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Abstract

The plant hormone auxin plays a central role in growth and morphogenesis. In shoot apical
meristems, auxin flux is polarized through its interplay with PIN proteins. Concentration-
based mathematical models of the flux can explain some aspects of phyllotaxis for the L1
surface layer, where auxin accumulation points act as sinks and develop into primordia.
The picture differs in the interior of the meristem, where the primordia act as auxin sources,
leading to the initiation of the vascular system. Self-organization of the auxin flux involves
large numbers of molecules and is difficult to treat by intuitive reasoning alone; mathemati-
cal models are therefore vital to understand these phenomena. We consider a leading
computational model based on the so-called flux hypothesis. This model has been criticized
and extended in various ways. One of the basic counter-arguments is that simulations yield
auxin concentrations inside canals that are lower than those seen experimentally. Contrary
to what is claimed in the literature, we show that the model can lead to higher concentrations
within canals for significant parameter regimes. We then study the model in the usual case
where the response function ® defining the model is quadratic and unbounded, and show
that the steady state vascular patterns are formed of loopless directed trees. Moreover, we
show that PIN concentrations can diverge in finite time, thus explaining why previous
simulation studies introduced cut-offs which force the system to have bounded PIN concen-
trations. Hence, contrary to previous claims, extreme PIN concentrations are not due to
numerical problems but are intrinsic to the model. On the other hand, we show that PIN
concentrations remain bounded for bounded ®, and simulations show that in this case,
loops can emerge at steady state.

Introduction

Among its many functions, the plant hormone auxin is known to induce the formation of pri-
mordia in the shoot apical meristem, at locations where it accumulates at sufficient levels [1].
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As these primordia become plant organs, the distribution of auxin at the microscopic scale of
meristems is a fundamental determinant of the final shape of the plant at the macroscopic
scale. The molecular mechanisms underlying auxin patterning are not fully known, but it is
clearly established that auxin is actively transported between cells by transporter proteins, in-
cluding the family of PIN proteins. Although it is known that the distribution of these trans-
porters on cell membranes is asymmetric and depends on the distribution of auxin in
neighbouring cells, the molecular details of this dependency remains a crucial unknown in the
biology of auxin.

PIN proteins have been identified as efflux carriers (i.e., they transport auxin out of the cell
to the intercellular space), and are either oriented towards or against the auxin gradient, de-
pending on the developmental stage of the primordium. More precisely, PIN proteins initially
orient themselves towards a precise region of the meristem, away from older primordia. Auxin
accumulates at the PIN convergence point, and induces the formation of a new primordium;
during this phase, PIN are oriented against the auxin gradient. Incipient primordia then act as
auxin sinks and induce auxin depletion in surrounding cells. Soon after initiation, PIN orienta-
tion switches in adaxial cells (i.e. cells placed on the side towards the axis of a primordium, usu-
ally the upper side) from “towards the center” to “towards the outside” (see Fig. 1), whereas
PIN in the primordium orient themselves basally towards the inner tissue of the meristem (see
Fig. 1 a). These processes lead to canalization, that is, to the development of vascular strands
which transport auxin downward from the primordium to inner tissues. As reviewed by [2],
PIN polarization reversal is enhanced by the increase of auxin synthesis in incipient primordia
soon after their initiation [3, 4]. To date, it is not established how PIN is oriented in response
to auxin gradients, see e.g. [5] for a recent review.

The gaps in knowledge and the complexity induced by the large numbers of molecules at
both intra- and inter-cellular scales make it difficult to treat the process by intuitive reasoning
alone; mathematical models are therefore required to understand these phenomena and pro-
pose biologically plausible scenarios [6]. Based on experimental results, many authors includ-
ing [7, 8,9, 10, 11, 12] have built computational models relying on the following hypotheses:
auxin is synthesized in all cells of the shoot apical meristem at rates that may vary, and is trans-
ported from cell to cell passively by diffusion and actively through efflux and influx carriers.
The different models can be classified in two main classes, depending on the key hypothesis un-
derlying PIN orientation (see Fig. 2):

o The flux-based hypothesis is based on the work of [13], and was first formalized by [14, 15]
and later by [7, 10, 12, 16]. The assumption is that PIN concentration increases in mem-
branes according to the strength of the auxin flux. This induces a positive feedback loop on
the auxin flux, which is then amplified. It was first introduced as an intuitive explanation for
the venation process. Models based on this hypothesis have been used to reproduce correctly
the orientation of PIN proteins towards and against the auxin gradient [10], leading to the
canalization/venation process. However, flux-based models have been criticized because of
the lack of evidence for the existence of auxin flux sensors [17].

