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Reconstructing Earth’s atmospheric oxyge-
nation history using machine learning

Guoxiong Chen 1, Qiuming Cheng 1,2,3 , Timothy W. Lyons4, Jun Shen 1,
Frits Agterberg5, Ning Huang1 & Molei Zhao2

Reconstructing historical atmospheric oxygen (O2) levels at finer temporal
resolution is a top priority for exploring the evolution of life on Earth. This
goal, however, is challenged by gaps in traditionally employed sediment-
hosted geochemical proxy data. Here, we propose an independent strategy—
machine learning with global mafic igneous geochemistry big data to explore
atmospheric oxygenation over the last 4.0 billion years. We observe an overall
two-step rise of atmospheric O2 similar to the published curves derived from
independent sediment-hosted paleo-oxybarometers but with a more detailed
fabric of O2 fluctuations superimposed. These additional, shorter-term fluc-
tuations are also consistentwith previous but lesswell-established suggestions
of O2 variability. We conclude from this agreement that Earth’s oxygenated
atmosphere may therefore be at least partly a natural consequence of mantle
cooling and specifically that evolving mantle melts collectively have helped
modulate the balance of early O2 sources and sinks.

An important goal for geoscientists is to decode the long-term evo-
lution of Earth geosphere, atmosphere, and biosphere, as well as
their interactions (Fig. 1). However, deciphering the evolution of
early Earth is challenged by the incomplete preservation of the
geological records1. As such, resolving various geoscience con-
undrums relies on deductive or inductive reasoning (i.e., a
knowledge-driven model) based on (local) observations and experi-
ments. However, given the vast and ever-expanding global geo-
databases available (e.g., EarthChem, GEOROC, PetDB, SGPP, etc.),
we are now in a unique position to use big data analytical techniques
to answer fundamental geoscience questions via an abductive
model2,3. This opportunity lies with data mining of increasingly large
and intensive geo-datasets and from computationally intensive
simulations4,5. In other words, although geoscientists can use logical
reasoning to analyze and interpret geo-data, abductive reasoning
based on machine learning with big data can facilitate data-driven
discovery of previously hidden correlations or patterns that escape
human intuition3. At the core of artificial intelligence and data sci-
ence, machine learning methods guided by training experiences can

be are exceptionally good at processing big data and making deci-
sions and predictions6,7. This advantage elevates their relevance in
geoscience research4,8,9, where high-resolution measurements and
observations over long periods of geological time have produced
vast numbers of diverse and complex data bases.

Atmospheric oxygenation is critical to the development of Earth’s
habitability. Oxygen levels, as shown in Fig. 1, were very low (<10–7–10–5

of the present atmospheric level [PAL]) for thefirst half of Earth history
and then rose to something like 10–3–10–1 PAL during the Great Oxi-
dation Event (GOE)10–12 around 2.5 to 2.0 billion years ago (Ga),
although the magnitude, fabric, and timing of this jump are not well
known—with ongoing debate13,14. Afterward, it remained at inter-
mediate but still relatively low levels (10–4–10–1 PAL) for the “boring”
billion years during the mid-Proterozoic15 and then rose a second time
during the Neoproterozoic Oxidation Event (NOE), achieving current
oxygen levels (~1 PAL) during the Phanerozoic12. However, despite
agreement about the first-order pattern of atmospheric oxygenation,
the controls on this evolution and the second-order variations remain
poorly known and are subject to debate.
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Earth’s oxygenation derives from the emergence of oxygenic
photosynthesis; however, the GOE likely followed the initiation of this
innovation by several hundred million years16. The reason for this
apparent time lag remains a topic of considerable debate. Various
hypotheses rely on the notion that atmosphere oxygen levels are
determined by a kinetic balance between O2 production and sinks17,18.
One possibility is that photosynthetic production of O2 could increase
as a result of enhanced nutrients (e.g., phosphorus) availability, and
this possibility has been invoked for both GOE and NOE through the
weathering of large igneous provinces (LIPs)19,20. Yet the rate of organic
matter burial (forg) has remained approximately constant for most of
Earth history21, rather than showing significant changes that corre-
spond with dramatic, long-term steps in biosphere oxygenation.

Alternatively, it has been proposed that early atmospheric oxy-
genation (e.g., the GOE) was driven by a secular decline of efficient O2

sinks from the perspective of purely abiotic controls, rather than by an
increase in O2 flux

22,23. Proposed mechanisms that could significantly
reduceO2 consumption during GOE include a change in the fraction of
subaerial magma degassing17, mantle oxygen fugacity24, and/or crustal
composition18,25, all of which would influence the atmosphere oxygen
level via the flux and redox state of reductants (gases, minerals, and
fluids) emanating from the solid Earth. In general, the redox state of
these reductants was controlled by the upper mantle melt26 and/or its
subsequentmagmadifferentiation27. It has been suggested thatmantle
redox did not change significantly through time as evidenced by V/Sc
ratios in basalts28, leading to its frequent dismissal as a key driver of the
atmospheric O2 evolution for two decades. Recent studies, however,
suggest that the mantle may have gradually oxidized from the
Archaean onwards29,30, resulting in a decline of oxidizable volcanic
gases that could have trigged the GOE23. Moreover, the rapid forma-
tion of felsic continent through plate tectonics could largely reduce
the flux of mantle-derived reductants (e.g., Fe2+ and S2−), ultimately
allowing atmospheric O2 to accumulate during the GOE18. These many
and often competing arguments leave open the need for novel
perspectives.

Mafic rocks like basalts act as key probes of Earth’s interior and
redox state, and their formation and geochemical evolution are

directly related to the flux of nutrients and reductants to Earth’s
surface31, thus playing a crucial role in both O2 production and sinks.
Global data compilations for igneous rocks (e.g., EarthChem) provide
much higher temporal resolution of variations in geochemical con-
centrations throughout Earth history27,32 compared to geochemical
proxies preserved in sedimentary repositories (e.g., Sedimentary
Geochemistry and Paleoenvironments Project)33. These large datasets
for igneous rocks include dozens of elements and ages ranging from
4.0Ga to the present, as shown in Figs. 2 and 3, with details described
in the “Methods”. Big data approaches to global igneous geochemistry
have been employed previously to explore secular evolution ofmantle
melts27, supercontinent cycles32, and historical trends in plate
tectonics34. Moreover, integrated analysis of diverse data resources
using machine learning, in contrast to separate treatment of each
physicochemical property, can lead to more evidence-based predic-
tions about many aspects of Earth system and its relationship with
surface environmental change4,5,35.

With this goal in mind, we focus on reconstructing atmospheric
oxygen variation over deep time using machine learning based on
global mafic igneous geochemistry big data. Nonetheless, it should be
emphasized that rigorous screening of rock samples (e.g., age data
filtering) is essential when applying big data approaches to global geo-
databases36. In this paper, using unsupervised learning methods
(including self-organizing map (SOM) and principal component ana-
lysis (PCA)), we find that the state of mafic igneous composition
evolved chemically through the four major stages, with geochemical
transition periods at both ends of the Proterozoic, correspondingwith
the timing of GOE and NOE, respectively. Second, the supervised
methods (e.g., supporting vector regression (SVR)) based on Monte
Carlo simulations were applied to the same dataset to “predict”
atmospheric oxygen levels since 4.0Ga quantitatively. Our indepen-
dent method successfully revealed a high-resolution two-step pattern
of increasing atmospheric oxygen level and identified many second-
order fluctuations since 4.0Ga, most of which agree with local
observations based on sediment-hosted paleo-oxybarometers. We
hypothesize from these observations that secular geochemical evolu-
tion ofmafic igneous systems, as a result ofmantle cooling over time27,
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Fig. 1 | Co-evolution of the Earth system (geosphere, atmosphere, and bio-
sphere) through time. a Evolution of the geosphere, including the develop-
ment of the supercontinent cycles1 (Kenorland, Columbia, Rodinia,
Gondwana, and Pangea); b Evolution of life within the biosphere77; c Evolution

of atmospheric oxygen levels relative to the present atmospheric level10; the
blue boxes show a range of atmospheric O2 level inferred from various geo-
logical proxy constraints, and the red solid line shows one plausible evolution
path of O2 level.
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could have played an important role in the secular change of atmo-
spheric oxygen levels on Earth.

