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Abstract
The scientific community has been alarmed by the possible immunological evasion, higher infectivity, and severity of disease 
caused by the newest variants of SARS-CoV-2. The spike protein has an important role in the cellular invasion of viruses 
and is the target of several vaccines and therapeutic resources, such as monoclonal antibodies. In addition, some of the most 
relevant mutations in the different variants are on the spike (S) protein gene sequence that leads to structural alterations in 
the predicted protein, thus causing concern about the protection mediated by vaccines against these new strains. The present 
review highlights the most recent knowledge about COVID-19 and vaccines, emphasizing the different spike protein struc-
tures of SARS-CoV-2 and updating the reader about the emerging viral variants and their classifications, the more common 
viral mutations described and their distribution in Brazil. It also compiles a table with the most recent knowledge about all 
of the Omicron spike mutations.
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Introduction

The present report highlights recent knowledge about the 
different variants of the causative agent of coronavirus dis-
ease 2019 (COVID-19), severe acute respiratory syndrome-
related coronavirus 2 (SARS-CoV-2), throughout 2021, with 
an emphasis on those variants that could further compromise 
the critical public health scenario in different parts of the 
globe. The focus of the present report is (1) the multiple 
structural features of the spike (S) protein, invariably pre-
sent in the capsid of all viral variants; (2) understanding 
how these variations can potentially decrease the protec-
tion offered by vaccines and therapeutic measures, such as 

monoclonal antibodies; and (3) highlighting the most recent 
knowledge about Omicron’s mutations.

COVID‑19

COVID-19, a disease caused by the new severe acute respira-
tory disease 2 (SARS-CoV-2), was first reported as a case of 
pneumonia in December 2019 in Wuhan, China; since then, 
it has progressed from a local outbreak to an unprecedented 
pandemic. Two other insurgences in the Coronaviridae family 
have occurred in the last two decades: severe acute respiratory 
disease (SARS), caused by SARS-CoV in 2002 [1], and Middle 
East respiratory syndrome (MERS), caused by MERS-CoV in 
2012 [2, 3]. Even though the mortality rate decreased [4] when 
compared with the previous viruses, the virus that emerged in 
2019 showed a major increase in infectivity [2, 4, 5].

Past vaccine knowledge and advances in technology have 
helped to accelerate the already well-established process of 
vaccine development [6]. The response to the disease out-
break was similar to that which followed the 2009–2010 
H1N1 pandemic, for instance, but the number of vaccine 
developers was 30–50 times greater [6], and the technol-
ogy level had been developing over the past 10 years. The 
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funding allocated worldwide for COVID-19 testing and vac-
cination is unprecedented, gathering several billion dollars 
to all stages of development [7]. Additionally, even though 
cooperation between governmental funders and research 
institutes or international alliances was previously seen in 
other vaccines, COVID-19 exceeded previous cooperation 
levels, leading to rapid information sharing among public and 
private partnerships, providing risk sharing, and improving 
the efficiency of resource use [7]. Nonetheless, at the final 
stages of development, the high number of infected people 
helped to show the effectiveness of the vaccines, which is 
challenging with diseases of low prevalence. The clinical tri-
als were not reduced [6], and some efficacy and safety studies 
for COVID-19 vaccines included more than 40,000 subjects 
[8–15]. In contrast, other approved vaccines, such as Haemo-
philus influenzae [16], had approximately 5000 subjects, vari-
cella vaccines [17] had approximately 1000 and hepatitis A 
had approximately 40,000 subjects [18, 19]. Fast regulatory 
review and approval processes were important, as the criteria 
of approval in multiple countries were the same, and several 
documents were issued to clarify the licensure pathway [6].

Fast information sharing has been strongly discussed by 
scientists in recent years, since it helps researchers gather 
information quickly, and the results of health care and public 
policy are widespread in this urgent time. However, it might 
also cause the spread of biased data and questionable results 
without peer review [7]. Even though the scientific commu-
nity might understand the importance of taking precautions 
with this kind of information and checking for further pub-
lication of results, the mainstream and social media might 
interpret them as generating fake news [20, 21].

The symptoms of this infection may vary between inap-
parent or mild cases of respiratory insufficiency and sep-
sis, with the major symptoms including fever, dry cough, 
and difficulty breathing [22–24]. Additionally, host genet-
ics might be key to understanding the high dissimilarity of 
symptoms between patients [25]. The disease relates to an 
aggressive immune response that may damage the airways. 
As a result, severe cases must consider controlling the infec-
tion itself as well as managing the host response, since it 
might evolve into a cytokine storm, which leads to multiple 
organ failure and death [26]. Nonetheless, minimizing sec-
ondary bacterial or fungal infections is also very important 
[26]. Disease transmission occurs mainly through contact 
with contaminated people. The incubation period can range 
between 0 and 14 days after virus contact and is usually 
between 5 and 6 days [27–29]. /The viral load is usually high 
at the beginning of symptoms but is still similar in patients 
with or without symptoms, suggesting that even asympto-
matic patients can be contagious, emphasizing the relevance 
of preventive measures [30].

Host genetics may be important for understanding the 
large range of symptoms between patients, but researchers 

[2] have also reported several host genes that are critical to 
viral infection, such as ACE2, RAB7A and four members of 
the ARP2/3 complex, which are crucial for attachment and 
endocytosis, or CTSL and 13 vacuolar-ATPase proton pumps, 
which are important for spike protein cleavage and viral mem-
brane fusion. From invasion to the exit of the infected cell, 
they are mainly involved in the initial binding, endocytosis 
and cleavage of the spike protein but also play roles in fusion 
with the viral membrane, endosome, Golgi apparatus, and 
transcriptional modulators. These genes are important regard-
less of viral load and do not strongly depend on the cell type 
or tissue. Nonetheless, among the main genes found, only the 
ACE2 receptor demonstrated tissue-specific expression, with 
increased expression in the testicles, small intestine, kidneys, 
and heart. This expression might help to explain the viral tro-
pism (as S interacts primarily with ACE2), and more studies 
should be performed to better understand the potential damage 
caused by COVID-19 in these tissues.

