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With the advancement of science, technology, and productivity, the rapid development of
industrial production, transportation, and the exploitation of fossil fuels has gradually led to
the accumulation of greenhouse gases and deterioration of global warming. Carbon
neutrality is a balance between absorption and emissions achieved by minimizing carbon
dioxide (CO2) emissions from human social productive activity through a series of
initiatives, including energy substitution and energy efficiency improvement. Then CO2

was offset through forest carbon sequestration and captured at last. Therefore, efficiently
reducing CO2 emissions and enhancing CO2 capture are a matter of great urgency.
Because many species have the natural CO2 capture properties, more andmore scientists
focus their attention on developing the biological carbon sequestration technique and
further combine with synthetic biotechnology and electricity. In this article, the advances of
the synthetic biotechnology method for the most promising organisms were reviewed,
such as cyanobacteria, Escherichia coli, and yeast, in which the metabolic pathways were
reconstructed to enhance the efficiency of CO2 capture and product synthesis.
Furthermore, the electrically driven microbial and enzyme engineering processes are
also summarized, in which the critical role and principle of electricity in the process of
CO2 capture are canvassed. This review provides detailed summary and analysis of CO2

capture through synthetic biotechnology, which also pave the way for implementing
electrically driven combined strategies.

Keywords: carbon neutrality, enzyme engineering, electrically driven microbial, carbon metabolic pathway,
synthetic biotechnology

INTRODUCTION

With the advancement of science, technology, and productivity, the rapid development of industrial
production, transportation, and the exploitation of fossil fuels has gradually led to the accumulation
of greenhouse gases and deterioration of global warming (Fang et al., 2021). Global CO2 emissions
have increased by 30.7% after humankind entered the 21st century. Supported by investigation
report, if the carbon is still growing at such a high rate, the global concentration of CO2 will reach up
to 5*10̂−4 μl/L by 2050, leading to the extinction of 24% of animals and plants on the Earth (Pacala
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and Socolow, 2018; Johnson et al., 2021). It also has attracted the
attention of countries worldwide that put goals of energy
conservation, emission reduction, and carbon neutrality on the
agenda (Zou et al., 2021). Carbon neutrality is a balance between
absorptions and emissions achieved by minimizing CO2

emissions from human social productive activity through a
series of initiatives, including energy substitution and energy
efficiency improvement. Then CO2 was offset through forest
carbon sequestration and captured at last (He et al., 2021). At
present, the routes of chemistry (Kourosh et al., 2020),
electrochemistry (Li FH et al., 2020), photoelectric catalysis
(Wang and Song, 2020), enzyme (Yang et al., 2020), and
microbial carbon fixation (Hu et al., 2019) are widely studied.
Compared with the chemical route, the biological route, which
does not require high temperature and pressure, is a more
environmentally friendly process.

CO2 has played a vital role in the origin of life (Zhang et al.,
2020), in which many species could fix as a carbon resource and
flow into the metabolic pathways (Cheah et al., 2016). The central
CO2-involved pathways are the Calvin cycle, reducing citric acid
cycle, Wood–Ljungdahl pathway, 3-hydroxypropionic acid cycle,
3-hydroxypropionic acid/4-hydroxybutyric acid cycle, and the
dicarboxylic acid/4-hydroxybutyric acid cycle (Aresta et al.,
2016). These cycles have maintained the global carbon balance
between absorptions and emissions in the past billions of years.
However, with the economic development and environmental
changes, the CO2 emission rate has far outstripped the traditional
carbon fixation, and the balance was broken, which also declares
the urgency to explore effective means to reduce CO2. Enzymes
play an essential role in the microbial carbon fixation process,
which also exert considerable influence on the CO2 fixation
pathways; for example, the irreplaceable role of ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO) (Bhat et al.,
2017) and formate dehydrogenase (Kumar et al., 2017) in the

Calvin cycle (Figure 1) and the Wood–Ljungdahl pathway,
respectively. Thus, the key enzymes and metabolic pathways
involved in the existing CO2 metabolic pathways provide
essential references for developing and enhancing enzymatic
conversion and microbial fixation of CO2 (Jiang et al., 2021;
Nisar et al., 2021; Tan and Ng, 2021).

In recent years, initial success has been achieved in the key
enzymes’ structural design and modification, cofactor
engineering, and metabolic engineering to improve efficiency
(Chida et al., 2007; Fast and Papoutsakis, 2018). Moreover,
advances and innovations of synthetic biotechnology and
electrically driven microbial processes have given a new
impetus for carbon neutrality.