 The concentration-based hypothesis is based on the experimental result that PIN proteins
orient towards incipient primordia, and thus presumably toward auxin maxima. In these
models it is assumed that the rate at which PIN proteins accumulate on a membrane depends
on the auxin concentration in the neighbouring cell [8, 9, 11]. How does a cell detect the
auxin concentration in neighbouring cells? [9] cites an experimental result of [18] showing
the negative feedback of auxin concentration on PIN endocytosis (a process which removes
PIN from the membrane to the cytosol). Moreover, [19] proposed the following explanation:
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Fig 1. Schematic representation of a shoot apical meristem showing auxin canalization. (a) Transversal section. The upper panel shows PIN
polarization (green arrows) soon after incipient primordium formation (/4), and the lower panel shows a later stage. (b) External view of the same meristem
and developmental stages. PIN proteins are initially polarized towards auxin maxima close to primordia (upper panel). Notice that PIN polarization is later
reversed in adaxial cells (lower panel).

doi:10.1371/journal.pone.0118238.9001

auxin accumulation in cells induces growth and expansion, which can be detected by the
neighbouring cells due to mechanical forces applied on the cell membrane.

Most published studies have investigated models relying on one or both of the above hy-
potheses by means of computer simulations, aiming to reproduce realistic auxin distribution
patterns in ‘virtual meristems’. However, any mathematical implementation of these hypothe-
ses involves a large number of parameters, few of which are experimentally known to date. The
exact patterning abilities of each model, sometimes the source of scientific controversy, thus
cannot be fully characterized by these simulations: the fact that a particular type of pattern has
not been observed in simulations might simply be explained by unexplored parameter regimes.

Until new experimental data more precisely explain the underlying molecular mechanisms
and parameter values, the only possible definitive assessment of a model is through rigorous
mathematical deduction and the derivation of formal proofs. As all existing models are high-
dimensional and non-linear, only a few such results have been obtained to date.

In [11], concentration-based models have been shown to produce auxin patterns in a way
that is similar to the well-known reaction-diffusion models, through transport-induced
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Fig 2. Schematic representation of the two different hypotheses for PIN orientation on membranes. (a) The concentration-based hypothesis: the PIN
allocation to membrane ij is enhanced by the auxin concentration in the neighbouring cell j. (b) PIN concentration on membrane jj is increased according to
the strength of the auxin flux through it. This mechanism is called the flux-based hypothesis.

doi:10.1371/journal.pone.0118238.g002

bifurcations from a steady state corresponding to a homogeneous distribution of auxin. In par-
ticular, these models can produce a variety of spotted and striped patterns, reminiscent of pri-
mordia and veins, respectively. The same class of models were investigated more recently in
[20], where it was proved that typical patterns took the form of isolated blocks within a back-
ground of auxin-depleted cells. Using rigorous numerical bifurcation techniques, [21] were
able to show that a typical bifurcation from a homogeneous auxin steady state could lead to ei-
ther regularly-spaced spikes of auxin, or to stable oscillations. For flux-based models, [16] have
shown that different distributions of PIN can lead to a homogeneous auxin distribution, and
that these PIN patterns can be characterized in graph-theoretical terms. These authors also
give conditions under which homogeneous auxin patterns are stable, and show that stable os-
cillations of auxin can occur in 1-D rows of cells through flux-based transport.

In this paper, we continue the study of flux-based models. We focus on the equations pro-
posed by [10] as they have been able to reproduce PIN polarization toward incipient primordia
(and thus against the auxin gradient), the reversed polarization (along the auxin gradient),
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el e
@ ) PLOS | ONE Self-Organization of Plant Vascular Systems

phyllotactic patterns and venation. [10] proposed that the two different PIN polarization be-
haviours are consequences of different cellular responses to auxin. In the cells of the epidermal
layer, the response function linking auxin flux to PIN insertion on the membrane is assumed
to be linear, whereas the inner tissue response function is assumed quadratic.