Some evidence has shown the possibility of long-term, non-
productive persistence of SARS-CoV-2 infection in tissues, 
such as epithelial, myeloid, and neural cells [31]. The persis-
tence might also be related to mutational events in the virus, 
as related by a study analyzing a variant (GZ69) isolated from 
an asymptomatic individual who reported an unprecedented 
capability of replication in Vero E6 cells in the absence of any 
evident cytopathic effect. This strain might favor cell survival 
and, eventually, viral persistence due to a mutation in residues 
203 and 204 in the N protein [32]. This evidence, along with 
others [33–35], suggests that prolonged viral shedding and 
viral persistence might be present in COVID-19.

A nasopharyngeal or oropharyngeal swab followed by 
quantitative real-time reverse transcriptase-polymerase chain 
reaction (qRT–PCR) is the standard procedure for diagno-
sis [36–40]. Some immunochromatography assays and other 
technologies, such as reverse transcription loop-mediated 
isothermal amplification (RT-LAMP) [41–43], can be used 
as complements.

According to data published by the World Health Organ-
ization (WHO) in February 25, 2022 [44], 146 vaccines 
are in clinical development. Of these, 33% use a protein 
subunit platform, and 24% use RNA or mRNA to elicit an 
immune response, a great number of which rely on the form 
or sequence of the spike protein of SARS-CoV-2, including 
the Pfizer/BioNTech® and Moderna® vaccines [45, 46].

SARS‑CoV‑2 biology

SARS-CoV-2 is an enveloped virus with a viral particle 
of 60–140 nm [47, 48] in diameter with a single positive-
strand RNA (( +) ssRNA) of approximately 26–33 kb 
in length [49], and it may depend on host factors at all 
stages of its viral cycle. It belongs to the order Nidovirales, 
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suborder Cornidovirineae, family Coronaviridae, sub-
family Orthocoronavirinae, genus Betacoronavirus, and 
subgenus Sarbecovirus [50]. The coronavirus family is so 
named thanks to a spiculated glycoprotein membrane that 
resembles a solar corona [51].

The virus has four main structural proteins: spike pro-
tein (S), membrane (M), envelope (E), and nucleocapsid 
protein (N) [52]. The M protein is the most abundant and, 
in addition to defining the shape of the viral envelope, 
anchors the envelope to the nucleocapsid [52, 53]. Protein 
E, which is also the smallest structural protein, has virop-
orin action and forms an ionic channel [52, 54]. Both E 
and M proteins are essential to the assembly and release 
of the virion of host cells[52]. The N protein is the only 
protein that binds directly to viral RNA and has a high 
diagnostic value [52, 55].

The spike protein (S) shapes trimers in the viral enve-
lope and has a crucial function in fusion with the host cell 
and viral pathogenicity. Its N-terminal part has an exter-
nal globular domain called S1, where the receptor-binding 
domain (RBD) is also located. The C-terminal part, called 
S2, forms the spicule rod and includes the membrane 
fusion peptide (FP) [49, 52]. The structure of the spike 
protein of a D614G mutant at pH 5.5 (PDB: 6XM0) is 
shown in Fig. 1, constructed with PyMOL 2.5.2® (The 
PyMOL Molecular Graphics System [56]) and Biorender® 
[57]. Different from other external fusion proteins, the 
SARS-CoV-2 spike protein is very flexible and articulated 
in at least three points, improving the scanning capacity 
over the human cell and multiple binding sites [58].

The receptor binding domain (RBD), located in the S1 
part of protein S, has approximately 220 residues and is sta-
bilized by eight disulfide bridges and two N-glycosylation 

sites (N331 and N343). It has a potential role in protein 
folding, dynamics, stability, and accessibility to the recep-
tor and is composed mainly of random structures (35.6%) 
and β-sheets (33%), followed by turns (19.1%) and alpha 
helices (12.4%) [59].

The RBD is also subdivided into two subdomains: the 
core, rich in nonpolar residues, and the receptor binding 
motif (RBM), corresponding to residues 443–503 of the S 
protein, which is mostly polar. Specifically, the RBM medi-
ates angiotensin converting enzyme-2 (ACE2) receptor bind-
ing and must maintain sufficient affinity with the receptor 
for entry into the host cell to be effective [59]; however, this 
region is highly targeted by neutralizing antibodies, present-
ing itself as a crucial location for mutations that promote 
viral immune evasion. It has been demonstrated [60] that 
RBM might have variability and a high degree of plasticity, 
supporting variations in its sequence without losing the abil-
ity to connect with ACE2. Additionally, A475 within RBM 
seems to be a crucial residue for the connection between S 
and ACE-2 [61].

The viral entry process and the replication mechanism of 
SARS-CoV-2 will be described in the next paragraphs. Fig-
ure 2 provides a visual guide and might be helpful to better 
understand the process.

Protein S attacks target cells, such as nasal epithelial 
cells, bronchial cells, and pneumocytes, by binding to ACE2. 
The RBM-ACE2 connection causes proteolytic activation 
of the S protein, exposing the fusion peptide and leading 
to the adoption of a more favorable conformation with epi-
static regions, leading to viral entry into the host cell. This 
cleavage between S1 and S2 is usually performed by the 
TMPRSS2 protein, another protease that causes protein-
dependent proteolysis of S or through the furin cleavage site 

Fig. 1   A Side view of the 
demarcating protein S2 and 
S1 domains and subdomains. 
B SARS-CoV-2 spike protein 
structure of the D614G mutant 
viral strain (PDB: 6XM0) 
constructed through PyMOL® 
and BioRender. The colors refer 
to the secondary structures: 
alpha-helix in cyan, beta sheets 
in purple and turns in magenta. 
C Top view of the trimeric pro-
tein with the receptor binding 
domain (RBD) demarcated on 
the surface
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or polybasic cleavage site (PRRAR) [23, 25, 49, 52, 62, 63]. 
Both ACE2 and TMPRSS2 have been studied as molecular 
markers that confer genetic susceptibility or resistance [25].