In this study, we have introduced the natural and artificially
modified microbial CO2 fixation progresses through synthetic
biotechnology, in which CO2 was used as the carbon source for
growth and product synthesis. And then, we also discussed the
electrically driven enzymatic and non-autotrophic microbial CO2

fixation process, including mechanism, method, and important
progress. Finally, based on full insights into the advantages and
disadvantages of synthetic biotechnology and electrochemistry,
we prospected the tendency development in the scope of the
combination of synthetic biotechnology and electrochemistry,
which is expected to provide a new solution for the efficient
utilization of CO2 to generate high value–added chemicals.

SYNTHETIC BIOTECHNOLOGY FOR
CARBON NEUTRALITY
Carbon Dioxide Fixation Through
Cyanobacteria
Cyanobacteria are a kind of immemorial autotrophic prokaryotic
organism with records from over 1 billion year ago, which makes

FIGURE 1 | Schematic of the carbon concentrating mechanism in cyanobacteria. CBB cycle, Calvin–Benson–Bassham cycle; ribulose-1, 5BP, ribulose-1, 5
diphosphate; ribulose-5P, ribulose-5 phosphate; ribose-5P, ribose-5 phosphate; 3PGA, glycerate 3-phosphate; 1, 3BPGA, 1,3-bisphosphoglycerate; G3P,
glyceraldehyde 3 phosphate; DHAP, dihydroxyacetone phosphate; F-1, 6BP, fructose-1, 6 diphosphate; F-6P, fructose-6 phosphate; xylulose-5P, xylulose-5
phosphate; S-7P, sedoheptulose-7 phosphate; S-1,7BP, sedoheptulose-7 diphosphate; and E-4P, erythrose-4 phosphate.
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a system to convert the CO2 to glucose, produce O2 from H2O,
and create a favorable atmospheric environment for the
formation of the wide range of living organisms.
Cyanobacteria can synthesize various kinds of natural
compounds from CO2 and energy absorbed from sunlight, for
example, amino acids, pigment, and fatty acids (Lau et al., 2015).
Compared with plants, the fast-growing and efficient CO2

conversion bacteria, cyanobacteria, have taken the duty of CO2

capture on its shoulder since ancient times. They also hold
promise of being a gifted chassis for a cell factory of chemicals
modified through synthetic biotechnology toolboxes. However,
compared with model organisms of E. coli and yeast, the
limitation of genetic manipulation of cyanobacteria cannot be
ignored. Various significant efforts have developed an utterly
robust set of synthetic biotechnology toolboxes and modularly
recombined parts. These tools include available promoters (Behle
et al., 2020; Sengupta et al., 2020), ribosome-binding sites, vector
systems, and the CRISPR-Cas system, which are also reviewed
comprehensively by Sun et al. (2018); Santos-Merino et al. (2019);
Pattharaprachayakul et al. (2020); Santos-Merino et al. (2021).
Beyond that, recombinant protein stability was also another
crucial factor that decided the outcome of the heterologous
expression. The recombinant proteins derived from eukaryotic
plants and animals are unstable when freely expressed in the
cyanobacterial cytosol but stable when fused with a highly
expressed cyanobacterial native or heterologous protein, which
was demonstrated by expressing the recombinant proteins of the
plant origin isoprenoid biosynthetic pathway, human interferon
protein, and tetanus toxin fragment C (Zhang X et al., 2021).
These fundamental research studies pave the way to construct a
robust engineered cyanobacterial cell factory for the large-scale
commercial production from CO2.

Based on these pioneering works, many researchers focus on
shaping a versatile producer from cyanobacteria. Compared to
various heterotrophicmodel organisms, the relatively lower growth
andmetabolic rate were the barriers that hindered the development
of cyanobacteria from the source, which derived from a lower CO2

fixation rate. However, compared to many other autotrophic
organisms, cyanobacteria have a highly efficient CO2

enrichment system, which enables them to survive the water
environment with low concentrations of CO2. In this system,
the NDH-1/NDH-1MSs complex converts the CO2 diffused
freely into a cell to HCO3

-, which is further converted to CO2

by carbonic anhydrase in carboxysome and provided to RuBisCO
as substrate (Angermayr et al., 2015, Figure 1). This unique
mechanism guaranteed the CO2 concentration gradient between
the intracellular and extracellular environments. Thus, recent
efforts have focused on expanding the wavelength range of the
absorbable solar spectrum and increasing electron transport chain
activity to increase photosynthetic efficiency. Researchers
introduced the chlorophyll f (Chlf)–encoding genes into
Synechococcus sp. PCC 7002 absorbs far-red light of
wavelengths over 700 nm (Ho et al., 2016). After integrating
Chlf into PSI complexes, the active radiation for the new PSI
complex was expanded up to 750 nm, which extended the
wavelength ranges and provided light compensation under non-
saturating light conditions (Tros et al., 2020).