Results and discussion
Secular change of mafic igneous geochemical composition
We employed unsupervised machine learning to examine the first-
order pattern of mafic igneous geochemical evolution through time
from concentration data for 44 elements. SOM37 and PCA38 are the two
most widely used unsupervised learningmethods. They can effectively
reduce a high-dimensional dataset into relatively few representative
samples that can bemore easily visualized, quantified, and interpreted.
In our study, the utility of SOM lies with its ability to delineate major
trends, jumps, and clusters in the global igneous geochemical time
series dataset. We used PCA to supplement SOM results by investi-
gating the details of temporal variations observed via the first principal
component (PCA1). Additional detailed information about the prac-
tical implementation of SOM and PCA in this study can be found in the
“Methods” and Supplementary information. First, SOM analysis of
global mafic igneous data for 44 elements has identified four major
classes of mafic composition, reflecting four distinct time intervals
since 4.0Ga (Fig. 4a). Class 1 represents the geological interval from
~4.0 to 2.5 Ga. These data are characterized by high concentrations of
highly compatible elements, which are preferentially partitioned into
solid phases (e.g., MgO, Cr, and Ni), and low concentrations of
incompatible elements, which are preferentially partitioned into the
melt (e.g., K2O, Na2O, P2O5, Th, and U). Class 2 spans ~2.5 Ga to 1.8Ga
and represents a transition period of mafic igneous compositions for
most elements during the Paleoproterozoic time. Class 3 spans ~1.8 Ga
to 0.7Ga and represents a relatively stationary state of mafic igneous
compositions for most elements during Earth’s middle age. Class 4
represents ~0.7 Ga to the present and is characterized by relatively
lower concentrations of compatible elements and higher

concentrations of incompatible elements. The secular change in con-
centration of compatible elements (decrease) and incompatible ele-
ments (increase) in mafic igneous rocks reflects degrees of mantle
melting controlled by mantle cooling through time27. Therefore, the
identified four broad steps of mafic igneous geochemistry evolution
through SOM analysis reflect the first-order response of decreasing
mantle melting degree over the course of Earth history.

Amajor finding here is the existence of four major stages of mafic
igneous geochemistry evolution separated at ~2.5 Ga, ~1.8 Ga, and
~0.7 Ga (Fig. 4a). The first stage, spanning from ~4.0 to 2.5Ga, is
marked by elevated mantle temperatures39 and thinner crust40 com-
pared to the present day (Fig. 4c). The second stage, from ~2.5Ga to
1.8 Ga, overlaps with a major rise of continents, the GOE, and global
glaciations, and it coincides with model predictions for early plate
tectonics involving hot subduction with shallow slab breakoff41. At this
time, the continental crust became thicker andmore evolved (Fig. 4c).
The third stage, from ~1.8 Ga to 0.7 Ga, corresponds with the “boring”
billion interval, a period of declining subduction activity and relative
lithospheric and environmental stability possibly associated with the
incomplete breakup and reassembly of Columbia (also known as
Nuna)42. The fourth stage, from ~0.7 Ga to present, corresponds to
modern cold subduction but with increasingly thinner crust forma-
tion and enhanced mantle cooling43 (Fig. 4c). The geochemical tran-
sition period around 0.7 Ga is accompanied or followed by several
geologically extreme events thatmay be interconnected, including the
breakup of the Rodinia supercontinent, the NOE, the Snowball Earth
events, and the appearance of animal life. This first-order partitioning
of mafic igneous geochemical evolution suggests periods of profound
change in the Earth system notably near the Archaean-Proterozoic and
Proterozoic-Phanerozoic boundaries, with implications for mantle
melt, crustal differentiation, atmospheric oxidation, and co-evolving
life on Earth.
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Fig. 2 | Spatiotemporal distribution of mafic igneous rock samples. a Spatial
distribution of global data compilation of whole rock mafic igneous compositions
from the EarthChem, GEOROC, and USGS data repositories. The map was created

with ArcGIS 10.8. b Histogram of age-frequency distribution of mafic igneous rock
samples (age bin = 100Myr).
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Coupling igneous geochemistry evolution and atmosphere
oxidation
Figure 4a shows that the SOM pattern of mafic igneous geochemistry
coincides temporally with the classical step rise view of atmospheric
oxygen evolution10,44. This temporal coincidence of mafic igneous
geochemical transitions and atmospheric oxygenations (notably at
~2.5 Ga and ~0.7 Ga) leads us to speculate that deep geochemical
processesmayhave been connected to both of the twogreat oxidation
events on Earth’s surface—not just to the GOE27. During the earliest
stage, high-degree mantle melting resulted in high concentrations of
highly compatible elements and low concentrations of incompatible
elements inmafic igneous rocks (Fig. 3b), which indicates a high flux of
mantle-derived reductants (e.g., Fe2+, S2−, and Ni) as well as a limited
nutrient supply (e.g., P2O5; Fig. 3a) to Earth’s surface. A combination of
high reductant concentration and large volumes of mafic rocks dom-
inating Archaean crust may have overwhelmed O2 production fluxes,
limiting O2 accumulation until the GOE. Perhaps as a result of gradual
mantle cooling accompanied by an abrupt response in degree of
mantle melting around 2.5 Ga27, the rapid decline in concentration of

compatible elements and increase in incompatible elements could
reflect a significant decrease of the mantle-derived reductant flux and
increase in nutrient supply, respectively, to Earth’s surface. This geo-
chemical transition, together with a change in continental crust from
mafic to felsic composition18 and the rise of continents45, could
have shifted the balance between O2 production and sinks toward the
production side and therefore collectively triggered the first rise in O2

during the GOE. The second stage of mafic igneous geochemical
evolution spans the interval containing theGOE (ranging from ~2.3–2.4
to 2.0 Ga) and persists to ~1.8 Ga. The geochemical transition at ~1.8 Ga,
the onset of the third stage, is linked to a possible oxygenation event
during the assembly of the Columbia supercontinent46 and the
beginning of the “boring” billion.

Over the subsequent “boring”billion interval, the prolonged stasis
of atmospheric oxygen15 may relate to sluggish evolution of mafic
igneous geochemistry and corresponding limitations in nutrient sup-
ply and reductant release, thereby maintaining the balance of O2

supply and sinks at relatively low levels for both. For example, sluggish
evolution of macronutrients (e.g., P2O5) during the “boring” billion
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suggests a limited supply from mantle-derived melts that could
have limited primary productivity47. Moreover, the temporal coin-
cidence of the igneous geochemistry transition and atmospheric
oxygenation patterns around 0.7 Ga has not been reported previously.
Tectonically, this geochemical transition corresponds to the onset of a
cold subduction style of plate tectonics that could have intensified
mantle cooling43, likely resulting in a second abrupt response to the
degree of mantle melt expressed in the ~0.7 Ga transition in mafic
igneous geochemistry. As such, the increase in continental nutrient
inventory (e.g., P2O5; as shown in Fig. 3a) and a further decline in
mantle-derived reductants via secular mantle cooling31 could have
collectively triggered the second significant rise in O2 during the NOE.

