm. The average
efficiency over the entire membrane decorated with clusters satisfying the steady-state size dis-
tribution computed earlier and shown in Fig 3a (whole cluster recycling scheme) is shown in
Fig 4c as a function of the system size. Since the system size tunes the cluster size distribution,
the average efficiency also shows a maximum for intermediate system size (of order 0.9 μm for
these parameters). This size scale is physiologically relevant and is close to the typical size of
cellular organelles such as the Golgi apparatus. In the example presented, the improvement is
’40% compared to an homogeneous distribution of enzymes and’20% compared to an infi-
nite system. We note that the efficiency gain at the maximum can be made arbitrarily large by
reducing the concentration of enzymes at the membrane.
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Discussion
The key result shown in Fig 4 is that enzymatic production, which is a local process, is sensitive
to the size of the compartment in which it takes place. This behaviour stems from two very
generic phenomena, namely the sensitivity of a two (or more) step enzymatic reactions to
enzyme clustering, and the system size dependence of the cluster size distribution in non-equi-
librium membranes. This result represents a new mechanism by which the size of organelles
could be sensed and regulated, which remains a very basic open question in cell biology [15].
This mechanism is particularly useful in discriminating between one large organelle and several
smaller ones: For the same total area, the rate of production of signalling molecules would be
identical in both cases if it were solely dependent on the enzyme concentration. Within the
mechanism we study the rate of production per enzyme is controlled by the compartment size,
and can thus be used as a size sensor.

The phenomenon described here is quite general and does not rely on the details of either
the recycling mechanism or the enzymatic chain, provided it involves several reactions. Our
model can be extended to other biological processes thought to be controlled by the interplay
between clustering and recycling, including the E-cadherin supramolecular organisation at
cell-cell junctions [42] and the control of cell adhesion and motility by integrin clustering
and endocytosis [43]. Experimental test of this model could involve in-vivo monitoring the
spatial organization of cell surface and its enzymatic activity under controlled confinement.
Such controlled confinement may be obtained with the combination of solid-state nano-
lithography to create obstacles on a substrate and supported lipid membrane techniques
[44]. Finally, the formalism presented here is designed for biological membranes undergoing
recycling, but our conclusions are more general and could be applied to other systems pre-
senting non-equilibrium steady-states. For instance, the optimisation of the reactor size for
maximum efficiency illustrated by Fig 4 could be relevant to the growing area of lab-on-chip
microfluidic devices where chemical reactions take place in micro droplets of controllable
sizes.

Supporting Information
S1 File. Analytical results and simulations. Analytical computations of steady-state size dis-
tributions are derived. Comparisons between numerical simulations and analytical results are
shown. A detailed computation of the reaction efficiency η is presented.
(PDF)

S1 Fig. Steady-state cluster size distribution: comparison between stochastic simulations
and analytical results for infinite membranes.Domain size distributions at steady-state
(t = 5.104, averaged over 20000 realisations) for the fixed and fluctuating area models with ϕ =
0.1 and κ = 200. The membrane size is either fixed at Ns = 4000 or initially set at Ns0 = 4000.
The red line is the infinite membrane result.
(PDF)

S2 Fig. Steady-state cluster size distribution for finite-size membranes. Steady-state cluster
size distributions obtained by simulations compared to the infinite membrane result (in green).
(A) Results for the fixed area model (Ns = 600, κ = 2000), for the steady-state surface fraction ϕ
equal to 0.1 (blue), 0.5 (black) and 0.9 (red). Panels A1–A3: Comparison of the simulation
results (blue) with the analytical predictions of Eqs (23, 24) of S1 File. (red) for the three surface
fractions. (B) Results for the fluctuating area model (ϕ = 0.1, κ = 2000) with the initial mem-
brane size Ns0 equal to 300 (black), 600 (blue) and 1200 (red). Results (not shown) at other sur-
face fractions show no qualitative difference. Panels B1–B3: Comparison of the simulation
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results (blue) with the analytical predictions of Eqs (29, 32) of S1 File (red) for the three initial
sizes.
(PDF)

S3 Fig. Steady-state cluster size distribution for finite-size membranes: accuracy of the
hydric model. Steady-state size distributions using the monomer recycling mechanism for a
fixed area. The injection rate is J = 10−4 and the recycling rate is K = 10−3. On the left panel the
system size is set to Ns = 200 and on the right panel the system size is set to Ns = 800. The blue
curves are stochastic simulation results extracted from Fig 2b of the main text and the red
curves are the results of the analytical study.
(PDF)
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