Meanwhile, overexpression enzymes related to the Calvin
cycle can improve photosynthesis and product formation,
which have been shown in several research reports (De
Porcellinis et al., 2018; Liang et al., 2018). It was also
demonstrated in Synechocystis PCC 6803, where extra
bicarbonate transporter expression led to a 2-fold
enhancement of the growth rate and a higher amount of
biomass accumulation (Kamennaya et al., 2015). Likewise, the
overexpression of the carbon transporters BicA and SbtA
involved in central carbon metabolism enhances biomass
production by 50–100% (Gupta et al., 2020). Beyond that,
Włodarczyk and his colleague (Włodarczyk et al., 2020) have
discovered and characterized a new cyanobacterial strain,
Synechococcus sp. PCC 11901, which possesses a shorter
doubling time (2 h) and higher biomass production. By
engineering this strain, they demonstrated that this promising
cyanobacterium was easy to modify and produced free fatty acids
with a concentration over 6 mM (1.5 g/L). Ungerer et al. (Ungerer
et al., 2018) further identified three specific genes, atpA, ppnK,
and rpaA, with SNPs from the fastest growing cyanobacterium, in
which atpA and ppnK express an ATP synthase and NAD+ kinase
with higher performance, resulting in the decrease in the
doubling time from 6.8 to 2.3 h. After point mutation in the α
subunit of FoF1 ATP synthase (AtpA), they enhanced the
environmental stress tolerance of Synechococcus elongatus PCC
7942, leading to an increase in AtpA protein levels, intracellular
ATP synthase activity, and ATP concentrations (Lou et al., 2018).

Many scholars devote themselves to exploring cyanobacteria
as a multifunctional platform for a biotechnological process by
far. By the introduction of the exogenous glycerol biosynthetic
pathway, researchers build a bridge from the CO2 fixation to
glycerol production, which serves as the substrate for the C3
platform chemicals (Wang et al., 2015). Using it as a base,
scientists synthesized a variety of chemicals from CO2,
including 3-hydroxypropionic acid (Wang et al., 2016),
isobutanol (Miao et al., 2017), limonene (Lin et al., 2017), and
2,3-butanediol (Nozzi et al., 2017). Beyond that, by introducing a
more complicated pathway, costly compounds of polysaccharide
terpene (Bhunia et al., 2018) and fatty acid ethyl esters were also
produced from these engineered cell factories. By expressing the
genes coding for sucrose-phosphate synthase, sucrose-phosphate
phosphatase, and sucrose-degrading invertase, sucrose was
synthesized and accumulated successfully (Kirsch et al., 2018;
Vayenos et al., 2020.). By overexpressing ribDGEABHT
(riboflavin-encoding genes) and introducing an internal
promoter to the upstream of the heterologous ribAB gene, the
production of riboflavin increased by 211-fold (73.9 ± 7.2 μM)
compared to the wild-type strain (Kachel and Mack, 2020).

However, the growth and production processes based on
photoautotrophic are limited to the time of sunlight available
because growth and synthesis were slowed down and ceased in an
unlighted environment. In addition, economic feasibility in the
application of cyanobacterium as a versatile producer also relies
partially on their photosynthetic capacity and solar energy
conversion efficiency. The imbalances between absorbed light
energy (source) and the metabolic capacity (sink) can potentially
increase the carbon flux output from the Calvin cycle, which may

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 10 | Article 8260083

Zhuang et al. Electrically Driven Carbon Neutrality

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


be beneficial for increasing the photosynthesis efficiency (Santos-
Merino et al., 2021). Many genetic manipulation tools and
strategies (Sun et al., 2018) have been developed to translate to
significant gains for cyanobacteria as a cell factory to synthesize
commercial products from CO2. At the same time, it is still a
heavy responsibility and a long way from the goal for carbon
neutrality with higher efficiency.