Moving forward, PCA of the global mafic igneous geochemical
data for 44 elements has identified the most significant principal
component, PCA1, which accounts for 78% of the total var-
iance (Supplementary Fig. 6). Overall, the PCA1 pattern, as shown in
Fig. 4b, coincides with the SOM pattern but provides more details for
mafic igneous geochemical evolution through time. Intriguingly, there
is a synchronous second-order relationship between PCA1 geochem-
ical patterns and suggestions of atmospheric oxygen variation
(Fig. 4b). First, the short-term return to low oxygen conditions at
2.0–1.8 Ga has been suggested previously by means of Cr
isotope data12,48, although conflicting views on collapse of O2 levels
after theGOE remain49. In ourmodel, this deoxygenationoverlapswith
second-order transition in the PCA1 pattern of evolving mafic igneous
geochemistry (Fig. 4b)—specifically correlating with peaks in

concentration of highly compatible elements (e.g., MgO, Ni, and Cr)
and troughs of incompatible elements (e.g., P2O5). It has been sug-
gested that the second-order variations in mafic igneous geochemical
concentrations also reflect changes in mantle potential temperature
and melting degree32, with termination of the GOE linked to a 2.06Ga
LIP event50, as shown in Fig. 4b. Therefore, we speculate that the epi-
sodically amplified mantle activity could have increased the flux of
mantle-derived magmas and thus the flux of oxygen-consuming
compounds (e.g., Fe2+, S2−, and reduced volcanic gases), perhaps con-
tributing to decreases in surface oxygen levels over relatively short
time intervals.

Subsequently, the increased delivery of limiting nutrients
through the enhanced weathering of LIPs in combination with
reduced frequency of volcanism during assembly of the Columbia
supercontinent could have favored a recovery of oxygen level46,
which also coincides with a remarkable increase in concentrations of
incompatible elements (e.g., P2O5) as well as in the SOM and PCA1
patterns of mafic composition at ~1.8 Ga (Fig. 4b). In addition, the
PCA1 pattern of mafic composition suggests an obvious second-
order rise at ~1.4 Ga, overlapping with the possible transient oxyge-
nation event suggested by multiple sediment-host geochemical
proxies (e.g., chromium isotopes)44,51,52. While both SOM and PCA1
patterns of mafic composition discussed here are semi-quantitative,
and uncertainties remain, we infer that the second-order fluctuations
in atmospheric O2 level can be tied to second-order variations in
mafic igneous geochemistry evolution.
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Reconstructing atmospheric O2 levels using machine learning
Although there is a strong correlation between the mafic igneous
geochemical concentrations and atmospheric oxygen level through
time, the specific cause-and-effect relationship among them and the
underlying biogeochemical model remain unknown. In principle, var-
iation in atmospheric oxygen level through time is determined by the
balance between the photosynthetic supply of oxygen and its con-
sumption through oxidative reactions. Thus, the rate of O2 change in
the atmosphere can be formulated as18,53:

dma

dt
= JO2

in � JO2
out , ð1Þ

where t represents time,ma represents mass of O2 in the atmosphere,
JO2
in represents the net production rate of O2 (through aerobic photo-
synthesis and respiration), and JO2

out is the consumption rate of O2

through reductants derived from Earth’s interior. At times of low
oxygen levels, JO2

out scales linearly with ma—specifically, koutma, where
kout represents the efficiency of oxidation closely related to total rate
of magmatic output of direct and indirect oxygen-consuming agents.
For example, the latter includes Ni supply, which can control levels of
methanogenesis54, an oxygen sink. The production of O2 (J

O2
in ) is tied to

continental nutrient inventory47, organic carbon burial rate, and global
carbon inputs to the ocean-atmosphere system18: JO2

in = λpJ
CO2
out , where λp

encapsulates the controls that regulate primary productivity through
nutrient supply from continents (most notably, mafic igneous rocks)31,
and JCO2

out is the sumof themetamorphic andmantle inputs18. Therefore,
Eq. (1) can be further written as:

dma

dt
= λpJ

CO2
out � koutma: ð2Þ

As both kout and λp are multivariable functions whose inputs
consist of multiplemembers (e.g., various oxygen-consuming and bio-
essential compounds, respectively) changing with time, it is unrealistic
to obtain an analytic mathematical expression of ma through inte-
gration of the differential Eq. (2). Conceptually, however, atmospheric
oxygen levels should track mafic compositions because the latter
modulate the balance of early O2 sources and sinks31.

Traditional estimates of ocean redox and atmospheric O2 content
by association commonly involve an inversion process that uses the
concentration or isotopic composition of redox sensitive trace ele-
ments (e.g., Cr, Mo, U, Re, and V) inmarine sedimentary rocks to guide
paleo-oxybarometers10,48. Nevertheless, preservation bias is inescap-
able in sedimentary rocks, and the resulting temporal coverage of
suitable sedimentary archives is patchy, especially in the Precambrian,
leading to an interpolated O2 curve across the last 4.0Gyrs with large
uncertainties. As such, robust quantitative estimates of atmospheric
O2 levels require data compilation of paleo-oxybarometers on a global
scale (notably, higher temporal resolution) and better evidence-based
predictions using more integrated approaches55.

Here, we instead employ a forward process to reconstruct atmo-
spheric oxygen level over deep time using mafic igneous geochemical
composition data. Building on the compilation of geochemistry big
data from global mafic igneous rocks, we can explore oxygen levels
using the advanced integrated approach—that is, data-driven super-
visedmachine learning5,6 without any specific physicochemical model.
For simplicity, we assume a nonparametric multivariate transform,
directly relating ma to all mafic igneous geochemical compositions,
which can be written in the general form:

ma = F Xð Þ+ ϵ, ð3Þ

where F represents some fixed but unknown function of
X= ðx1, x1, . . . , xnÞ (i.e., element contents), and ϵ represents a random

error term independent of X. Supervised machine learning methods
(e.g., neural network, random forests, and support vectormachine) are
often used for nonparametric nonlinear regression based on labeled
training sets. The training dataset includes inputs and correct outputs,
allowing the computer to learna function (F) thatmaps input predictor
(X) to the output prediction (ma) via optimization algorithms. As
such, supervised machine learning methods are able to fit a large
number of complex functions without strong assumptions about their
specific forms.

We first use a SVR56 to reconstruct atmospheric oxygen variation
over deep time based on global mean mafic igneous geochemistry
composition for 44 elements. Specifically, SVR learns a function (F)
from the training label pair (i.e., known contents of elements and O2

within limited time intervals), and once training is done it can be used
further to map the known element contents (X) onto the output (ma),
namely, unknown O2 contents for the remaining time intervals. Thus,
preparation of training samples is the most important step in predic-
tion of atmospheric O2 content when using supervised machine
learning. In our case, the consensus on the general two-step risemodel
for atmospheric oxygenation (Fig. 1) can be used as prior knowledge
for building labels, with large uncertainty in the estimatedmagnitudes
of change—from 10–9 to 10–5 PAL pre-GOE and 10–4 to 10–1 PAL during
the “boring” billion interval from ~2.0 to 1.0Ga and 10–1 to ~1 PAL from
~0.5 Ga to present. In order to propagate this uncertainty, a Monte
Carlo simulation (MCs) algorithm was used to prepare the training
dataset and make predictions. Specifically, the scheme for preparing
the training label pairs involves labeling random numbers of ages
(bins) with stochastic O2 contents within the confidence intervals of
three recognized O2 base levels, while using corresponding geo-
chemical concentrations of all 44 elements as predictors. More details
about the practical training, validation, and implementation of
machine learning in this study are described in the “Methods”.

As shown in Fig. 5b, the trained SVR model, with mean average
accuracy (R2 > 0.9) and mean square error (<0.01) (Supplementary
Fig. 7) in the test data validation after 1000 MCs, recognized the first-
order trend—i.e., a two-step rise of atmospheric oxygen level spanning
Earth history over roughly the last four billion years. The two transition
periods of sharp O2 increase during time intervals of 2.5–2.1Ga and
0.8–0.6Ga coincide with the previously recognized timing of GOE and
NOE10, respectively. Even if we prepared the training data using large
uncertainties for labeling O2 levels post-0.5Ga and pre-2.5 Ga through
MCs (without any O2 labels during 2.5–0.5 Ga), this two-step rise
temporal pattern of atmospheric O2 evolution path can be recovered
through our machine learning modeling (Supplementary Fig. 8). This
model estimates a relative ~1000-fold increase of atmospheric O2 level
during GOE and ~100-fold during NOE (Fig. 5b), both of which are
consistent with previous estimates from sediment-hosted paleo-
oxybarometers10,17. We conclude from this agreement that evolving
mantle melts could have contributed to the main events of atmo-
spheric oxygenation by modulating the balance of early O2 sources
and sinks.