However, several simulation studies raised problems for the model [22, 23], the canals were
predicted to contain reduced auxin concentrations, while experimental studies show that auxin
concentrations within canals can be higher than the background concentration, see, e.g., [24]
or [25]. The model has thus been extended in various ways. [26] modeled auxin influx carriers.
[23] combined both (the concentration- and flux-based hypotheses) in a hybrid model, each
cell having both (flux- and concentration-based PIN cycling) depending on the auxin concen-
tration. [12] modified the model of [10] by also considering PIN cycling and the concentration
within the cytosol of each cell. They argued that it is then able to predict canals with higher
auxin concentration than in the surrounding tissues.

Here we will show that the model of [10] is itself able to generate auxin canals and PIN po-
larization with and against auxin gradients, and prove that it is in fact able to create canals hav-
ing higher auxin concentrations than those in the surrounding cells. Mathematical proofs are
given that lead to precise parameter regimes that yield such behaviours. Hence, contrary to
what is claimed in the literature, the model reproduces patterns of auxin concentrations like
those seen in nature. Previous studies dealing with an unbounded response function intro-
duced a cut-off [12] or halted simulations [7] when auxin and PIN concentrations became too
high; the authors argued that this behaviour was due to numerical problems. We prove that an
intrinsic property of the model is divergence in finite time, and thus that high values of PIN
concentration are not due to numerical problems but are a consequence of the computational
model itself. We finally study the steady state patterns. These are, at least for quadratic response
functions, composed of directed forests of directed trees rooted at sinks, in the absence of cy-
cles. They thus ressemble the plant vascular system. Special emphasis is given to source- and
sink-driven systems, for which exact solutions are provided.

Results
The flux model

We suppose that the set of cells i € V'={1, - - -, M} is arranged as a graph G = (V, E). The edge
set is composed of pairs of cells (i, j) which are nearest neighbours, denoted as i ~ j in what fol-
lows. The flux model describes the time evolution of the concentrations of auxin molecules
a,(t) and of PIN proteins p;(f) within each cell i. We thus need the following variables, for each
cell i and for each interface (i — j), where some of the PIN proteins which are contained in cell
i are positioned, facing cell j, see Fig. 3:

a, = auxin concentration in cell i in mol m™.

p; = PIN concentration in cell i in mol m™.

p; = PIN concentration on the membrane of cell i facing cell j in mol m™>.
V. = volume of cell i in m®.

S; = surface area of the membrane between cell i and j in m’
N, := set of neighbours of cell i.

All the parameters and variables used in this work are summarized in Table 1.
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Fig 3. Localisation of auxin molecules and PIN proteins in two neighbouring cells.

doi:10.1371/journal.pone.0118238.9003

Table 1. Notations.

G=(V,E) Graph of node set V and of edge set E.

G = (V,E) Oriented sub-graph of node set V* and of oriented edge set E*.

¥ =W\v* Set of isolated cells of G.

i~j Neighbouring cells i and j with (i, j) € E.

M= V| Number of nodes of the graph G.

N; Neighbourhood of cell i, thatis A/, = {k € V | k ~ i}.

d; Number of neighbours of cell i, i.e. d, = |V;|.

m Number of membranes of the graph g, i.e. m = |E|.

a; Auxin concentration in cell /.

a; Auxin concentration in the membrane of cell / facing cell j.

P; PIN concentration in cell i.

pii PIN concentration on the membrane of cell i facing cell j.

V; Volume of cell i.

S Surface area of the membrane separating cell / from cell j.

w Ratio of the surface area of membrane jj to the cell volume, when the cells are regular.
J?, Auxin flux through the membrane between cell i and j due the diffusion.
gL Auxin flux through the membrane between cell i and j due the PIN active transport.
Y/ J?, +Ji, = net flux through the membrane jj.

1753 Auxin diffusion rate.

Ya Auxin active transport rate.

D Normalized auxin diffusion rate.

T Normalized active transport rate.

Auxin synthesis rate in cell i.
Auxin degradation rate in cell /.

K

Gt

PIN production rate in cell i.