This furin site, a single Arg in other coronaviruses, has 
an unusual sequence of amino acids between S1 and S2 
in SAR-CoV-2, composed of Pro-Arg-Arg-Ala-Arg (Pro: 
proline; Arg: Arginine; Ala: Alanine). The cleavage of this 
sequence is important for the efficient uptake of lung cells 
[58, 64]. SARS-CoV-2 virus without this site seems to be 

less infective [62, 65], and some variations in this sequence 
seem to improve viral transmissibility, as seen in the alpha 
and delta variants [58]. In alpha, proline is changed to his-
tidine (P681H), and in delta, proline is changed to arginine 
(P681R). Both alterations make the sequence more basic, 
improving recognition by furin. This furin cleavage primes 
the newly made S protein (and consequently the virion) to 
be more effective at infecting host cells. For instance, for 
SARS-CoV, these primed proteins represent only 10%, while 

Fig. 2   Role of spike protein in the SARS-CoV-2 infection mecha-
nism. 1 The S protein is used by SARS-CoV-2 to interact with the 
host cell receptor. The host cell has several different receptors and 
polysaccharides in its membranes. In this step-by-step figure of the 
cycle, we focus on the major receptor used, which is the ACE2 recep-
tor, but SARS-CoV-2 may also interact with other cell receptors. 2 
Protein S attacks its target cells: the RBM (in RBD) interacts with the 
ACE2 receptor. In this process, A475 and F486 in the RBM seem to 
be the key residues to connect. In this step, it is important to note 2 
additional receptors important for viral entry: furin and TMPRSS2. 3 
Interaction between HR1 and HR2: the connection causes conforma-
tional changes in S2, where HR1 and HR2 motifs interact to start the 
formation of the six-helix bundle. 4 Proteolytic activation of spike: 
after S-ACE2 binding, proteolytic activation of spike occurs when 
the additional receptors cleave the protein, exposing the fusion pep-
tide (FP). While furin cleaves the polybasic cleavage site (PRRAR) 
between S1 and S2, TMPRSS2 cleaves an S2 site. 5 Approximation 
between viral and host membranes: the FP approximates the viral and 
host membranes together with the six-helix bundle, leading to fusion 
and viral entry. 6 Fusion and viral entry: fusion of the membranes 
releases the viral RNA into the cytoplasm of the host cell. 7 Transla-
tion of replicase genes in the viral RNA genome: since the RNA of 
SARS-CoV-2 is a + ssRNA, it can be translated directly into polypro-
teins: ORFa will be translated in pp1a, which will be further cleaved 

in nspn 1 to 10, and by a − 1 ribosomal frame shifting, ORF1a and 
ORF1b will translate to pp1b, which will generate nsps 11 to 16. 8 
Replicase-transcriptase complex: the viral RNA-dependent RNA pol-
ymerase (RdRp), composed of nsp12, nsp7, and 8 along with other 
nsps, condenses and assembles in the rough endoplasmic reticulum 
(ER) membrane-bound ribonucleoprotein complex, the so-called rep-
licase-transcriptase complex (RTC) that directs replication, transcrip-
tion, and maturation of the viral genome and subgenomic mRNAs. 9 
Subgenomic transcription: the direct translation of the viral genome 
produces several ( −) subgenomic RNAs (sgRNAs) from the struc-
tural protein genes and ORF3 and ORF6 to 9, which are synthesized 
in a full-length negative strand RNA combining varying lengths of 
the 3′ end of the genome with the 5′ leader sequence. 10 Replication: 
the full-length ( −) RNA is also used as a mold to replicate the ( +) 
ssRNA of the virus that will form the new virion. 11 Structural pro-
tein synthesis: the ( −) sgRNA is used as a mold to synthesize sub-
genomic ( +) mRNAs, which are then translated into M, S, E, and N 
proteins and processed as needed. 12 Encapsulation: after translation, 
the structural proteins are inserted into the endoplasmic reticulum and 
continue to their intermediate compartment, where the replicated ( +) 
ssRNA will interact with N protein, forming the nucleocapsid that 
will be enveloped in the ER-Golgi intermediate. 13 Transport and 
exocytosis: the virions are transported by vesicles and released by 
exocytosis
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for the SARS-CoV-2 alpha variant, they represent more than 
50%, and for the Delta variant, they represent more than 
75% [58].

After binding ACE2, two domains interact within the 
S2 subunit: heptad repeats 1 and 2 (HR1 and HR2). These 
domains are structural motifs characterized by seven amino 
acids in a specific configuration (hydrophobic-polar-polar-
hydrophobic-charged-polar-charged) that prone them to 
form alpha helices. They form a six-helix bundle responsi-
ble for approximating the viral and host membranes, leading 
to fusion and viral entry [66]. Following fusion, the inner 
contents of the virus are released into the cytoplasm of the 
host cell. Then, replicase genes are translated into the viral 
RNA genome.

As SARS-CoV-2 has a ( +) ssRNA, it can act as an 
mRNA and be directly translated into the ribosome. The 
first two open reading frames (ORFs) in the viral genome, 
called ORF1a and ORF1b, are immediately translated into 
two polyproteins that then undergo proteolysis into 16 non-
structural proteins (nspns). Polyprotein 1a (pp1a) originates 
from the translation of ORF1a and is cleaved in nspn 1 to 
10, while polyprotein 1ab (pp1ab) is encoded by ORF1a and 
ORF1b through a − 1 ribosomal frame-shift mechanism and 
is then cleaved in nsps 11 to 16.

SARS-CoV-2 has two cysteine proteases [67] encoded 
by ORF1a: one papain-like protease (PLpro or nsp3) that 
cleaves pp1a at three sites liberating nspn1-4 and the main 
protease (Mpro or nsp5), sometimes referred to as 3Clpro for 
having a chymotrypsin-like fold, which cleaves both poly-
proteins liberating nsps4-16 [67, 68]. After this process, the 
viral RNA-dependent RNA polymerase (RdRp), composed 
of nsp12, nsp7, and 8 along with other nsps, condenses 
and assembles in the rough endoplasmic reticulum (ER) 
membrane-bound ribonucleoprotein complex, the so-called 
replicase-transcriptase complex (RTC), which directs repli-
cation, transcription, and maturation of the viral genome and 
subgenomic mRNAs [52, 67–70].

One important viral protein in this early step is Nsp1, 
which blocks host mRNA entry in ribosomes, undermining 
translation by approximately 70%, and also induces selective 
endonucleolytic cleavage and degradation of host mRNAs, 
especially cytosolic mRNAs, by binding to the 40S ribosome 
subunit. Thus, this protein helps to accelerate cell turnover, 
as the remaining translation activity is used by the virus. 
Another important action of this protein is to jam up nuclear 
exit channels, inhibiting nuclear alerts to the immune system 
and leading to a lower secretion of interferons [58, 71].