A high-resolution pattern of atmospheric O2 variation
Our model provides a higher-resolution temporal pattern of atmo-
spheric oxygen variation, revealing possible second-order fluctuations
along with the first-order trends of the classical model. More impor-
tantly, as shown in Fig. 6, most of these second-order fluctuations
coincide with possible transient oxygenation and deoxygenation
events supported bymultiple lines of evidence preserved in sediment-
hosted paleo-oxybarometers44,51,55. First, our results (Fig. 6) indicate
Archaean oxidation events (AOEs) at ~3.0 Ga and ~2.5 Ga. The ~3.0 Ga
event coincides generally with the emergence of oxygenic
photosynthesis16, and the ~2.5Ga event is linked to thewhiffs of oxygen
as discussed previously57. Multiple lines of evidence from sedimentary
records are consistent with such events (reviewed in ref. 58) and
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suggest that the GOE was the culmination of an extended period of
transient oxidation10,59.

The background atmospheric O2 level prior to the 2.5Ga event
was less than 10−7 to 10−5 PAL based on the conventional interpretation
of sulfurmass-independent isotope fractionations (S-MIF) found in the
sedimentary record at that time (Supplementary Fig. 14). Except for a
short-term return to low pO2 after an AOE at ~2.5 Ga, however, our
model predicts that atmospheric O2 levels exceeded 10−5 PAL at
~2.3 Ga and suggest a continuous climb in pO2 to 10−4 PAL by ~2.1Ga.
While our result agreeswith previous estimates of the onset of theGOE
span 2.5–2.2Ga13,60, it does not seem to support the O2 oscillations
suggested by low S-MIF signals occurring from ca. 2.45 to 2.2 Ga14.
However, a higher temporal resolution (<50Myr bin) of global igneous
geochemical composition is required to explore the possibility of
these oscillations through the GOE with confidence when using our
machine learning model.

During the “boring” billion, the prediction of atmospheric oxygen
levels varies within a range of 10–3 to 10–1 PAL, and this range is in
agreement with previous estimates15. Asmentioned above, whether O2

levels were persistently low for a billion years following the GOE
remains controversial15,51. Our results suggest that the atmosphere
during the “boring” billion maintained intermediate but still low O2

levels. However, this prolonged period of low O2 could have been
punctuated by episodes of elevated O2 relative to a lower baseline,
perhaps analogous to the whiff events leading up to the GOE. Such
episodic features are suggested at ~1.8 Ga, ~1.4 Ga, and ~1.1 Ga in Fig. 6
but with atmospheric O2 estimates <0.1 PAL. At face value, both peaks
can be explained by increases in concentration of macronutrient

phosphorus and decrease of reductants concentration in mafic rocks,
and ~1.8 Ga and ~1.1 Ga events are coupled with supercontinent
assemblies.

The possibility of increased atmospheric O2 level around 1.8 Ga is
consistent with the disappearance of iron formations at that time
(Fig. 6c)61, as their formation was favored high dissolved Fe2+ in
the oceans under widely anoxic conditions. Moreover, the ~1.8Ga
oxygenation event coincides temporally with a volume increase in
maximum organism size62 and roughly with the first fossil eukaryotes
(Fig. 6). The transient oxygenation event at ~1.4 Ga is suggested by
several lines of evidence from sedimentary geochemical proxies (e.g.,
δ53Cr,δ98Mo, andU)52, although debate about the specifics remains44,63.
Additional evidence consistent with possible increasing atmospheric
O2 around 1.1Ga includes suggestions of increased sulfate concentra-
tions in the oceans64 and a pronounced peak in Cr isotopic composi-
tion of carbonates65 and Re concentrations in organic-rich shales51,66.
Although this “event” is still only suggested by the sediment-hosted
geochemical data44,51, its agreement with our findings should spawn
additional work.

The supervised learning quantitatively estimated local lows of
oxygen content at ~1.9Ga, ~0.9Ga, ~0.6Ga, and ~0.2 Ga,with the oldest
previously observed in the PCA1 pattern (Fig. 4b). Although there is no
“smoking gun” evidence for deoxygenation at ~0.9Ga, it has been
reported recently that the early Neoproterozoic oceanmaintained low
oxygen levels as inferred from Se/Co ratios measured in sedimentary
pyrites67 and phosphorus-limited conditions68. We posit that these
possible deoxygenations, particularly those following the GOE, are
closely related to decrease in flux of nutrients supply (e.g., P2O5) and
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increase of oxygen-consuming agents related to enhanced mantle
activity (e.g., LIPs). Moreover, our results suggest a short-term return
of relatively low O2 levels after the NOE (see Fig. 6) likely linked to a
significant decrease in P2O5 concentration inmafic rocks (Fig. 3a). This
deoxygenation event at ~500Ma may be consistent with previous
arguments asserting thatO2 remained relatively lowor returned to low
values during at least the first part of the Paleozoic44,69. Following this
deoxygenation event, our results suggest a climb to the highest levels
of atmospheric O2 at 0.5–0.3Ga, known as the Paleozoic Oxidation
Event (POE)69, which can also be attributed to an increase of P2O5

concentration in mafic rocks (Fig. 3a).
In addition, the possible transient oxygenation events suggested

at ~2.5 Ga, ~1.8 Ga, ~1.1 Ga, and ~0.4 Ga are temporally coupled with
supercontinent assemblies (e.g., Kenorland, Columbia, Rodinia, and
Pangea; see Fig. 5b). This observation is consistent with the hypothesis
of Campbell and Allen46 that supercontinent assembly contributed to
the rise of atmospheric O2 through the enhanced weathering of con-
tinental phosphorus inventory. Interestingly, the twomost remarkable
increases of atmospheric O2 level (i.e., GOE and NOE) did not corre-
spond to supercontinent assembly but do coincide well with igneous
geochemical transitions as shown in Fig. 5, suggesting that geochem-
ical evolution of mantle-derived magmas could have played a more
critical role in modulating the balance of early O2 sources and sinks.

As an additional step, we have tested the sensitivity of our oxygen
reconstruction to differentMLalgorithms. As shown in Supplementary
Fig. 12, the artificial neural network (ANN) and random forests (RF)
methods recovered an evolutionary pattern of O2 similar to SVR. RF
modeling provided feature importance of all 44 elements during ML
modeling, as shown in Supplementary Fig. 13, illustrating how each
element influences the predictions of atmospheric oxygen level. We
note that most of (both highly negatively and positively) correlated
elements identified in Supplementary Fig. 4 make equally significant
contributions to the two-step rise pattern of atmospheric O2. The
evolution patterns for K2O, Na2O, and MgO inherently reflect the
transition of mantlemelting from high to low degree. This finding also
suggests that both nutrients (e.g., P and Si) and trace elements (e.g.,
Co, Ni, and Cr) from mantle-derived magmas could have played
important roles in atmospheric oxygenation owing to their effects on
the biosphere70.

Our model may underestimate O2 production, as this production
in our model is linked only to the flux of nutrient supply from mafic
igneous rocks and not recycled from sedimentary sources. For exam-
ple, as seen in Fig. 6, the ML predictions in this study did not com-
pletely recover the “oxygen overshoot” during the GOE even though
we added training labels of O2 level during this period (Supplementary
Fig. 9). There must therefore exist other drivers that could amplify the
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predictions of our model, including but not limited to increased vol-
canic CO2 input (related to tectonic transition)18 and/or deep seques-
tration of organic carbon71. In this regard, an amplification of our O2

predictions can be expected (at least) during GOE as linked to rapid
rise of continents and major glaciations that increased nutrient inputs
and net sequestration of organic C, but we can also predict
increased volcanic CO2 emissions due to sediment-enhanced subduc-
tion activity72.

