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ABSTRACT We report the draft genome sequences of Bacillus glennii V44-8, Ba-
cillus saganii V47-23a, and Bacillus sp. strain V59.32b, isolated from the Viking
spacecraft assembly cleanroom, and Bacillus sp. strain MER_TA_151 and Paeniba-
cillus sp. strain MER_111, isolated from the Mars Exploration Rover (MER) assem-
bly cleanroom.

Three strains used in this study, Bacillus glennii V44-8, Bacillus saganii V47-23a, and
Bacillus sp. strain V59.32b, were isolated from the vehicle assembly building (VAB)

at Cape Canaveral, Florida, where the Viking spacecraft were assembled (1). Teflon
ribbons were left out for 7 days to collect airborne microorganisms and then exposed
to a total of 6 different heat treatments at 3 different time cycles (2). The other 2
isolates, Bacillus sp. strain MER_TA_151 and Paenibacillus sp. strain MER_111, were
isolated from the Mars Exploration Rover (MER) cleanroom.

All 5 strains were cultured in tryptic soy agar (TSA) medium at 32°C for 48 h, and
the DNA was extracted using an automated DNA extraction instrument (Maxwell 16,
Promega, USA). An Illumina TruSeq DNA PCR-free library preparation kit (350-bp
insert size) was used following the manufacturer’s instructions, and paired-end
Illumina sequencing was performed on the HiSeq 2500 platform at Psomagen
(Rockville, MD, USA). The raw reads were processed with CLC Genomics Workbench
v10.1.1, using the default parameters for performing filtering and trimming of
adapters and ambiguous nucleotides. The assembly k-mer size was optimized based
on the N50 scores. The quality of the assembled genomes was assessed using
QUAST v4.0 (3). The genome statistics were analyzed using Bioinformatic Tools
v1.4.71 (4), and the estimated completeness and contamination were evaluated
using CheckM v1.1.2 (5). The genomes were subsequently annotated using the NCBI
PGAP pipeline v4.6 (V44-8, V47-23a, and V59.32b) and v4.9 (MER_TA_151 and
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MER_111) (6). See Table 1 for information on the assemblies and for the annotation
summaries of the five strains.

The taxonomic assignments of B. glennii and B. saganii were determined based on
a polyphasic study, including the biochemical, phylogenetic, and phenotypic charac-
teristics (1). GToTree v1.4.11 (7) was used to create a phylogenomic tree with NCBI-
designated representative genomes (as accessed on 14 February 2020) of Bacillus and
Paenibacillus based on the concatenated alignments of 119 single-copy core genes
specific to the Firmicutes phylum (default settings used other than “-H Firmicutes”)
(8–14). The genus-level taxonomies of the Paenibacillus isolate, Bacillus sp. strain
V59.32b, and Bacillus sp. strain MER_TA_151 were determined by their positions in the
phylogenetic tree (as shown in https://doi.org/10.6084/m9.figshare.12245441). We
were unable to assign species-level taxonomy to these isolates due to the known
discrepancies between phylogeny and taxonomy in these genera.

Data availability. The whole-genome shotgun sequencing projects were deposited
in GenBank and the raw sequencing reads in the NCBI Sequence Read Archive under
the accession numbers QVTD00000000.1 and SRR11096019 (Bacillus glennii V44-8),
QVTE00000000.1 and SRR11096037 (Bacillus saganii V47-23a), QVTC00000000 and
SRR11097317 (Bacillus sp. strain V59.32b), VYKL00000000 and SRR11096322 (Bacillus sp.
strain MER_TA_151), and VYKK00000000 and SRR11097201 (Paenibacillus sp. strain
MER_111), respectively.
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