PIN degradation rate in cell i.

Saturating constant.

Background PIN removal rate from the membranes.
PIN insertion rate in the membrane jj.

Non-linear response function.

= h(x/W).
doi:10.1371/journal.pone.0118238.t001

S >T xR X

2
&=
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Following [10], we will consider the flux associated with diffusion and active transport.

JP ;= diffusive auxin flux through the membrane between cell i and j in mol m2s7t,
JA ; = auxin flux associated with active transport,
J; = J i+ A ; = net flux through the membrane ij.

J?; is modelled using Fick’s law as J”; = y,,(a; — a;) where yp (ms™") is a permeability constant
reflecting the capability of auxin to cross the membrane. The flux due to active transport across
a membrane separating cells i and j is modelled as J ; = 7, (a,p; — a;p;,), where y4 (m’mol ™
s~') characterizes the transport efficiency of the PIN pumps.

[10] proposed the following set of ordinary differential equations

da, . ; 1
= = Ba D s (1a)

iojei

dp if
dt

= h(]iﬂj) + Py — 1Py (1b)

where the coefficients o (mol m~s 1) and /3; (s7!) are auxin production and degradation fac-
tors of cell i. py (mol m 2 s7") is the basal PIN insertion rate into the membrane, U (s7") is the
basal removal rate from the membrane. The first equation (1a) gives the rate of variation of
auxin concentration in cell 7 as a function of protein production and degradation, and of the
flux J;_.; through the membrane ij. The second equation reflects [13] original concept that
canalization is induced by a positive feedback between flux and transport. This canalization hy-
pothesis was then formalized in [14, 15]. According to the second equation (1b), the variation
of the concentration p;; of PIN proteins transporting auxin to cell j is a consequence of 1)
insertion in the membrane induced by the flux and 2) basal insertion and removal of PIN
protein from the membrane. The intensity of PIN insertion into the membrane i is modelled
using a non-linear response function /. The positive feedback mechanism is modelled by as-
suming that & is increasing and non-negative. It is furthermore assumed that no PIN proteins
are removed from the membrane when the number of incoming auxin molecules is larger than
the number of outgoing auxin molecules; in mathematical terms, this means that

h(J) =0 when J <0. (2)
Typical examples of such functions are

I
ref

linear : h,(J._, )=k

2
, or quadratic: hy(J,_,)=K (M) ’
Lot

. .. . 2 -1 . . .
where « is a positive parameter in mol ™~ s~ and J,.ris an arbitrary reference flux in
2

mol m™2s7". [7] also consider functions of the form
W)= poty h() = pI"
1 9" + ]" ’ 2

It is important to note that the properties of the steady states associated with the o.d.e. (1)
strongly depend in general on the nature of /1 [7, 27]. We will provide more precise results on
this topic in what follows. In [7, 12, 16] a modified model is also considered where PIN trans-
port (between the membrane and the cytosol) is distinguished from PIN degradation/creation
in each cell i. We follow the version proposed in [16] which includes the time evolution of the

PLOS ONE | DOI:10.1371/journal.pone.0118238 March 3,2015 7/18



@’PLOS | ONE

Self-Organization of Plant Vascular Systems

PIN concentrations P;(t) in the cytosol of each cell i, and takes the form:

da, . ; 1
dr = o, = f.a,— Vx; Si.j (VD(aj —a)+ VA(“ipij - ajpji))v (3a)
dP, 1 )
o =% bRt VZ Sy (upy — 2Ph(J,,), (3b)
dp;
% = JPh(J,_;) — up;, when i~ j, (3¢)

where p is the removal rate of PIN from membrane. For this new model, the global PIN con-
centration inside each cell is preserved when a, = B, = 0, that is,

dp,(t) +lZS“ dpP,(t)
bodt

dt Vv 2 =0.
i

Leta=(a;)i c v» P=(P)); e vand p = (p;j) j) « £ be the vector containing auxin and PIN
concentrations in the cells and on the membranes.

[10] studied the system of differential equation (1) numerically, letting vary parameter val-
ues including the auxin synthesis and degradation rates in each cell i. They were able to repro-
duce PIN polarization with and against auxin gradients. The system with h(x) = x* can also
reproduce the canalization phenomenon where canals formed by PIN polarization are sur-
rounded by cells without transporter. With a linear feedback function 4(x) = x, [10] reproduced
phyllotactic patterns and an inhibiting field.