Our model also underestimates O2 sinks, as it does not include
processes like organic matter remineralization in the water col-
umn and weathering of ancient fossil organics in rocks and aerobic
respiration, especially during the Phanerozoic. Moreover, mantle
cooling increased the oxidation state of both mantle melts and equi-
librated volatile species73, and the latter could amplify consumption of
O2. Again, our overarching hypothesis is that mafic geochemical
transitions as a result of secular mantle cooling could play an impor-
tant role in the rise of atmospheric oxygen. Overall, given that mafic
igneous geochemical data alone can quantitatively recover the classic
two-step rise model of atmospheric O2 level, as well as the order-of-
magnitude of O2 increase previously predicted for the GOE, NOE, and
even the POE, we can conclude that atmospheric oxygenation may
therefore be at least partly a natural consequence of mantle cooling
and specifically played the role of evolvingmantlemelts inmodulating
the balance of early O2 sources and sinks.

Remarks on data-driven scientific discovery
Data-driven machine-learning algorithms with big data provide an
additional technique to explore Earth’s long-term evolution. An
essential benefit of data-driven discovery models is their potential to
reveal correlations among massive dataset and whether or not there
are causation and thus mechanistic drivers nested within these rela-
tionships. Because these datasets can be diverse, high-dimensional,
and noisy, machine learning algorithms are needed to handle big
datasets to expose previously hidden patterns. Given that applications
of artificial intelligence in Earth science have not yet reached the level
of cognitive intelligence (i.e., understanding mechanism) and often
suffer from a black box problem of ML algorithms (lack of transpar-
ency), we emphasize the need to blend human learning and artificial
intelligence when searching for the causation that underlies
correlation.

The main benefits of data-driven discovery modeling, as demon-
strated in our study, also include transformation from known ques-
tions seeking unknown answers to seeking unknown questions and
unknown answers2,3. For example, the two-step rise model of atmo-
spheric oxygen is well known, but how Earth’s atmosphere became
oxygenated remains a topic of considerable debate. In the present
study, the unsupervised machine learning of global igneous geo-
chemical time series data recognized three major stages of its secular
evolution, which correlate well with two-step increases in atmospheric
oxygen levels over time. This synchronization helps us link the two-
step rise and perhaps second-order fluctuations in atmospheric O2

level to deep Earth geochemical processes throughmantle cooling and
magmatism systems (see also ref. 27).

At the same time, the observed relationships raise previously
unknownquestions about correlation versus causation and specifically
whether global igneous geochemical time series data can indeed
quantitatively predict atmospheric O2 levels over deep time. By using
supervised machine learning, we have produced a higher-resolution
temporal pattern of variation in atmospheric oxygen that has not
only successfully and independently reconstructed the classic two-
step rise model but also suggested more detailed fluctuations. Speci-
fically, our approach offersmechanistic windows to possible drivers of
dynamic Precambrian oxygen levels, while at the same time revealing
possible second-order oxygen variability. This second-order fabric is
comparable to previously suggested but still poorly constrained

proxy-based records of shorter-termO2 increases and decreases in the
oceans and atmosphere. These findings amplify the likelihood that
planetary interior processes are critical in atmospheric oxygenation
and highlight the need for a better understanding of the roles of pla-
netary interiors aswe seek other “Earth-like” planets. Despite themany
remaining unknowns, however, machine learning techniques and
recent advances inbigdata and artificial intelligenceoffer exciting new
opportunities for exploring Earth’s early evolution and its relevance to
other planetary systems.

Methods
Data material
Large-scale community geo-data sources, such as EarthChem,
GEOROC, PetDB, andMacrostrat are especially relevant for promoting
data-driven discoveries in statistical petrology, geochemistry, miner-
alogy, and sedimentology. Here, we have compiled global mafic
igneous composition data from the EarthChemdata repository (http://
portal.earthchem.org/, assessed Feb. 2022), which includes PetDB,
GEOROC, NAVDAT, and USGS databases. This new database contains
~54,000 whole-rock analyses of major, trace, and rare earth elements
from mafic igneous rocks (mainly basalt, gabbro, diabase, and tho-
leiite) with chemical compositions of 43–51% SiO2 and MgO< 18%. In
addition, we have eliminated outliers in the geochemical concentra-
tion data for each element by using a mean± 3δ threshold during the
Archaean, Proterozoic, and Phanerozoic (Supplementary Fig. 2). Given
that most trace element data tend to follow lognormal distributions
(Supplementary Fig. 1), a logarithm transformation was applied to the
data for each element before outlier filtering. The spatiotemporal
distribution, as shown in Fig. 2, suggests that suchmafic rock samples
cover most of the continents throughout the history of the Earth.
Specifically, the compilation data includes mafic rock samples within
most age bins (~95% and ~92% for 100-Mys and 50-Myr bins, respec-
tively) ranging from 3.8Ga to the present. Therefore, the updated
database is sufficiently large and tectonically diverse to capture a
global signal of mafic igneous geochemistry composition. However,
the mafic rock samples have a heterogenous age distribution, with
several peaks (Fig. 2b) linked to either crustal preservation bias
(oversampling of some periods) or biases tied to age availability (e.g.,
data points at 1521Ma and 3175Mawith large age range/uncertainties).

In order to minimize the issues of spatial or temporal over-
sampling and data points with large age uncertainties, we used the
weighted bootstrap sampling method of Keller and Schoene27

(https://github.com/brenhinkeller/StatisticalGeochemistry) to cal-
culate the time series of global mean mafic igneous geochemistry
composition. The emerging curves of geochemical concentration
time series (Fig. 3b) are similar to that of Keller and Schoene but
show more details and fewer uncertainties because of the expanded
database. We then used the relative age range (RAR) method36

(RAR= ðMAX AGE�MIN AGEÞ=AGE * 100) to systematically investi-
gate the influence of age uncertainties on igneous geochemical time
series patterns when using the weighted bootstrap samplingmethod.
Only 31% and 57% of the samples recorded in the EarthChem Portal
have a reported age with a RAR of less than 5% and 50%, respectively.
We adopted a more rigorous sample screening scheme (data filtered
with RAR < 5% and <50%) to generate time series records of mean
mafic igneous geochemical concentration. Supplementary Fig. 3
shows that the patterns for RAR filtered and non-RAR filtered data
have consistent time-varying trends (including peaks and troughs)
and do not exhibit notably different peak positions (although there
are differences in amplitude). This result confirms that the weighted
bootstrap sampling method has alleviated the effects of data points
with large age uncertainties in time series data preparation.

Cluster analysis was used to explore the correlation matrix for
mafic compositions spanning 44 elements. As shown in Supplemen-
tary Fig. 4, interesting and distinct clustering emerges: strong
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correlations are observed in concentrations of highly compatible ele-
ments (including Co, Cr, Ni, and MgO) and incompatible elements
(e.g., P2O5, K2O, Na2O, U, Th, etc.), while these compatible and
incompatible elements show remarkable negative correlation.
According to the efficiency ofmantle convection, long-termcooling of
mantle results in decreasing degrees of the mantle melt fraction and
more felsic crust through time27. Therefore, mafic rock samples record
a fluctuating decrease in compatible element concentration (e.g.,
MgO, Cr, Ni, and Co) and a corresponding increase in incompatible
element concentration values (e.g., K2O, Na2O, P2O5, Th, and U)
through time (Fig. 3b). As many bio-essential elements are effectively
incompatible, and reductant elements are compatible in the mantle,
the secular change in composition of mantle-derived melts through
Earth history, as a consequence of secular mantle cooling, could pro-
vide a fundamental control on atmospheric oxygenation through
nutrient supply and reductant outputs31. Further, it has been suggested
that the second-order temporal variations of mafic igneous mean
geochemical concentration also reflect changes in mantle potential
temperature and degree of mantle melting, with profound implica-
tions for mantle dynamics and/or supercontinent formation32.