The structural proteins of SARS-CoV-2, however, are 
produced through a more complex process, performed by the 
RTC, of discontinuous transcription and then translation into 
proteins. In this process, translation of the ( +) ssRNA of the 
virus produces several ( −) subgenomic RNAs (sgRNAs) 
from the structural protein’s genes and ORFs 3 and ORF6 

to 9, which are synthesized in a full-length negative strand 
RNA combining varying lengths of the 3′ end of the genome 
with the 5′ leader sequence. Then, this ( −) sgRNA is used 
as a mold to synthesize subgenomic ( +) mRNAs, which are 
then translated into M, S, E, and N proteins and processed 
as needed [52, 69, 72]. Full-length ( −) RNA is also used as 
a model for replication of the ( +) ssRNA of the virus that 
will form the new virion [69] (Fig. 2).

After replication and synthesis of subgenomic RNA, 
structural proteins are translated and inserted into the 
endoplasmic reticulum and continue to an intermedi-
ate compartment, where the replicated ( +) ssRNA will 
interact with the N protein. This forms the nucleocapsid 
that will be enveloped in the ER-Golgi intermediate, and 
vesicles containing the virion will bind to the membrane 
surface, resulting in the release of the virus [69]. Protein 
M directs most of the protein–protein interactions involved 
in viral assembly; however, the presence of protein E is 
also essential to produce the viral envelope, in addition to 
being related to the induction of membrane curvature and 
in preventing the formation of aggregates by M protein. 
After assembly, the virions are transported by vesicles and 
released by exocytosis [52, 69].

Additionally, infection by SARS-CoV-2 can induce syn-
cytia [73, 74], as seen in MERS-CoV[75] and with some 
evidence in SARS-CoV [76]. In this mechanism, S proteins 
shown on the surface of the infected host cell activate a host 
cell calcium-ion channel, leading to the production and 
secretion of a fatty coating that leads to fusion with nearby 
cells expressing ACE2. This multinuclear structure may 
allow longer survival of the infected cell. SARS-CoV-2 is 
even able to form this structure with lymphocytes, important 
immune cells, similar to what is seen in tumor cells, which 
also helps the virus avoid host immune detection [58].

Most of the sequence variations reported in the new 
strains are single nucleotide polymorphisms or variants, 
along with other point mutations. In addition, some reports 
have suggested that variations in the virus genome might 
occur following infection, so-called intrahost mutations [25, 
77–79].

The arrival of new viral variants has worsened the sce-
nario. Viruses change constantly, and these mutations might 
result in new variants, some of which may have mutations 
that could allow them to spread more easily or increase dis-
ease severity. The RNA replication of SARS-CoV-2 has a 
moderate intrinsic error rate [60], as shown by the small 
number of mutations that reach high frequency between 
sequenced genomes. Nevertheless, the high number of 
infected individuals and the range of susceptible hosts 
increase the risk of new variants that could directly impact 
vaccines and therapeutic tools [60]. Additionally, coronavi-
ruses possess a NSP14 exoribonuclease, which has a repair 
proofreading function [25].
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The spike protein (S) of SARS‑CoV‑2: clinical 
interest and new viral variants

Due to its critical role in host invasion, the spike protein (S) 
of the virus has been the target of numerous studies, many 
related to possible therapeutic targets, whether by blocking 
binding with the receptor [60], DNA vaccines [80] or RNA 
based on the S protein sequence [46, 81], among others. 
However, there has been an increasing number of variants 
with divergences in their S protein sequences that can affect 
the efficiency of therapeutic measures based on transmission 
rates and disease severity [82, 83].

In addition, some authors [60] have indicated that, 
depending on the variants, long-term control of the pan-
demic will require systematic monitoring and complemen-
tary preparations for circulating strains. GISAID, which 
refers to the Global Initiative on Sharing Avian Influenza 
Data, has also monitored SARS-CoV-2 variants through 
its database of gene sequences since the beginning of the 
COVID-19 pandemic [82, 84–86]. The WHO also regularly 
monitors new variants and their potential impact on trans-
missibility; severity; and resistance to therapeutic tools, 
vaccines, and diagnosis to assess the risk they impose on 
public health. Weekly update reports are made available on 
the organization’s website and aim to assess the overall state 
of the pandemic worldwide [82, 87, 88].

The CDC-US [89] and WHO[90] have proposed classify-
ing the variants into four classes based on the main strains 
in circulation in the USA and globally: variants of high con-
sequence (VOHC), variants of concern (VOC), variants of 
interest (VOI), and variants being monitored (VBM). As it 
is not restricted to the strains circulating in the USA, the 
current WHO classification of the variants will be adopted 
[87, 90].

In the first stage, we include VOHC, a level for lineages 
with a proven advantage over preventative measures or med-
ical treatments over previously circulating strains [89]. The 
measurements considered are the proof of failure in diagno-
sis or a decrease in vaccination effectiveness, a dispropor-
tional number of infections in vaccinated individuals, or low 
vaccine-induced protection for critical conditions, as well 
as a more severe prognosis and a spike in the proportion of 
hospitalizations. Neither the CDC-US nor WHO reported 
any variants in the VOHC category as of March 2022.

The VBM list, in contrast, involves variants that have 
genetic mutations that are suspected to affect virus charac-
teristics, with some indication that they may pose a future 
risk, but for which evidence is still unclear and needs further 
monitoring and assessment [90]. By March 1, 2022, only the 
lineages B.1.640, C.1.2, and B.1.1.318 are on the VBM list.

Variants of interest (VOIs) have specific genetic mark-
ers associated with changes in receptor binding, mainly 

mediated by S protein, considerable potential for avoidance 
of neutralizing antibodies generated by previous infection 
or vaccination and a reduction in the efficacy of available 
treatments, a potential impact on diagnosis, or the possibility 
of increased transmissibility or severity of the disease [89]. 
Only the strains Lambda (C.37) and Mu (B.1.621) are cur-
rently (March 1, 2022) classified as VOI by the WHO [90].

The Mu variant seems to be highly resistant to COVID-19 
convalescent sera, even more so than beta or delta, poten-
tially induced by YY144-145TSN (mutation of two Y (tyros-
ine) by one T (threonine) and S (serine) in positions 144 and 
145, with a genetic insertion of an N (asparagine) in position 
146) and E484K mutations in the spike protein. Addition-
ally, Mu-infected individual serum has been shown to be 
resistant to Mu as well as other variants [91].

Lambda has one deletion (del246-252) and seven non-
synonymous mutations in S (G75V, T76I, D253N, L452Q, 
F490S, D614G, T859N) [92]. Of these, F491S showed some 
evasion capacity of antibody neutralization in vitro [93–95] 
and seems to be highly infectious, characteristics associated 
mainly with T76I and L452Q [96].