[12] showed using simulations that [10]’s model is able to generate phyllotactic patterns and
canalization without changing the feedback function 4, simply by altering the auxin synthesis/
degradation rates. Indeed, if incipient primordia acts as sinks by degrading auxin at higher
rates than other cells, they attract and accumulate auxin molecules. The primordia then be-
come sources as they grow, inducing the initiation of the inner plant vascular system.

From the fact that h(x) = 0 for x < 0, the equilibrium (a*, P*, p*) requires that for every pair
of nearest neighbour cells i ~ j, either p; = 0 or p;; = 0. This property allows an orientation of
the graph G to be associated with each steady state, where an edge (i, j) is oriented as
i — jifand only if pj; > 0. Note that with this procedure p;; = p;; = 0 implies that the corre-
sponding edge is actually removed in the oriented graph; the procedure thus leads to an orient-
ed sub-graph denoted by G in what follows. This oriented graph was defined in [16], where it
was used to characterize further properties of steady states with homogeneous auxin, i.e.

a; = a* Vi by the condition that G must be well-balanced.

Model simplification

Consider a graph G = (V, E) with regular cells, i.e., the surface areas between membranes S;;
and the cell volumes V; are all equal. Let W = % , V(i, j) € E. Set:

D=y,W, T=7y,W and ®(x) = h(%)

We will focus on a simplified model which is obtained by assuming that
0
o

) B
o, ==L, f,=-L and D = D',
€ €
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for a small parameter € ~ 0. This regime assumes that (passive) diffusion is negligible com-
pared to active transport. Without loss of generality, we assume that T = 1. In this regime,
= ;—i and (3) becomes

da, i i .
dr o, — B+ Z(akpki —apy), forjev

ki

i

(St0)
dpj o
2V P ) — up.. Vi i~ i
At ﬁp (]14‘}) .“P,Jv Vl,] € V7l J

where J; _. ;= (a; p;j — a; pji).-
We show moreover in the Supporting Text that if a solution X (t) = (a(t),p(t)) of (St0)
converges towards an equilibrium x* = (a*, p*), then, for small enough ¢, the solution (a“(¢),

P (1), P(1)) of (3) having the same initial condition remains in a small neighbourhood of ¥(¢)
for all future time.

Divergence in finite time

Most of the papers dealing with (1) or (St0) with unbounded @ introduce a cut-off or stopped
simulations when the values of PIN concentrations p;; became too large (see, e.g., [7, 12]).
These papers argue that this divergence is due to numerical problems. We show that these ex-
treme values are not due to numerical problems, but that the p;(t) can diverge toward oo in fi-
nite time; this is hence an intrinsic property of the computational model. We prove in S1 Text
that the slow equation (St0) has an unique solution, which is defined for all t > 0 when ® is a
bounded function if o/, ﬁ;, s 4,/ B, > 0,Vi € V. When @ is not bounded, either the solution
is defined for all > 0, or only for t in a bounded interval [0, 8); in the latter case, the solution
diverges toward oo as t — 8. An example where PIN concentrations on membrane diverge in
a finite time is provided in the supporting information.

Steady state topologies

As discussed above, every steady state leads to an oriented sub-graph G = (V, E*) of the basic
graph G = (V, E). For every pair of nearest neighbours i ~ j of E, E* either does not contain
an oriented edge linking these two cells, or contains at most one of the two possible directed
edges (i — j) and (j — ). Hence,

(i—j) € E* if and only if p; # 0 = p;.

Let I'* be the set of all isolated cells of G (i.e.those cells i, for which #{k « io} = 0 and
#{k — iy} = 0). For clarity, denote by G the sub-graph of G where the isolated cells have been
removed, i.e., G" is the directed graph of edge set E*, and of node set V* = V'\ I*. Note that if
B, = 0 for some cell i, then necessarily a; < +oc implies that i ¢ I'.