Carbon Dioxide Fixation Through
Escherichia coli
Unlike cyanobacteria, Escherichia coli is a normal chassis cell for
most scientists who possess complete and efficient genetic
manipulation tools. Thus, many scientists have devoted
themselves to introducing the CO2-fixed pathway into E. coli,
including the Calvin–Benson–Bassham cycle and the reductive
tricarboxylic acid cycle. Milo’s group reported significant work
that E. coli synthesized sugar from CO2 by introducing the non-
native Calvin–Benson–Bassham cycle pathway (Figure 2),
rewiring the metabolic pathway and directed laboratory
evolution, while oxidization of pyruvate provided the
reducing power and energy (Antonovsky et al., 2016).
Moreover, they also constructed another engineered E. coli
that use CO2 as their sole carbon source through metabolic
rewiring and directed evolution, in which formate is oxidized to
provide reducing power and energy (Gleizer et al., 2019). Lee
and his colleague also heterogeneously expressed the whole gene
clusters (cbbI and cbbII operons) belonging to the
Calvin–Benson–Bassham (CBB) pathway in E. coli, which
was combined with the yeast fermentation process to
mitigate exogenous CO2. These milestone works provide
feasible solutions in changing model heterotrophic organisms
to autotrophy one and offer potential possibilities for resource
sustainability.

Except for the CBB pathway, the scientist also reconstructed
another C1 assimilation pathway to convert the nutritional types
of E. coli for integrated utilization of CO2 and C1 chemical
compounds. By employing the technique of rational design,
metabolic pathway reconstruction, and metabolic flux
rebalance, scientists achieve success in converting the E. coli to
an engineered methylotrophic bacterium, which utilize methanol
as a sole carbon source for growth with a doubling time of 8 h
(Chen CH et al., 2020). By reconstructing the tetrahydrofolate
cycle and the reverse glycine cleavage pathway and introducing
formate dehydrogenase, the formate and CO2 could serve as
carbon sources for engineered E. coli–sustaining growth (Bang
and Lee, 2018). The combined reconstructed reductive glycine
pathway and short-term evolution, Kim and his colleague also
constructed an engineered E. coli by taking formate and CO2 as
carbon sources, whose doubling time was less than 8 h. By
introducing methanol dehydrogenase to the evolved strain,
they also converted the engineered E. coli to a methylotrophic
bacterium that could grow on methanol and CO2 (Kim et al.,
2020).

Until now, it is hard to achieve the purpose of efficiency CO2

fixation from the liquid culture medium environment to produce
chemical with high productivity, so reutilized CO2 from the
endogenic pathway was particularly significant to reduce
carbon emission in large-scale industrial production. By
introducing the gene of kor (express α-ketoglutarate:
ferredoxin oxidoreductase), acl (express ATP-dependent citrate
lyase), frd (express fumarate reductase), and energy pump, the
engineered E. coli successfully recycled CO2, in which the C-2/C-
1 ratio increased to 1.79 ± 0.02 (Chen FYH et al., 2020). Beyond
that, the scientists also introduced 20 genes related to the CO2-
concentrating mechanism into E. coli to enhance the capture rate
of CO2, which achieved success in fixing CO2 from ambient air
into biomass (Flamholz et al., 2020). This work would let us not

FIGURE 2 | Carbon fixation in E. coli through the CBB and rTCA cycles. CBB cycle, Calvin–Benson–Bassham cycle; rTCA cycle, reverse citric acid cycle.
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only understand the CO2-concentrating mechanism but also lay
the groundwork for CO2 fixation in diverse organisms.

The research on E. coli that uses CO2 to produce high
value–added products has achieved preliminary success.
However, in contrast to cyanobacteria, E. coli is still growing
slowly in autotrophic culture conditions. Therefore, to realize
industrial-scale production, a large amount of work was still
required to enhance CO2 fixation and utilization efficiency of
engineered E. coli, which could also pave the way for the high
value–added product.

Carbon Dioxide Fixation Through Yeast
Saccharomyces cerevisiae is a versatile chassis cell which is widely
used as a cell factory of natural compounds, especially for the
industrial production of bioethanol. However, the anaerobic
fermentation process constrains ethanol concentration and
trigger the accumulation of by-product (glycerol), which is
caused by the redox-cofactor unbalancing, Guadalupe-Medina
select CO2 as an electron acceptor, which not only balances excess
reduced cofactor (NADH) but also captures the CO2 and reduces
greenhouse gas emissions (Guadalupe-Medina et al., 2013). They
reconstruct a new pathway to introduce phosphoribulokinase
(PRK) and form-II ribulose-1,5-bisphosphate carboxylase
(Rubisco), leading to a result with lower (90% reduction) by-
product and higher (10% increase) ethanol production. On this
basis, Xia et al. studied the heterologous expression of the xylose
reductase (XR)/xylitol dehydrogenase (XDH) and xylose
isomerase, which converts xylose to xylulose (Xia et al., 2016).
By introducing PRK and Rubisco and upregulating the native
pentose phosphate pathway (PPP), they successfully achieved
bioethanol production from cellulosic hydrolysates with CO2

recycling. Joeline Xiberras et al. introduce the “SA module”
(malate dehydrogenase, fumarase, and fumarase) to S.
cerevisiae for succinic acid production from glycerol and CO2

(Xiberras et al., 2020). These studies provide a feasible idea to fix
CO2 and form other chemical compounds.