On the other hand, VOC characterizes variants with evi-
dence of increased transmissibility and severity of disease 
course (increase in hospitalization or deaths), a significant 
reduction in the efficiency of neutralizing antibodies, a 
decrease in the effectiveness of treatments or vaccination, 
and failures or interferences in diagnostic targets.

The following lineages are considered VOC by WHO as 
of March 1, 2022, with the correspondent’s name in order 
of Pango lineage and WHO label (a summary of data can be 
found in Table 1):

•	 B.1.1.7 or Alpha: detected in the UK on 20 September 
2020, with a high number of mutations, including 8 in 
the S protein. The main [82, 88] mutations in protein S 
are H69/V70 and N501Y changes, A570D, and P681H, 
according to the weekly report of 16 March 2021 from 
WHO. The strain, already found in 118 [88] countries, 
has a known 50% increase in viral transmission and a 
potential increase in disease severity but no to minimal 
impacts on monoclonal antibody therapies or neutraliz-
ing antibodies in convalescent serum or postvaccination 
[82, 88, 89, 97–99]. Recent data suggest that individuals 
infected by this strain are, on average, 61% more likely 
to die, based on 1,146,534 patients in community tests 
[100].

•	 P.1 or B.1.1.28.1 or Gamma: detected in Japan in Decem-
ber 2020, but based on data in Brazil, has a moderate 
impact on therapies based on monoclonal antibodies and 
a reduction in the neutralizing power of convalescent 
sera and postvaccination [89]. The main mutations high-
lighted in the recent WHO [88] report are the changes 
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K417T, E484K, and N501Y. It is currently found in 38 
countries.

•	 B.1.351 or Beta: the first report of this strain used to be 
considered early August 2020 in South Africa and has 
already been reported in 64 countries [88], but the WHO 
now considers that this strain emerged in South Africa 
in May 2020. This variant might have a 50% increase in 
its transmission rate [101], a moderate impact on mon-
oclonal antibody therapies [73, 102], especially to the 
combination of Bamlanivimab® and Etesevimab® [102], 
and reduced neutralization by convalescent and postvac-
cination antibodies [73, 102].

•	 B.1.617.2 or Delta: it was first reported in India. It has 
at least nine mutations in the S protein [25] This vari-
ant has higher transmissibility and a potential reduction 
in neutralization postvaccination and against some of 
the monoclonal antibody treatments currently used in 
the USA. Two strains were initially detected, AY.1 and 
AY.2, but now they are both considered under B.1.617.2. 
Another study showed that the sensitivity to vaccines in 
this strain is only modestly different than that of the alpha 
variant after complete vaccination (double- or single-
dose vaccines) [103]. Another study, however, showed 
lower protection when compared with the alpha strain. 
In this study, Delta was resistant to some anti-NTD and 
anti-RBD monoclonal antibodies, the sera of convales-
cent individuals after 12 months were fourfold less potent 
against this variant, and the sera of individuals immu-
nized with one dose of Pfizer® or AstraZeneca® were 
barely inhibitory to the strain. However, they improved 
with a second dose, being neutralized in 95% of the indi-
viduals, but with titers at least threefold lower than the 
alpha variant [104]

•	 B.1.1.529 or Omicron: it was first reported in South 
Africa. It has at least 32 mutations only on the S protein, 
which is markedly different from other strains. Initial 
data show that this variant has a potential increase in 
transmissibility and a potential reduction by some mono-
clonal antibody treatments and postvaccination sera [89]. 
A genome-based phylogeny and mutational analysis, cur-
rently in preprint, concluded that this variant shares a 
common ancestry with the VOI lambda [105].

Interestingly, most VOCs have the same additions in non-
structural protein 6 (NSP6), a potential scaffold transmem-
brane protein S106, G107, and F108 [52], and all variants 
monitored have at least one common mutation: the alteration 
of a negatively charged aspartate by a glycine at position 614 
of the spike protein [8, 83, 86, 125–127].

In the sequence, we will describe important mutations 
frequently described in the literature.

D614G

One month after being identified in March and April 2020, 
D614G became the most prevalent mutation worldwide due 
to positive selection [63, 83, 86, 128]. Travelers may have 
played a major role in introducing the mutation in several 
locations. Another hypothesis [63] is that the genetic vari-
ability in ACE2 expression may play a role in the greater 
success of this mutation, since its expression is significantly 
higher in Asian populations than in European, miscegenated 
American and African populations, which show lower 
expression of the receptor. A correlation analysis showed a 
significant positive relationship between ACE2 expression 
and the prevalence of D614, which could explain the higher 
prevalence of the wild-type strain in the Asian population 
and the rapid spread of the G614 variant throughout the 
globe, since it might lead to greater transmission in popula-
tions with lower ACE2 expression [22].

Infections by strains with this mutation are associated 
with a greater number of nucleic acids found in the upper 
respiratory tract of patients, suggesting greater viral load and 
infectivity, which may suggest the need for higher antibody 
titers for protection [8, 86, 129]. G614 is also transmitted 
significantly faster than the wild strain between hamsters 
through aerosols and droplets [130].

However, no evidence has linked this mutation to the 
greater severity of the disease, data also supported by other 
authors [8, 86], nor is there any difference between the sen-
sitivity between the two strains (D614 and G614) against 
monoclonal antibodies [8, 127] or convalescent serum [130].

Although one study [8] indicated that it decreases affin-
ity for ACE2, the main SARS-CoV-2 receptor, increasing 
the dissociation rate by 4 × and decreasing binding affinity 
by 5.7 × at 25 °C in relation to the D614 strain, the higher 
G614 infectivity could not be explained by increased pro-
tein–receptor affinity. Other authors [127] found an increase 
of 1.5 to 2 × in affinity between the mutated protein and 
ACE2 receptor, also based on the dissociation rate, at 30 °C 
and 37 °C, suggesting that the mutation increased affinity. 
Ozono et al. [127], the authors of the second experiment, 
indicated that the difference between the results could have 
occurred due to the use of different S proteins and that fur-
ther studies should be performed.