Unsupervised machine learning
We used unsupervised machine learning (including SOM and PCA) to
reduce the high dimensionality of global geochemistry big data
(spanning 44 elements) and to explore the first-order relationships of
mafic igneous geochemistry evolution through time. SOM is an unsu-
pervised machine learning algorithm that draws on the basis of neural
networks using competitive learning rather than the error-correction
learning37. It maps multidimensional data points into a lower dimen-
sional space, where neurons are topologically ordered and similar
input data are projected onto nearby neurons (i.e., by prototype vec-
tor) on the map, thereby preserving the topological structure of the
data. SOM analysis mainly involves two stages, training and mapping
phases. In this study, the goal of SOM analysis is to represent igneous
geochemistry big data with 44 dimensions as one-dimensional time
series data. Several parameters, such as iteration step, learning rate,
and structural function shouldbe specifiedby theuser prior to training
the network. Nevertheless, they have little influence on patterns pro-
duced on the SOM maps.

We selected time series data of all 44 elements as input data, and
a min-max algorithm was used for data normalization. The unified
distance matrix (U-Matrix) (Supplementary Fig. 5a) and component
plots (Supplementary Fig. 5b) were obtained for visualization of SOM
groups to obtain a quantitative clustering. As a result, we can observe
several distinct clusters of “winning” neurons in component plots
distinguished by borders in the U-Matrix scalogram. However, man-
ual selection of the clusters could be arbitrary and lead to artificial
results. Therefore, K-means algorithm is often used to cluster the
prototype vectors instead of the original SOM data, and here the
optimal number of SOM clusters is determined (N = 4) by using
Davies-Bouldin (DB) analysis74. As a result, SOM analysis identifies
four broad steps of mafic igneous geochemistry evolution through
time (Fig. 4a), with transitions at ~2.5 Ga, ~1.8 Ga, and ~0.7 Ga.
Nevertheless, more clusters can be obtained when we need to
explore the second-order partitioning ofmafic igneous geochemistry
evolution through time. As shown in the component plots in Sup-
plementary Fig. 5b, compatible elements (e.g., MgO, Cr, Ni, and Co)
show strong contribution to class 1 and make weak contribution to
class 4 (Supplementary Fig. 5c), while incompatible elements (e.g.,
K2O, Na2O, P2O5, Th, and U) do the opposite. We performed the SOM
analysis of mafic igneous geochemical data using the compiled
MATLAB code based on the open SOM Toolbox available at http://
www.cis.hut.fi/projects/somtoolbox/.

PCA is one of the most commonly used methods for dimension-
ality reduction enabling us to project high-dimensional data onto the

first few principal components, while preserving important data
information. For example, the first principal component can be
defined as the direction that maximizes the variance of the projected
data. The principal components can be explained in terms of asso-
ciations among variables (e.g., by using eigenvectors or loadings) that
are not apparent without statistical analysis. In this study, the goal for
PCA was to extract the important temporal variations within a large
igneous geochemical time series dataset (spanning 44 elements) and
to express this temporal information using the first few principal
components.

As shown in Supplementary Fig. 6c, PCA1 accounts for 78.2% of
the total variance, while PCA2 accounts for only 7.0%, with the others
accounting collectively for 14.8%, suggesting that most information in
the mafic geochemical data can be represented by PCA1. As shown in
Fig. 3c, the PCA1 pattern shows an overall increasing trend through
time, which reflects the secular changes in mantle potential tempera-
ture and degree of mantle melting, while the PCA2 and PCA3 patterns
show less agreement with any geological time series trend. More
importantly, the temporal pattern of PCA1 is in agreement with the
classical two-step view of atmospheric oxygen evolution. The magni-
tude of loading (Supplementary Fig. 6d) represents the covariances/
correlations between the original variables (elements) and the unit-
scaled components, indicating the contribution of each element to the
principal component. Specifically, as shown in Fig. 3d, incompatible
elements (e.g., K2O,Na2O, P2O5, Th, andU) havepositive loading values
for PCA1,whereascompatibleelements (e.g.,MgO,Cr,Ni, andCo) have
negative loading values. Most of the selected elements make equally
significant contribution to the PCA1 pattern, with TiO2, Cr, Ni, and Y
being slightly more important.

Supervised machine learning
Framing the estimate of O2 content as a supervised machine learning
regression problem, we can label O2 levels in specific time intervals
using the published O2 model with uncertainties and employ multiple
lines of evidence for oxidation as input. The goal of using machine
learning is to parameterize the complex relationship between such
training labels and igneous geochemical proxy data (in the training
data process) to quantitatively estimate O2 content over the course of
Earth history. SVR is a regression algorithm that draws on
support vector machine (SVM)56 with the basic idea of separating
between classes in a dataset within an optimal hyperplane that max-
imizes boundaries between classes. SVM and SVR have been widely
used for classification and regression problems, respectively. Data
used to train and evaluate supervisedmachine learning algorithms are
generally divided into training set and testing set. In this study, all data
were scaled between 0 and 1 prior to inputting into the SVR, and a
Gaussian radial basis function kernel was used because this is a rea-
sonable first choice for most applications. The performance of SVR is
also controlled by the value of the penalty term (C) and parameter of
the kernel function—for example, width (γ) of the radial function
as used in this study. Note that very large penalty (C) or width (γ) may
lead to over-fitting and poor generalization capability, even if it shows
high accuracy in data training.

A five-fold cross-validation approach was used in this study to
avoid the over-fitting problem in data training and to determine the
optimal C and γ values. In the stochastic modeling, we undersampled
the training samples from the originally prepared (input and output)
dataset (within the periods of 0–500Ma and 2500–4000Ma) for each
SVR training and then divided them into five subsets of the same size.
In each training round, one subset was selected successively as the test
dataset and the rest as training datasets. The above process was
repeated five times so that all subset data could be included for testing
and validation. The final performance was evaluated by averaging
results from all repeated training rounds. We compiled Python codes
to implement the reconstruction of historic atmospheric O2 levels
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using supervised machine learning based on Sklearn library (https://
scikit-learn.org/stable/install.html).

Supplementary Fig. 7a shows an example of automatic determi-
nation of the optimal C and γ values in SVR modeling for one MC. The
root-mean-square-error (RMSE) generally converge to 0.01 in sto-
chastic SVR modeling, as shown in Supplementary Fig. 7b. Here, the
effects of uncertainties in O2 prediction when using O2 different base
level as training labels have been evaluated. The results in Supple-
mentary Fig. 8 suggest that using the O2 base level with different error
ranges post 0.5 Ga and pre 2.5 Ga did not affect the final prediction of
temporal variation of atmospheric O2 level, nor the order-of-
magnitude of O2 increase during the GOE and NOE.

We have conducted numerous tests for SVR predictions using
different datasets, including filtered datasets with RAR< 5% and < 50%,
the igneous geochemical time series datasets with 50-Myr and 100-Myr
resolutions, using published and our updated mafic rock databases,
with the raw and the centered log-ratio (CLR) transformed datasets.
First, as shown in Fig. 6b, the predicted patterns for atmosphere O2

level between RAR filtered and non-RAR filtered datasets did not show
notable differences in temporal trends, except for the slight differences
in amplitudes, most of which fall in the uncertainty range provided by
MCs. As shown in Supplementary Fig. 10a, the atmospheric O2 mod-
eling is robust with or without the less relevant elements (i.e., those
with low correlation as suggested in Supplementary Fig. 4). This result
demonstrates that machine learning with big data can capture general
features and lead to accurate predictions even if uncertainties and
noisy components exist in the data source. As shown in Supplementary
Fig. 10b, c, the predictions for the O2 landscape remain unchanged
when using time series data with either 50-Myr or 100-Myr resolutions.

We have tested our SVR modeling of O2 contents using the ear-
lier database of Keller and Schoene. As shown in Supplementary
Fig. 10d, the overallO2 pattern ismostly a closematchwith predictions
using the updated database assembled for this study, suggesting that
O2modeling using the globalmafic rock database is robust. Moreover,
we have used the CLR-transformation to address the problem
of spurious correlations faced in geochemical compositional
data analysis75. It is beyond the scopeof this study to interpret theCLR-
transformed concentration values for each element, but the results in
Supplementary Fig. 11 suggest no significant differences in both
the PCA1pattern and SVRmodelingof theO2 curveswhether using raw
geochemical data or the CLR-transformed dataset.