Let G* be an oriented sub-graph of G. The following notions will be useful in what follows,
see Fig. 4 a):

o The out-degree (resp. in-degree) of a cell i in G* is the number of cells j such that i — j (resp.
j— ). The degree is the sum of the out-degree and the in-degree.

o A sink of G” is a cell with out-degree 0 and in-degree > 0.

« A source of G* is a cell with in-degree 0 and out-degree > 0.

PLOS ONE | DOI:10.1371/journal.pone.0118238 March 3,2015 9/18
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Fig 4. Examples of oriented sub-graph G". (a) A sub-graph G" (in black) in a background of isolated cells. i1 is a source while iy is a sink. (b) A directed
forest G* (in black) in a background of isolated cells. iy is a source while iy and i, are sink cells.

doi:10.1371/journal.pone.0118238.9004

Stable steady state topologies

This section focuses on the stability of the system (St0) with a quadratic ®(x) = x*. Let E, =

(o} /BL, -+, /Y, 0, - 0) be the configuration with every p;; equal to zero, i.e., the associated
directed graph is composed of isolated nodes only. For our choice of the function @, this con-
figuration is always asymptotically stable, see [16]. From the latter, we also know that steady
states with homogeneous auxin and non-zero PIN exist for well-balanced orientations G*, but
their stability is unknown in general. We now prove that for a quadratic @, the stability of arbi-
trary steady states (i.e., where auxin is not necessarily homogeneous) can in fact be character-
ized using some simple necessary conditions on the sub-graph G".

Instability criterion

Theorem 1 Consider the system (St0) with ®(x) = X%, Assume that ol >0, ﬂ; >0,VieV,and
that y, ¢ > 0. Let (a*, p*) # E, be a bounded equilibrium of the system (St0) of associated orient-
ed sub-graph G. Then,

o If G* contains no sink cells, then (a*, p*) is unstable.

o If (a*, p*) is stable, then G* is an oriented sub-graph of G composed of trees directed from leaves
to roots such that every cell i € V has at out-degree < 1.

We hence observe that every stable equilibrium is obtained by considering an oriented
graph G" composed of directed trees pointing to sinks, see Fig. 4 b). The stable patterns do
not contain loops, as it has been observed through simulations in most of the papers dealing
with the flux model. Simulations show that loops can obtained by using a bounded function ®.

To obtain further confirmation of Theorem 1, we performed numerical simulations on a
regular grid of cells. In most simulations with homogeneous auxin production rates o/ = o, Vi,
the simulations ended on the steady-state Eo, where all cells are isolated. We thus considered a
grid of 8 x 11 cells within which two groups of three cells have a higher production rate, see
Fig. 5a) and b). We observe that simulation seems to converge to a state composed of rooted
trees as predicted by Theorem 1. The S1 Text provides also precise formulas for computing lo-
cally asymptotically stable configurations for quadratic response functions.

Note that the result above applies at a limit where the diffusion constant vanishes D = 0, and
for regular tissues where all cells have the same volume and surface area. Neither of these two
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Fig 5. Steady state equilibrium in a simulation on a regular grid of cells with heterogeneous auxin production rates. (a) Initial conditions using a grid
of 88 cells where most cells have an auxin production rate o, = 0.1 except the two groups of 3 cells shown in darker green, where o, = 2.1. (b) Using the
production rates from (a) and parameters (ﬁ;, A, 1) = (5,5,0.1) in every cell, one of the possible steady state solutions. Each cell is colored in green
according to the auxin concentration a; (pale for the minimal concentration, dark green for the maximal). Cell membranes are colored according to the
corresponding PIN concentration (with a red colormap). The flux J; _, ; is represented by a blue arrow of width proportional to |J; _, j|. () With parameters and
initial conditions identical to those in (b) but with a diffusion coefficient D = 0.001 and a grid of non-regular cells.

doi:10.1371/journal.pone.0118238.g005

conditions is likely to be strictly satisfied in real systems, but they greatly simplify mathematical
analysis. Also, we expect Theorem 1 to remain true for systems where the two conditions are
nearly satisfied, i.e. where D is non-zero but small, and where cells do not vary too much in
size. This intuition was confirmed by numerical simulations, as seen in Fig. 5 ¢) where the pre-
viously observed steady-state is qualitatively unchanged by slightly relaxing the two conditions.