Additionally, structural changes seem to favor the G614 
mutation: the exchange for glycine at position 614 leads to 
the breakdown of a usual bond between D614 in the S1 part 
of the protein and T859 in the S2 part. This leads to an 
important conformational change, increasing the proportion 
of proteins in the open conformation (greater interaction 
with ACE2) in relation to the closed conformation, from 
18% open to 58% in proteins with the G614 mutation. Addi-
tionally, other intermediate states were found in this case: 
open-2 conformation (~ 39% of the observed forms) and 
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fully open state (~ 20%), which also favors the connection 
to the ACE2 receptor [8]. The highest efficiency of entry into 
the host cell by strains with this mutation was also found by 
[128, 130] and Ozono et al. [127].

N439K and N439R

Two recurrent mutations in the RBM region, N439K and 
N439R, showed a 2 × increase in ACE2 binding affinity com-
pared to the wild strain (N439) [60]. The N439K variants 
seem to be more successful since they appeared indepen-
dently in multiple lineages due to convergent evolution and 
rapidly reached numerous countries. This mutation, although 
unrelated to the severity of disease, enables immune eva-
sion, conferring resistance to various monoclonal antibod-
ies and some polyclonal responses generated by previous 
infection or vaccination. Compared with N439, the N439K 
variant strain showed a twofold lower antibody-mediated 
immune response in 442 convalescent individuals [60]. This 
substitution does not seem to be present in any of the strains 
under monitoring [89]; however, Omicron bears an N440K 
mutation, close enough to have similar effects, as shown in 
Table 3.

K417T, E484K, and N501Y

Other mutations in RBD are present in most strains consid-
ered VOC, such as K417T (K417N in Omicron), E484K (in 
omicron E484A, [89]), and N501Y, the latter two directly 
in RBM, shared by Gamma and Beta. The Beta strain is 
reported [124, 131] to be more resistant to some monoclonal 
antibodies, convalescent plasma and patients vaccinated due 
to the E484K mutation, which also emerged independently 
in more than 50 strains and are currently present in all strains 
under monitoring. The gamma strain also has an evasion 
capacity, but it is apparently less impactful than the beta 
strain [132]. It is important to emphasize that the N501Y 
mutation, in addition to assisting in immune evasion, confers 
greater affinity for the ACE2 receptor. Several monoclonal 
antibody treatments under analysis target E484 and K417, 
other mutations shared by the strains, and may not be as 
effective in these two variants [124, 131].

S477N

The S477N mutation in Iota (former VBM) and Omicron 
showed a decrease in protein stability in computer-based 
analysis, which is still under peer review, compared with 
N501Y, which stabilizes the protein structure [133]. This 
study also showed that, while D614G leads to reduced sta-
bility and more disease, the variation S477N is less prone 
to disease [134]. In the same computational study, the N477 
mutant showed lower binding affinity, but other authors 

found that this mutation could increase ACE2 binding affin-
ity [135]. Additionally, there is some evidence linking this 
mutation with escape from multiple mAbs [94].

T478K

The T478K mutation, also seen in Delta strains and Mexican 
B.1.1.222 and B.1.1.519, located in the RBD part of the spike 
protein, forms three additional hydrogen bonds with F486, 
leading to a stabilization effect in the protein. Furthermore, 
it is predicted to increase the electrostatic potential of the S 
protein in a region of ACE2 contact, which might impact the 
RBD-ACE2 interaction [136, 137]. This mutation was con-
sidered a unique mutation site for the Delta variant and was 
used in screening tests for this variant. However, T478K is 
also mutated in the Omicron variant, which calls for caution 
and careful study when adopting this target for variant screen-
ing [138, 139]. Immunologically, this mutation might also be 
related to the success of immune evasion seen in the Delta 
variant against convalescent and, to a lesser extent, vaccine-
elicited sera as well as against mAbs, such as imdevimab [140].

Effects on mAbs and immune response triggered 
by natural infection or vaccines

As stated by Moore et al. (2021), it is important to keep 
in mind that reduced sensitivity to neutralization does not 
necessarily translate into lower vaccines effectiveness, espe-
cially those that generate high levels of neutralizing antibod-
ies, such as mRNA vaccines. These vaccines also induce 
specific cellular immune responses, such as TCD4 + and 
TCD8 + lymphocytes, which can aid in the response to the 
virus [131].

 Garcia-Beltran et al. (2021) showed the neutralizing 
power of Pfizer® and Moderna® vaccines against some vari-
ants. While Alpha, B.1.1.298, and B.1.429 continued to be 
neutralized, variants P.2 and Gamma significantly reduced 
the neutralization capacity of vaccine-induced antibodies. 
The Beta variant demonstrated high dropout power, being 
as efficient as other distant coronaviruses.

Another study [124] evaluated the neutralizing efficacy of 
serum from convalescent and immunized patients with the 
Pfizer vaccine (25 patients 4–14 days after the second dose) 
and AstraZeneca (25 patients 14 to 28 days after the second 
dose), with results consistent with those found by Garcia-
Beltran et al. (2021). The authors concluded that the Beta is/
was the variant of greatest concern at the time of study, since 
the data suggest a large reduction in neutralization and even 
evidence of complete failure in neutralization in some cases. 
The neutralizing power against gamma and alpha was similar, 
and few samples failed to demonstrate 100% neutralization 
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in serum dilutions of 1:20, while the neutralization of variant 
beta (B.1.351) was reduced 7.6-fold in patients immunized 
with the Pfizer vaccine and ninefold with the AstraZeneca 
vaccine. Another study [118] similarly demonstrated a reduc-
tion in the power of neutralizing antibodies of 1.7-fold in 
alpha, fivefold in gamma, and 7.9-fold in beta.

Another study [123] mentioned a possible failure in 
the neutralization of the gamma strain in natural infection 
convalescent patients and after 5 months of immunization 
with CoronaVac®; in the latter case, the data suggest a 
sixfold reduction in neutralization of the strain.

Decreased neutralization is common in vaccines, and 
a reduction of 4 × in a vaccine for influenza, for example, 
would signal a need for updating [143]. More robust stud-
ies with a higher number of vaccinated individuals should 
provide more compelling information about the true 
immunizing power of vaccines and the need for booster 
doses. Thus, the data seem to suggest the need for caution 
in discarding preventive measures, individual and collec-
tive, even after vaccination.