Unlike capturing CO2 to form chemical compounds through
the reconstructed intracellular pathway, a biologically catalyzed
CO2 mineralization process was another simple approach.
Roberto Barbero et al. displayed bovine carbonic anhydrase II
on the yeast’s surface, which has higher thermal stability and
mineralized CO2 with coal fly ash to form CaCO3. Coupled with
model prediction, they demonstrated that this biological
mineralization process is ~10% more cost-effective when
captured per ton of CO2 (Barbero et al., 2013). Shen et al.
treated the discarded yeast with potassium hydroxide and
form microporous carbon materials with a
Brunauer–Emmett–Teller surface area of 1,348 m2g−1 and a
pore volume of 0.67 cm3g-1, which resulted in a superior
performance for CO2 capture (Shen et al., 2012).

As eukaryotic chassis cells, yeast is more complicated and
suitable for natural product synthesis than E. coli. Abundant
genetic manipulation makes it more feasible to utilize CO2 to the
product of high value–added long-chain compounds (Figure 3).
However, as same as E. coli, a large amount of work was still
required to enhance the CO2 fixation and utilization efficiency
before being applied for large-scale industrial manufacture.

ELECTRICALLY DRIVEN CARBON
NEUTRALITY

Electron Transfer Mechanisms
Enzyme catalytic CO2 fixation involves a redox reaction, in which
electron transfers were performed by the cofactor of NAD(P)/
NAD(P)H. However, the electrical process could realize the
regeneration of electron acceptors and donors (cofactor)
happened in electrodes to maintain the continuity of the

FIGURE 3 | Carbon fixation in P. pastoris through the CBB cycle. 3PGA, glycerate 3-phosphate; CBB cycle, Calvin–Benson–Bassham cycle.
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reaction (Chen H et al., 2020). The electron across enzyme (e.g.,
cytochrome c and ferredoxin) can transfer directly from the
electrode to the substrate when the enzyme’s active site is well
exposed (Silveira and Almedia, 2013). Although many successes
have been achieved in adsorption enzymes on the surface of the
electrode, this process was unstable and not feasible in most

situations that limit the movement process of the enzyme.
However, the electron transfers mediately utilizing carriers
(e.g., viologens, quinones, and dyes) shuttle out from the
active site to the electrode surface, in which the active site
resides deep inside the enzyme (Yuan et al., 2019). That seems
more reasonable and practical in non-contact communications

FIGURE 4 | Schematic representation of the CO2 fixation process by electrically driven enzyme.

FIGURE 5 | Schematic representation of the CO2 fixation process by electrically driven microorganism.
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between enzymes and electrons, and the drawback is the toxicity
from redox mediators (Figure 4).

Some microbial cells can also replace enzymes to realize
electron transfer with the electrode, such as Shewanella
oneidensis and Geobacter sulfurreducens. There have been
three significant mechanisms for electron transfer between the
electrode and microbial cells (Figure 5). First, perform electron
transfer by contacting the electrode immediately through c-type
cytochromes located in the cell’s outer membrane; second,
perform electron transfer through redox mediators to
communicate with the electrode; and third, perform long-
range electron transfer through pili (Pankratova et al., 2019).
Compared with enzymes, the microbial cells possess the
characteristics of high stability and self-duplicating and do not
require purification belonging to the enzyme preparation process.
Meanwhile, the weakness of lack of specificity and the slower
electron transfer rate must not be neglected.

CO2 Fixation by Electrically Driven Enzyme
CO2 Reduction to C1–C2 Chemical
CO2 fixation through enzymes was also lucubrated, which was
generally performed through hydrogenation reduction and
required an expensive cofactor of NADH/NADPH. Formate
dehydrogenase (FDH) has been widely used in coenzyme
regeneration, which catalyzes nearly irreversible formate
oxidation to CO2 and provides NADH for the other coupling
reaction. Metal-dependent FDHmainly catalyzed CO2 fixation to
produce formate, using NAD+ as a cofactor. However, Jayathilake
et al. developed a novel approach for CO2 reduction catalyzed by
metal-independent FDH with methyl viologen radical cation
(MV•+) as the cofactor, which efficiently regenerated at a
carbon electrode through electrochemical reduction without
any additional reducing agent (Figure 4). Formate yields as
high as 97 ± 1% at 20 mV negative to the reversible electrode
potential, much lower than that of metal catalysts (−800 mV to
−1,000 mV) (Jayathilake et al., 2019). By embedding the enzymes
into the metal–organic framework ZIF-8, Rh complex–grafted
electrode was used to regenerate NADH and significantly
enhanced the catalytic enzyme rate by 12-fold from CO2 to
methanol compared to the free enzyme statue (Zhang Z et al.,
2021). The enzyme catalytic CO2 fixation combined with
electrochemical regeneration of natural/artificial cofactor
provides a new idea for efficient CO2 fixation to small-
molecule compounds.