We next focus on source and sink driven systems, which play a fundamental role in plant
growth, see, e.g., [12].
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Sink-driven system

As explained in the Introduction, experiments show that the primordia of the L1 layer act first
as auxin sinks, inducing auxin depletion in surrounding cells. We study the stable patterns as-
sociated with this phase within the flux-based modelling framework, in the extreme case where
there is a single primordium, which is located at some site i, such that

B~ 0, Vi#i, and f° > 0.

iy is evacuating auxin at positive rate while the other cells (of the L1 layer) have low auxin deg-
radation rates. Each cell i produces auxin at rate o, > 0. We will in this way obtain exact solu-
tions when 8. = 0, i # iy, that permit to determine if really, within the modelling framework
given by (St0), auxin is depleted in surrounding cells. When i # ij is such that [3; = 0and

a; < 400, then necessarily i ¢ I'. We will show in the S1 Text that i, must be the unique sink
cell. Hence, the oriented forest G reduces to a directed spanning tree rooted at iy. Let G; be the
directed rooted sub-tree of G* that points to i, of node set V;' (see Fig. 6), and let

(i) = S,

pynyrt
jev;

be the global auxin production rate associated with the sub-tree G;. We show in the S1 Text
that the steady state auxin concentrations are given by the exact formulas

6o = —— it (4)

0

_ a0

aio ﬁlo ’
a

where we ¢ = Aa,/(43,). Starting from a source node of the rooted tree G*, the sums (i) in-
crease along the unique path to iy: one deduces then that the auxin concentration decreases
along the paths as long as i # i, so that the paths are directed against the auxin gradients (see
Figs. 6 and 7). This also implies the existence of auxin depleted zones in the neighbourhood of
the primordium i,.

(5)

Source-driven system

As stated in the Introduction, experiments show that the primordia of the L1 layer later act as
auxin sources from where the internal vascular system initiates. We study here the vascular
patterns predicted by the flux-based model when there is an isolated primordium. This model
has been criticized because of a perceived inability to produce high auxin concentrations inside
initiating veins, see, e.g, [23] and the references therein [9, 28]. Contrary to this claim, we will
prove that the model can correctly predict auxin concentrations. In the following, we assume
that there is a primordium located at iy, with auxin production rate higher than that of the
other cells. Mathematically, we assume here that

B=B>0,VieV, o =a>0, Vii,

and that
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(a)
[ |
[ | B isolated cell
non-isolated cell
| . width proportional
to auxin concentration
[ |

Fig 6. Schema illustrating source- and sink-driven vascular patterns when there is a single primordium iy. The sizes of the blue boxes represent
auxin concentrations. In the left panel, the source iy creates a linear vein within which the auxin concentration increases; auxin concentrations within the vein
are higher than the background auxin level (A). In the right panel, the patterning process leads to a directed spanning tree rooted at the unique sink iy. The
auxin concentration a; inside each cell / is proportional to the inverse of the size of the sub-tree G; of G rooted at /. Auxin concentrations thus decrease along
the paths, leading to an auxin depleted zone in the neighbourhood of the sink ig.

doi:10.1371/journal.pone.0118238.g006
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Fig 7. Simulation of sink-driven system with ﬁl° =0.1and g, = 0fori # io = 10. Notice however that the simulation does not seem to converge but
instead oscillates around an equilibrium.

doi:10.1371/journal.pone.0118238.g007

As G is composed of oriented trees pointing to roots, it contains at least one source, which
must be iy. Furthermore, we prove in the S1 Text that the fact that G" is a forest composed of di-
rected trees, with a distinguished cell iy, imply that the vein G* must be a linear chain

h——h——h = =1,

that is, must be a directed line with no vascular strands ending in a sink i,,.
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Fig 8. Parameter regime for a source-driven system with c =1, A=y =0.01 and 8= 0.1. A: the region in green corresponds to pairs (a, ap) leading to flux
that increase along the vein, with values that are greater than the background auxin level a/B. B: the region in gray corresponds to the reverse case where the
flux decreases along the vein, taking values that are lower than the background level a/B. Surprisingly, auxin concentrations increase along the forming vein
when the source production rate ay is low, whereas the auxin concentration decreases along the vein for highly productive sources iy with high values of ag.