Epidemiology and reinfection rates

In the matter of epidemiology, it is important to note that 
the distribution of strains in Brazil used to be very unequal 
between regions, but delta has been the most prevalent in all 
states for several months. It is also important to note that the 
testing and genomic vigilance in the country is low despite 
all of the efforts made by scientists in the area. Even so, the 
country ranked 11th worldwide in SARS-CoV-2 sequencing 
performance published in December 2020 [144]. The coun-
try has already registered at least 2000 cases of the omicron 
variant in Brazil, and the possible increase in infectivity 
and reinfection rates in this strain may rapidly change the 
current state if preventive measures are not ensured [145].

Regarding reinfection rates, a study conducted in South 
Africa, still under peer review, did not find any evidence of 
increased reinfection risk associated with the beta or delta 
variant. In contrast, Omicron showed a marked immune 
evasion ability at the population level, which increases 
the risk of reinfection by this variant [146]. These data are 
supported by a computer-based study that predicted the 
vaccine escape capability of Omicron to be approximately 
twice as high as that seen in Delta, and its mutations could 
impact the efficacy of the Eli Lilly antibody cocktail and 
mAbs from Celltrion® and Rockefeller University® [147].

Omicron

Despite multiple studies seeking to assess the risk of this 
new Omicron variant, the available data are still preliminary. 
What is known and was reinforced in the last update of the 

WHO regarding Omicron is that all variants of SARS-CoV-2 
can cause severe cases and death from COVID-19; thus, 
taking the right preventive measures is still the best option 
[148]. Even though there are no data to support an increase 
in the severity of disease by this variant, only the higher 
number of infections, which are doubling every 2 to 3 days, 
could represent a new wave of contamination [149].

The concern related to Omicron lies mostly in the fact it 
has a lot of mutations, some already studied, as previously 
discussed, some new and some still under investigation. It is 
also important to understand how these mutations work indi-
vidually and in combination to better assess the effects of the 
new variant of interest, as some combinations might further 
increase receptor binding affinity [150]. More than 30 muta-
tions have been described only on the S protein [89, 151, 
152]. What is known about theses variations is described in 
Tables 2, 3, and 4; most of the articles included in this table 
are preprint versions, as knowledge about these mutations, 
especially the ones only seen in Omicron, is very new and 
published in the last months (Tables 2, 3, and 4). Addition-
ally, a visual demonstration of all the catalogued mutations 
in the Omicron variant can be seen in Fig. 3.

Another computational study comparing Delta and Omi-
cron suggests that the S protein and its RBD are more hydro-
phobic, as the contents of leucine and phenylalanine and other 
hydrophobic amino acids are higher in the Omicron variant. 
Additionally, alpha-helix structures are more present in omi-
cron than in the Delta variant in the whole S protein, suggest-
ing, according to the authors, a more stable structure [119].

The same study [119] also compared the docking 
energy of the strains in relation to the Wuhan wild type. 
The wild type reached − 500.37 of docking energy using 
HEX software, whereas Delta reached − 529.62 and Omi-
cron − 539.81; thus, the Omicron variant S protein seems 
to hold a higher affinity and fitness with the ACE2 recep-
tor. Additionally, regarding the Omicron RBD mutations, 
E484A showed the lowest energy interaction with the recep-
tor (− 478.49), and a higher energy interaction occurred with 
Q439R (− 581.53). The values for the other mutations are 
shown in Table 2. These data show that the Omicron variant 
transmission rate may be greater than that seen in the Delta 
strain, which is currently responsible for more than 90% of 
new COVID cases in the world.

Some results, one still under peer review, suggest that 
Omicron is very good at evading immunologic defense and 
mAbs [177, 232, 233]. Regarding vaccines, the emergence 
of omicron has heated the debate about booster doses. 
Pfizer®, for example, released statements saying that 3 doses 
of Pfizer-BioNTech COVID-19 vaccine are sufficient to neu-
tralize Omicron, while two doses, which was the initial plan, 
show significantly reduced neutralization titers [234, 235]

In summary, the new variants of SARS-CoV-2 are a major 
issue, and mass vaccination is the best way to control the 
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Table 2   Mutations A67V to K417N in spike protein of the Omicron variant: locations, previous association to other SARS-CoV-2 variants and 
current knowledge about them (December 2021)

S protein substitutions Location in spike Previous variants What is already known about this substitution

A67V β3-β4 loop of NTD [153] Eta [153] Decreased protein stability by − 0.01 [119]
Might promote new hydrophobic interconnections 

in the β3-β4 loop [153]
del69-70 β3-β4 loop of NTD [153] Alpha, Beta, Eta, and B.1.375 [153, 154] - Clinical: in a study (n = 25), this single mutation 

showed prolonged inflammation, viral excre-
tion, and late exacerbation 18 days after [155]. 
Increased infectivity compared to wild-type 
[156]

Immune: Associated with immune escape [153, 
157, 158]

- Diagnostic: linked to diagnostic failure in at 
least one RT-PCR assay [159]; Can be used in 
diagnostic methods, allied with other mutations, 
to help to screen high profile variants [154, 160]

- Structural: might be related to allosteric changes 
in S1 conformation [161, 162]

T95I S1 NTD Mu; Iota [163]; B.1.617.1; Delta or 
Delta plus [89, 164]

- Structural: induces changes in the protein [165] e 
decrease protein stability − 0.78 [119]

- Immune: showed a minor increase in resistance 
to convalescent sera [91] and some evidence 
linked it to vaccine breakthrough infection [166, 
167]

- Clinical: does not seem to be relevant to infectiv-
ity [19]a, but can be associated with higher viral 
load, especially in co-occurrence of G142D 
[20]a. Also, it might confer adaptative advan-
tages if combined with E484Q [21]a;

del142-144 N3 loop in NTD – It might be related to vaccine breakthrough infec-
tion [166]

Y145D N3 loop in NTD – It might be related to reduced neutralization of 
convalescent sera and loos of biding by ADI-
56479 MAb to the mutant protein [171]

del211 NTD – No articles were found
L212I NTD B.1.1.33 [172] Reported in a case study 12 days after administra-

tion of convalescent plasma [173]
ins214EPE – – Present in 86,3% of the Omicron cases (of a 131 

sequence pool) [25]a

Might have occurred because of template switch-
ing during viral co-infection or from prevalent 
templates in the human genome, such as tran-
scripts expressed in alveolar cells or enterocytes 
[26]a

- Structural: decreased protein stability − 0.71 
[119]

G339D RBD Gamma [176]a - Immune: creates a mild impact on various anti-
body-RBD complexes [147], and some evidence 
of immune escape from a subset of NAbs were 
also observed [177]