CO2 Reduction to Higher Value–Added Products
Beyond that, the electrically driven enzyme also catalyzed CO2 to
produce higher value–added products. Two cooperating enzymes
in nanopores performed carboxylation by introducing CO2 to
pyruvate (C3) and producing malate (C4), in which indispensable
NADH was regenerated and driven by electricity (Morello et al.,
2019). A bio-electrocatalytic system was also developed to drive
carboxylation by incorporating CO2 into crotonyl-CoA,
ferredoxin NADP+ reductase (FNR), and NADPH-dependent
crotonyl-CoA carboxylase/reductase were co-immobilized in a
viologen-based redox hydrogel. The faradaic efficiency was 92 ±
6% at a rate of 1.6 ± 0.4 μmol cm−2 h−1 (Castañeda-Losada et al.,

2021). Thus, combined with the electrical method, the enzyme
could be used for higher value–added products synthesis with
high efficiency.

CO2 Fixation by the Electrically Driven
Microorganism
On the one hand, enzyme catalytic CO2 fixation result in high
activity and selectivity, and on the other hand, the expensive
protein purified process was also non-negligible. So, some
scientists have devoted themselves to developing an electrically
driven whole-cell catalytic process.Methylobacterium extorquens
AM1 perform CO2 fixation to synthesize formate driven by the
electrical method with product concentrations up to 60 mM.
Compared to the electrically driven enzyme catalytic process,
the whole-cell electro-biocatalytic process is undismayed by being
exposed to oxygen gas without providing extra cofactors (Hwang
et al., 2015). Employing neutral red as a redox mediator coated
outside the carbon felt (CF) electrode, Seelajaroen et al.
performed a long-term (17 weeks) electrical reduction of CO2

to formate based on M. extorquens (Seelajaroen et al., 2019).
Beyond that, the bioelectrochemical system also harvests success
in producing acetate, methane, butyrate, and
polyhydroxybutyrate (PHB). Thus, CO2 fixation by electrically
driven microorganisms is a process that converts renewable
electrical energy to chemicals, which is a novel and attractive
strategy for energy transformation and storage.

CO2 Fixation Efficiency Between Electrically
Driven CO2 Fixation and Bio-Carbon
Fixation
It is hard to compare the CO2 fixation efficiency and rate
between electrochemistry and bio-carbon fixation processes
at “fair” levels because electric energy is converted from
solar, wind, and chemical energy. However, we could also get
some information and answers from interesting data. After the
pioneer’s work, the heterotrophic microorganism (E. coli) was
engineered to grow on methanol/formic acid and CO2, and the
doubling time was decreased from ~70 to ~8 h. By contrast, the
doubling time of Synechococcus sp. PCC 11901 (photosynthetic
autotrophs), E. coli (chemoheterotrophy), and Vibrio natriegens
(chemoheterotrophy) is 6–2 h (Włodarczyk et al., 2020),
27.23 min (Weinstock et al., 2016), and 15.61 min
(Weinstock et al., 2016). Thus, there is a significant untapped
opportunity for engineered microorganisms to synthesize
products from CO2 with acceptable efficiency. In chemical
synthesis, the electro-biocatalytic process produces 60 mM
formate from CO2 in 60 h (1 mM/h) (Hwang et al., 2015)
and 14.8 mM malate from pyruvate and CO2 in 24 h
(0.62 mM/h) (Morello et al., 2019). Furthermore, CO2 was
converted to starch at last with a rate ~8.5-fold higher than
starch synthesis in maize, in which electrically driven CO2

fixation was combined with the cell-free enzymatic catalytic
process. Although electrically driven techniques have gained a
temporary lead in efficiency, obstacles from large-scale
industrialized production still stared them in the face.
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COMBINED SYNTHETIC BIOTECHNOLOGY
WITH ELECTROCHEMISTRY FOR CARBON
NEUTRALITY
By rewiring the metabolic pathway and introducing an exogenous
gene module, the electroactive microbial cells can expand their
product scope and electro-biocatalysis efficiency. However, there
are a finite number of electroactivity microorganisms, and their
gene modification platform was limited compared with the model
organism. Moreover, the application of these electro-biocatalysts
still faces much obstacles, for example, 1) the effect of the
electrical environment on the formation of biofilms, 2) limited
toolbox for genetic manipulation, and 3) low extracellular
electron transfer rate. So, we take S. oneidensis as a
representative, which has been studied maturely and in-depth
relatively.