We tested additional schemes for reconstructing atmospheric O2

history using different machine learning methods, including ANN and
RF. As shown in Supplementary Fig. 12, the resulting first-order pattern
and second-order variations for atmosphericO2 levels discussed above
remain unchanged. The results suggest that reconstructing atmo-
spheric oxygenation history using machine learning with mafic
igneous geochemistry data is robust—independent of machine learn-
ing algorithms (e.g., SVR, ANN, and RF). Notably, the RF approach76

provides an assessment of feature importance for all 44 elements in
terms of how each composition variable influences the final model for
atmospheric oxygen levels (see Supplementary Fig. 13). In comparison
to SVR, the RF method as applied in our study requires significantly
more effort for parameter optimization and data training, while the RF
and ANN methods provide relatively lower prediction accuracy. More
importantly, the results from SVR modeling show much more con-
sistency with O2 levels and variability suggested previously by sedi-
mentary proxies.

Data availability
Global mafic igneous composition data were assessed through the
EarthChem data repository (http://portal.earthchem.org/). All com-
piled and generated data sources in this study are available at Github
repository (https://github.com/myscren/deeptimeML) and have been
published on Zenodo (https://doi.org/10.5281/zenodo.7042193).

Code availability
All computational source codes used in this paper are available on
Github repository (https://github.com/myscren/deeptimeML) and
have been published on Zenodo (https://doi.org/10.5281/zenodo.
7042193).

References
1. Hawkesworth, C., Cawood, P., Kemp, T., Storey, C. & Dhuime, B. A

matter of preservation. Science 323, 49–50 (2009).
2. Cheng, Q. & Zhao, M. A new international initiative for facilitating

data-driven Earth science transformation. Geol. Soc., Lond., Spec.
Publ. 499, 225–240 (2020).

3. Wang, C. et al. The Deep-time Digital Earth program: data-driven
discovery in geosciences. Natl Sci. Rev. 8, nwab027 (2021).

4. Bergen, K. J., Johnson, P. A., Maarten, V. & Beroza, G. C. Machine
learning for data-driven discovery in solid Earth geoscience. Sci-
ence 363, eaau0323 (2019).

5. Reichstein, M. et al. Deep learning and process understanding for
data-driven Earth system science. Nature 566, 195–204 (2019).

6. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspec-
tives, and prospects. Science 349, 255–260 (2015).

7. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

8. Rouet-Leduc, B., Hulbert, C. & Johnson, P. A. Continuous chatter of
the Cascadia subduction zone revealed by machine learning. Nat.
Geosci. 12, 75–79 (2019).

9. Hulbert, C. et al. Similarity of fast and slow earthquakes illuminated
by machine learning. Nat. Geosci. 12, 69–74 (2019).

10. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in
Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

11. Farquhar, J. &Wing, B. A. Multiple sulfur isotopes and the evolution
of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

12. Canfield, D. E. The early history of atmospheric oxygen: homage to
Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

13. Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion
years ago. Sci. Adv. 2, e1600134 (2016).

14. Poulton, S. W. et al. A 200-million-year delay in permanent atmo-
spheric oxygenation. Nature 592, 232–236 (2021).

15. Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen
levels and the delayed rise of animals. Science 346,
635–638 (2014).

16. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a
billion years before the Great Oxidation Event. Nat. Geosci. 7,
283–286 (2014).

17. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the
rise of atmospheric oxygen 2.5 billion years ago. Nature 448,
1033–1036 (2007).

18. Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the
growth of continents. Nat. Geosci. 9, 417–424 (2016).

19. Horton, F. Did phosphorus derived from the weathering of large
igneous provinces fertilize the Neoproterozoic ocean? Geochem.,
Geophysics, Geosystems 16, 1723–1738 (2015).

20. Ernst, R. E. & Youbi, N. How Large Igneous Provinces affect global
climate, sometimes cause mass extinctions, and represent natural
markers in the geological record. Palaeogeogr., Palaeoclimatol.,
Palaeoecol. 478, 30–52 (2017).

21. Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis
of the carbon isotope record from the Archean to Phanerozoic and
implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

22. Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane,
hydrogen escape, and the irreversible oxidation of early Earth.
Science 293, 839–843 (2001).

23. Kadoya, S., Catling, D. C., Nicklas, R. W., Puchtel, I. S. & Anbar, A. D.
Mantle data imply a decline of oxidizable volcanic gases could have
triggered the Great Oxidation. Nat. Commun. 11, 1–9 (2020).

Article https://doi.org/10.1038/s41467-022-33388-5

Nature Communications |         (2022) 13:5862 11

https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/install.html
http://portal.earthchem.org/
https://github.com/myscren/deeptimeML
https://doi.org/10.5281/zenodo.7042193
https://github.com/myscren/deeptimeML
https://doi.org/10.5281/zenodo.7042193
https://doi.org/10.5281/zenodo.7042193


24. Kasting, J. F., Eggler, D. H. & Raeburn, S. P. Mantle redox evolution
and the oxidation state of the Archean atmosphere. J. Geol. 101,
245–257 (1993).

25. Matthijs, A., Smit, Klaus &Mezger Earth’s early O2 cycle suppressed
by primitive continents. Nat. Geosci. 10, 788–792 (2017).

26. Armstrong, K., Frost, D. J., McCammon, C. A., Rubie, D. C. & Bal-
laran, T. B. Deep magma ocean formation set the oxidation state of
Earth’s mantle. Science 365, 903–906 (2019).

27. Keller, C. B. & Schoene, B. Statistical geochemistry reveals disrup-
tion in secular lithospheric evolution about 2.5Gyr ago.Nature485,
490–493 (2012).

28. Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2

through time inferred from V/Sc ratios in basalts. Earth Planet. Sci.
Lett. 228, 483–493 (2004).

29. Nicklas, R. W. et al. Secular mantle oxidation across the Archean-
Proterozoic boundary: evidence from V partitioning in komatiites
andpicrites.Geochimica et. Cosmochimica Acta 250, 49–75 (2019).

30. Aulbach, S. & Stagno, V. Evidence for a reducing Archean ambient
mantle and its effects on the carbon cycle. Geology 44,
751–754 (2016).

31. Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M.
Linking the rise of atmospheric oxygen to growth in the continental
phosphorus inventory. Earth Planet. Sci. Lett. 489, 28–36 (2018).

32. Dien, H. G. E., Doucet, L. S. & Li, Z.-X. Global geochemical finger-
printing of plume intensity suggests coupling with the super-
continent cycle. Nat. Commun. 10, 1–7 (2019).

33. Mehra, A. et al. Curation and analysis of global sedimentary geo-
chemical data to inform earth history. GSA Today 31, 1–6 (2021).

34. Liu, H., Sun, W.-d, Zartman, R. & Tang, M. Continuous plate sub-
ductionmarkedby the rise of alkalimagmatism2.1billion years ago.
Nat. Commun. 10, 1–8 (2019).

35. Wallis, I. et al. The river–groundwater interface as a hotspot for
arsenic release. Nat. Geosci. 13, 288–295 (2020).

36. Doucet, L. S., Gamaleldien, H. & Li, Z.-X. Pitfalls in using the geo-
chronological information from the EarthChem Portal for Pre-
cambrian time-series analysis. Precambrian Res. 369,
106514 (2022).

37. Kohonen, T. Exploration of very large databases by self-organizing
maps. Proc. Int. Conf. Neural Netw. 1, PL1–PL6 (1997).

38. Wold, S., Esbensen, K. & Geladi, P. Principal component analysis.
Chemometrics Intell. Lab. Syst. 2, 37–52 (1987).

39. Korenaga, J. Initiation and evolution of plate tectonics on Earth:
theories and observations. Annu. Rev. Earth Planet. Sci. 41,
117–151 (2012).

40. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A
change in the geodynamics of continental growth 3 billion years
ago. Science 335, 1334–1336 (2012).