0.5

doi:10.1371/journal.pone.0118238.9008

We can distinguish two main parameter regimes, leading to different kinds of flux. In the
first case, the auxin concentrations satisfy

o
(A): =<a, <a, <---<a,,
ﬁ 19 n 1y
(see Figs. 6, 8 and 9), so that the auxin flux inside the linear vein goes along the auxin gradient.
In the second case it flows against the gradient

o
(B) :BZ% >a, > 2>a,
(see Figs. 8 and 9). We provide precise mathematical formulas defining the parameter regimes
leading to (A) and (B) in the SI Text.
Simulations of these two kinds of source-driven system are provided in Fig. 10. We consider
aline of L = 20 cells (without periodic boundary conditions) with iy = 1 and take

x=p=01, f.=0.1, A=pu=0.01,

so that f# > £. To recover the two regimes (see Fig. 8), we take a) o} = 0.9 leading to PIN polar-
ization with the auxin gradient and a higher auxin level in the canal than in the surroundings

PLOS ONE | DOI:10.1371/journal.pone.0118238 March 3,2015 14/18
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Fig 9. Source driven vein formation. Schematic representation of the directed auxin flux along a linear vein with the auxin gradient (A) and against the
auxin gradient (B). a/B gives the background auxin concentration. The sizes of the blue boxes are proportional to auxin concentration.

doi:10.1371/journal.pone.0118238.g009

and b) ) = 3.1 resulting in PIN polarization against the auxin gradient and a lower auxin level
in the canal than in the surrounding isolated cells.

Thus, contrary to what has been claimed in previous studies, see, e.g., [23] and the refer-
ences therein, the flux-based model does not necessarily lead to auxin concentrations within
canals that are lower than the background concentration o/f associated with isolated cells. In-
stead, the resulting configuration depends on the source-strength of i, (o0) relatively to the
other cells (i.e @). One also observes the following counter-intuitive and surprising result: the
flux increases along the vein when the production rate  of the source is low, whereas the flux
decreases for highly productive sources with large a.

Discussion

We have studied various aspects of the flux-based auxin transport computational model. The
model has been criticized because numerical simulations indicate that auxin concentrations
within initiating veins are lower than those seen experimentally. Various extensions have been
proposed to overcome this problem. We have proved that contrary to what is claimed in the lit-
erature, the flux-based model is able to correctly reproduce auxin concentrations within veins.
A mathematical analysis permits us to give in a precise way the related parameter regimes. Our
analyses show that for quadratic and unbounded response functions @, the steady state vascu-
lar patterns are formed of directed trees and thus do not contain loops. Moreover, we have
proven that PIN concentrations can diverge in finite time, explaining in this way why previous
simulation studies were forced to introduce cut-offs to ensure that PIN concentrations re-
mained bounded. On the other hand, we showed that PIN concentrations remain bounded for
bounded ®; simulations suggest that in this case, loops can emerge at steady state. Thus, ac-
cording to this model, the self-organization of the auxin flux leads to different patterns as a
function of the boundedness of ®. Plants having a tree-like vascular system should therefore be
modelled using unbounded ®, at the risk of recovering unrealistically high values of PIN

PLOS ONE | DOI:10.1371/journal.pone.0118238 March 3,2015 15/18
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Fig 10. Simulation of a source-driven system. a) gives the initial state. b) and c) give the final states when o} = 0.9 and o} = 3.1.In ¢), the auxin
concentration decreases gradually from cell 1 to cell 19, and is always lower than 1.

doi:10.1371/journal.pone.0118238.g010
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concentration. Finally, our analysis of source- and sink-driven systems reveals new and surpris-
ing results: for sink- driven systems, the auxin flux is directed against auxin gradients, leading
to an auxin depleted zone in the neighbourhood of the primordium, while for source-driven
systems, a linear vein emerges which can have high auxin concentration and be directed with
the auxin gradient. Surprisingly, the latter situation occurs when the auxin production rate of
the source is relatively low. This model is thus able to reproduce phylotactic pattern and canali-
zation by varying auxin synthesis and degradation rate in each cell. The remaining question is
why a cell becomes a sink or source.

Supporting Information

S1 Text.
(PDF)
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