Facilitate Biofilm Formation
Electroactive microbial form biofilm on the electrode surface
was the foundation in bioelectrochemical systems’ normal
running process. In the pioneer’s work, many genes were
identified, which are crucial for the biofilm formation, such
as dgcS, cheY3, exeM, and bolA gene. DgcS, a major diguanylate
cyclase (DGC), catalyzed GTP to form cyclic diguanosine
monophosphate (c-di-GMP), which acts as a second
messenger to regulate biofilm formation (Matsumoto et al.,
2021). At the same time, phosphorylated CheY3 was also
observed to interact with DGCs and co-regulate the biofilm
formation (Boyeldieu et al., 2020). ExeM, an extracellular
nuclease, was also identified as a crucial enzyme for the
normal biofilm formation, activated by the metal cofactors
(Ca2+ and Mg2+/Mn2+) (Binnenkade et al., 2018). The
scientist also found that overexpression of the bolA gene, a
transcriptional regulator, facilitates biofilm formation by
regulating many related gene express processes (Silva et al.,
2020). Beyond that, low concentrations of extracellular
riboflavin resulted in an upregulation transcription of the
ornithine decarboxylase–encoding gene speC, which
facilitates the biofilm formation of S. oneidensis (Silva et al.,
2020). So, except electrode surface modification, genetic
manipulation can also regulate biofilm formation in a
sample and stable method.

Construct Genetic Manipulation Platform
Genetic manipulation platform development, especially non-
model organism, not only removes gene editing restrictions
but also broaden the product type. Fortunately, the developed
synthetic biotechnology of the CRISPR-related toolset
provides new possibilities for reprogramming the gene
module in electroactive microorganisms. By fusing Cas9
nickase (Cas9n (D10A)) with cytidine deaminase
(rAPOBEC1), Cheng et al. successfully developed the
pCBEso system in S. oneidensis, whose double-locus
simultaneous editing efficiency reached up to 87.5%.
Compared with others, this system did not require double-
strand break or repair templates and was successfully used for
broadening carbon source utilization spectra for S. oneidensis

(Cheng L et al., 2020). The developed CRISPR-ddAsCpf1
system achieved 100% gene repression reported by green
fluorescent protein (GFP). By repressing the gene related to
extracellular electron transfer, they realized the enhancement
of L-lactate metabolism–related genes expression and
riboflavin production, resulting in rediverting electron flux
(Li et al., 2020). Ng’s group also applied CRISPR interference
(CRISPRi) targeted to the genes and redirection carbon flux of
S. oneidensis, combined with integrating gene cluster coding
the glucokinase, GroELS chaperone, and ALA synthase under
dual T7 promoters, targeted product (5-aminolevulinic acid)
improved by 145-fold (Yi and Ng, 2021). Yang’s group
successfully explored a way to produce n-butanol (160 mg/
L) through engineered S. oneidensis MR-1. The gene modules
encoding alcohol dehydrogenase, CoA transferases, and
acetyl-CoA synthetase were integrated into the plasmid and
worked in the bacteria (Jeon et al., 2018). These genetic
manipulation platforms constructed would accelerate the
robust construction of engineered strain with superior
performance electrically driven carbon neutrality.

Accelerate Electron Transfer Rate
Synthetic biotechnology can also be employed to modify and
reconstitute the related pathways and regulation strategies to
enhance extracellular electron transfer (EET) efficiency. The
scientist developed a population-state decision system based
on quorum sensing to allocate cellular resources, which change
the predominant metabolic flux from growth to EET in the
latter, resulting in EET enhancement up to 4.8-fold (Li et al.,
2020). Dundas et al. designed a series transcriptional logic gate
to regulate and control the EET flux in S. oneidensis, in which
the EET pathway–related parts of CymA/MtrCAB were
systematically modified (Dundas et al., 2018). These works
provide novel and powerful methods to control and regulate
the EET, which lay the foundation for developing an
intelligently and effectively synthetic biotechnology tool.