41. Chowdhury, P., Gerya, T. & Chakraborty, S. Emergence of silicic
continents as the lower crust peels off on a hot plate-tectonic Earth.
Nat. Geosci. 10, 698–703 (2017).

42. Cawood, P. A. &Hawkesworth, C. J. Earth’smiddle age.Geology42,
503–506 (2014).

43. Hawkesworth, C. J., Cawood, P. A. & Dhuime, B. Tectonics and
crustal evolution. GSA Today 26, 4–11 (2016).

44. Lyons, T.W., Diamond, C.W., Planavsky, N. J., Reinhard,C. T. & Li, C.
Oxygenation, life, and the planetary system during Earth’s middle
history: An overview. Astrobiology 21, 906–923 (2021).

45. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and
onset of a modern hydrologic cycle 2.5 billion years ago. Nature
557, 545–548 (2018).

46. Campbell, I. H. &Allen,C.M. Formationof supercontinents linked to
increases in atmospheric oxygen. Nat. Geosci. 1, 554–558 (2008).

47. Reinhard, C. T. et al. Evolution of the global phosphorus cycle.
Nature 541, 386–389 (2017).

48. Frei, R., Gaucher, C., Poulton, S. W. & Canfield, D. E. Fluctuations in
Precambrian atmospheric oxygenation recorded by chromium
isotopes. Nature 461, 250–253 (2009).

49. Mänd, K. et al. Palaeoproterozoic oxygenated oceans following the
Lomagundi–Jatuli Event. Nat. Geosci. 13, 302–306 (2020).

50. Ernst, R. E. Large Igneous Provinces (Cambridge University
Press, 2014).

51. Diamond, C. W. & Lyons, T. W. Mid-Proterozoic redox evolution and
the possibility of transient oxygenation events. Emerg. Top. life Sci.
2, 235–245 (2018).

52. Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 mil-
lion years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

53. Catling, D. C. & Claire, M.W. How Earth’s atmosphere evolved to an
oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20 (2005).

54. Konhauser, K. O. et al. Oceanic nickel depletion and amethanogen
famine before the Great Oxidation Event. Nature 458,
750–753 (2009).

55. Kendall, B. Recent advances in geochemical paleo-oxybarometers.
Annu. Rev. Earth Planet. Sci. 49, 399–433 (2021).

56. Smola, A. J. & Schölkopf, B. A tutorial on support vector regression.
Stat. Comput. 14, 199–222 (2004).

57. Anbar, A. D. et al. A whiff of oxygen before the great oxidation
event? Science 317, 1903–1906 (2007).

58. Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox
revolution. Annu. Rev. Earth Planet. Sci. 49, 337–366 (2021).

59. Stüeken, E. E., Catling, D. C. & Buick, R. Contributions to late
Archaean sulphur cycling by life on land. Nat. Geosci. 5,
722–725 (2012).

60. Gumsley, A. P. et al. Timing and tempoof theGreatOxidation Event.
Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

61. Cloud, P. A working model of the primitive Earth. Am. J. Sci. 272,
537–548 (1972).

62. Payne, J. L. et al. Two-phase increase in the maximum size of life
over 3.5 billion years reflects biological innovation and environ-
mental opportunity. Proc. Natl Acad. Sci. USA 106, 24–27 (2009).

63. Planavsky, N. J. et al. No evidence for high atmospheric oxygen
levels 1,400 million years ago. Proc. Natl Acad. Sci. USA 113,
E2550–E2551 (2016).

64. Kah, L. C., Lyons, T. W. & Frank, T. D. Low marine sulphate and
protracted oxygenation of the Proterozoic biosphere. Nature 431,
834–838 (2004).

65. Gilleaudeau, G. J. et al. Oxygenation of the mid-Proterozoic atmo-
sphere: clues from chromium isotopes in carbonates. Geochem.
Perspect. Lett. 2, 178–187 (2016).

66. Sheen, A. I. et al. A model for the oceanic mass balance of rhenium
and implications for the extent of Proterozoic ocean anoxia. Geo-
chimica et. Cosmochimica Acta 227, 75–95 (2018).

67. Steadman, J. A. et al. Evidence for elevated and variable atmo-
spheric oxygen in the Precambrian. Precambrian Res. 343,
105722 (2020).

68. Guilbaud, R. et al. Phosphorus-limited conditions in the early Neo-
proterozoic ocean maintained low levels of atmospheric oxygen.
Nat. Geosci. 13, 296–301 (2020).

69. Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmo-
sphere. Nat. Commun. 9, 1–10 (2018).

70. Robbins, L. J. et al. Trace elements at the intersection of marine
biological and geochemical evolution. Earth Sci. Rev. 163,
323–348 (2016).

71. Duncan, M. S. & Dasgupta, R. Rise of Earth’s atmospheric oxygen
controlled by efficient subduction of organic carbon. Nat. Geosci.
10, 387–392 (2017).

72. Eguchi, J., Seales, J. & Dasgupta, R.Great Oxidation and Lomagundi
events linked by deep cycling and enhanced degassing of carbon.
Nat. Geosci. 13, 71–76 (2020).

Article https://doi.org/10.1038/s41467-022-33388-5

Nature Communications |         (2022) 13:5862 12



73. Moussallam, Y., Oppenheimer, C. & Scaillet, B. On the relationship
between oxidation state and temperature of volcanic gas emis-
sions. Earth Planet. Sci. Lett. 520, 260–267 (2019).

74. Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE
Trans. Pattern Anal. Mach. Intell. 1979, 224–227 (1979).

75. Pawlowsky-Glahn, V., Egozcue, J. J. & Tolosana-Delgado, R. Mod-
eling and Analysis of Compositional Data (JohnWiley & Sons, 2015).

76. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
77. Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3,

e1603076 (2017).
78. Li, Z. et al. Decoding Earth’s rhythms:modulation of supercontinent

cycles by longer superocean episodes. Precambrian Res. 323,
1–5 (2019).

79. Bekker, A. et al. Iron formation: the sedimentary product of a
complex interplay amongmantle, tectonic, oceanic, andbiospheric
processes. Economic Geol. 105, 467–508 (2010).

Acknowledgements
The authors thank Dr. K. Chen and Dr. Cin-Ty A. Lee for their comments
that improved this paper. This research was supported by National Nat-
ural Science Foundation of China (Grant Nos. 41972305 and 42050103).
Q.M.C. received financial support fromUNESCOChair Program in Deep-
time Digital Earth and Mineral Resources. G.X.C. received financial sup-
port from theMOST Special Fund (No. MSFGPMR2022-3) from State Key
Laboratory of Geological Processes andMineral Resources. Fundingwas
provided to T.W.L. through the NASA Astrobiology Institute under
Cooperative Agreement No. NNA15BB03A issued through the Science
Mission Directorate and the NASA Interdisciplinary Consortia for Astro-
biology Research.

Author contributions
G.X.C. and Q.M.C. conceived the reconstruction of atmospheric oxyge-
nation history using data-driven machine learning algorithms. G.X.C.
drafted themanuscript with substantial contributions fromT.W.L., Q.M.C.,
J.S., and F.A. T.W.L. largely deepened the discussions and improved the
conclusions. G.X.C. designed and developed the machine learning
approach used in this study, and statistic tests were performed by G.X.C.,
N.H., and M.L.Z. All authors analyzed the results and revised the article.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33388-5.

Correspondence and requests for materials should be addressed to
Qiuming Cheng.

Peer review information Nature Communications thanks Shuvajit
Bhattacharya, Luc Doucet, Bryan Killingsworth and the other, anon-
ymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33388-5

Nature Communications |         (2022) 13:5862 13

https://doi.org/10.1038/s41467-022-33388-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Reconstructing Earth’s atmospheric oxygenation history using machine learning
	Results and discussion
	Secular change of mafic igneous geochemical composition
	Coupling igneous geochemistry evolution and atmosphere oxidation
	Reconstructing atmospheric O2 levels using machine learning
	A high-resolution pattern of atmospheric O2 variation
	Remarks on data-driven scientific discovery

	Methods
	Data material
	Unsupervised machine learning
	Supervised machine learning

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