The cytochrome c network is a crucial module that bridges
the electron transfer between intracellular and extracellular
environments, including c-Cyts CymA, bc1 complex, TorC,
and SirD (Figure 5). Sun et al. constructed engineered S.
oneidensis whose NapB, FccA, and TsdB were depleted, and
CctA was overproduced, resulting in higher power density in
MFCs (436.5 mW/m2, 3.62-fold than that of wild type) (Sun
et al., 2021). At the same time, soluble c-type cytochromes
(c-Cyts) also enhance the extracellular electron shuttling under
electron acceptor–limited conditions (Liu et al., 2020). The
scientists also attempted to enhance the electron transfer by
focusing on another crucial factor-cAMP, for cAMP-cyclic
adenosine 3′,5′-monophosphate receptor protein (CRP)
regulates the multiple EET-related pathways (Vellingiri et al.,
2019). Scientists constructed a cyaC-OE mutant that expresses
higher intracellular cAMP concentration, five times higher than
that in the wild-type strain, resulting in a two-fold higher
current than the wild-type strain (Kasai et al., 2019). Cheng
et al. expressed exogenous adenylate cyclase encoding gene from
the Beggiatoa sp. in S. oneidensis MR-1, enhancing EET
capacities (Cheng ZH et al., 2020).
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CONCLUSION AND PERSPECTIVE

On the one hand, CO2 emitted from fossil fuels and the
productive human activity was the main factor for extreme
climate change and global warming. On the other hand, CO2

is also a carbon source, catalyzing more valuable products.
Cyanobacteria are a natural microorganism that can
spontaneously convert CO2 to many chemicals. At the same
time, synthetic biotechnology was also employed to construct
engineered bacteria by introducing the heterogeneous CO2

fixation–related gene for carbon neutrality. Computational
analysis was also another powerful tool to identify and design
pathways with a more favorable thermodynamic driving force for
CO2 fixation (Satanowski et al., 2020; Chou et al., 2021). Beyond
that, electrically driven microbial and enzyme engineering was
also suitable for CO2 fixation with high efficiency. Thus,
combined synthetic biotechnology with electrochemistry
possesses the full advantage of both for carbon neutrality,
which can not only broaden the product scope but also
harvest high energy conversion efficiency.

Whether inartificial CO2 autotrophic organism or a
heterotrophic model organism, synthetic biotechnology tools
play a crucial role in editing genes, rediverting metabolic
pathways, endowing them with new functions, optimal
enforcement efficiency, and most abundant resources. Based
on this, scientists carried out milestone work that converts the
heterotrophic organism of E. coli (Figure 2) (Antonovsky et al.,
2016; Gleizer et al., 2019; Bang et al., 2020) and P. pastoris to
autotroph and growth on CO2 (Figure 3) (Gassler et al., 2020).
These great works will pave the way for the CO2 fixation
through microorganisms and the great dream of carbon
neutrality. However, the CO2 fixation rate was slow and
insufficient to satisfy the conversion of CO2 to the chemical
product with high efficiency. Thus, electrochemical combined
with synthetic biotechnology spawned a new revolution for CO2

fixation efficiency. By developing a chemoenzymatic system,
CO2 was first fixed through electrochemical to form methanol,
coupling with multi-step enzymatic reaction, CO2 was
converted to starch at last with a rate ~8.5-fold higher than

starch synthesis in maize (Cai et al., 2021). This is a typical case
in fuse electrochemical synthetic biotechnology involvement,
which gives attention to both efficiency and product quality.
Beyond that, the success of the cell-free model is also pinning its
hopes on enzymes (such as formate dehydrogenase and
carboxylase), whose design and engineering can also
accelerate the rate of CO2 fixation. Thus, some novel
analytical (Zhuang et al., 2021) methods and research tools
(Zhuang et al., 2020) can also show extraordinary talents in
illuminating the enzyme’s catalytic mechanism.

Besides, it is also an important and promising field that equips
microorganisms with highly efficient light-harvesting inorganic
semiconductors to realize light-driven carbon fixation (Brown
and king, 2020). By employing cadmium sulfide nanoparticles,
scientists not only enable the photosynthesis of acetic acid from
carbon dioxide through Moorella thermoacetica (Sakimoto et al.,
2016) but also enhance the CO2 fixation pathway in E. coli (Hu
et al., 2021). Furthermore, this technique also enhances the yields
of L-malate and butyrate from glucose with theoretical yields
(1.48 and 0.79 mol/mol) in E. coli (Hu et al., 2021). So,
interdisciplinary light and/or electrically driven synthetic
biotechnology will shine their light on CO2 neutrality with
more high value–added products and higher efficiency in the
future.
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