- Structural: the Docking Energy of Omicron 
RBD-ACE2 for this mutation was − 507.06 and 
decreased protein stability − 1.16 [119]

S371L RBD – - Immune: creates a mild impact on various anti-
body-RBD complexes [147], and some evidence 
of immune escape from a subset of NAbs were 
observed [177]

- Structural: the Docking Energy of Omicron 
RBD-ACE2 for this mutation was − 549.34 and 
decreased protein stability − 0.22 [119]
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pandemic (Fig. 4). Even so, the appearance of strains capa-
ble of evading the immune response is inevitable because 
vaccination progress can also provide selective pressure 
to these strains, hence the need for maintaining preventive 
measures. It is also important to guarantee vaccine doses to 
everybody [236]. Despite efforts, this is not the reality, as 
African vaccination data reports indicate that some countries 
still have less than 20 doses per 100 population as of March 
3, 2022 [237]. This vaccine inequity [238], which may arise 
from difficulties in the four dimensions of effective global 
immunization (development and production, allocation, 
affordability and deployment) [239, 240], will probably lead 
to a more prolonged pandemic and might even culminate in 
a more resistant variant [239, 241]. Thus far, all of the vari-
ants seem to be at least moderately sensitive to the available 
vaccines after the recommended doses, especially blocking 
symptomatic and severe cases, but booster doses will be nec-
essary, as already seen in some countries, especially with the 
emergence of Omicron.

Final remarks

The S protein has a crucial role in viral infectivity, and all 
strains considered of interest or concern have mutations in 
the S sequence. These mutations seem to confer immune 
evasion and higher infectivity properties, especially those 
linked to conformational changes in its structure. Surpris-
ingly, the mRNA vaccines, such Pfizer® or Moderna®, 
which use this protein sequence, seem to trigger a strong 
immune response [242, 243] to vaccination that can protect 
against most variants with multiple mutations in its sequence 
[103], even though some variants, such as Gamma [73, 122], 
Beta [112, 244], or Delta [104], have been demonstrated to 
be more tolerant to postvaccine serum, which could cause 
more infections among vaccinated people.

Omicron variant risk is still under preliminary assess-
ment but appears to be more effective in evading immune 
responses, largely because of the many mutations in its 
S protein, and it also seems to transmit better than Delta. 

Table 2   (continued)

S protein substitutions Location in spike Previous variants What is already known about this substitution

S373P RBD Gamma, Lambda [178] - Immune: reported to confer escape immunity 
elicited by mRNA vaccines [178, 179]. It cre-
ates a mild impact on various antibody-RBD 
complexes [147]

- Structural: the Docking Energy of Omicron 
RBD-ACE2 for this mutation was − 541.87 and 
decreased protein stability − 0.53 [119]

S375F RBD – - Immune: creates a mild impact on various 
antibody-RBD complexes because it lies far 
away from the biding interfaces of most known 
antibodies [147]. Also, seem to strengthen the 
biding with the H014 antibody present in some 
cocktails [180]. Despite that, some evidence of 
immune escape from a subset of NAbs were also 
observed[177]

- Structure: the Docking Energy of Omicron 
RBD-ACE2 for this mutation was − 530.07 and 
decreased protein stability − 0.33 [119]

K417Nb RBD Delta plus [164]
Multiple VOI and VOC by WHO [147]

- Immune: likely to scape vaccine-induced 
antibodies predicted by TopNetmAb model and 
together with E484A and Y505H, increased the 
evasion power of Omicron, compared with Delta 
variant, against 132 antibodies [147]. Other 
evidence of immune evasion was also reported 
[177, 181, 182]

- Structural: reduced RBD stability and High 
ACE2 binding affinity [119, 183]. Part of an 
“interface-destabilizing” group and indepen-
dently can strongly impact hACE2 biding [184]a

The mutations were searched in Scielo®, Google academic®, and CAPES Periodicals by the name of the mutation and the words “mutation” 
and “spike”. Only the articles that were specifically about the mutation were selected, along with other relevant papers that appeared during the 
reading
a Articles still under peer review (preprints), please, analyze data with caution
b Mutations discussed in the text, also the research step was not done to these mutations, the data inserted in the table was a summarization of the 
data since an extensive work was already done and published about these mutations
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To date, there is no evidence of an increase in the sever-
ity of disease, even though the number of vaccinated peo-
ple infected can mask these results, as vaccination tends to 
protect individuals from more severe cases or progression. 

Additionally, some preliminary evidence showing major 
outbreaks among vaccinated people, indicating the need 
for booster doses, is already available. Many of these strain 
mutations, highlighted in Table 1, are new, and there is 

Table 3   Mutations N440K to ins214EPE in spike protein of the Omicron variant: locations, previous association to other SARS-CoV-2 variants 
and current knowledge about them (December 2021)

The mutations were searched in Scielo®, Google academic®, and CAPES Periodicals by the name of the mutation and the words “mutation” 
and “spike”. Only the articles that were specifically about the mutation were selected, along with other relevant papers that appeared during the 
reading
a Articles still under peer review (preprints), please, analyze data with caution
ab Mutations discussed in the text, also the research step was not done to these mutations, the data inserted in the table was a summarization of 
the data since an extensive work was already done and published about these mutations

S protein 
substitutions

Location in spike Previous variants What is already known about this substitution

N440K RBD Reported in India [185] and UK 
[186], Delta

- Clinical: seem to increase infectivity enhancing biding free energy by 0.62 kcal/mol 
[147]. Might emerge during replication in the presence of C135 mAbs [186]

- Immune: some evidence linking it to immune escape [177, 186] and reinfection. Resistant 
to class 3 mAbs C135 and REGN10987, that focus on this N440 residue [185, 186]

- Structural: the Docking Energy of Omicron RBD-ACE2 for this mutation was − 496.38 
and decreased protein stability − 0.50 [119]

G446S RBM - Immune: might relate to immune evasion of NAbs in Group A-D, which target the ACE2-
binding motif [177]

- Structural: reduced RBD stability and High ACE2 biding affinity [119, 183]. Also, shows 
a high destabilizing effect on RBD [183]

S477Nb RBD 20A.EU2 strain [187]
B.1.620

- Immune: attenuate neutralization by mAb and convalescent sera [187]
- Structural: the Docking Energy of Omicron RBD-ACE2 for this mutation was − 500.05 

and decreased protein stability − 0.45 [119]. The highest frequency mutation in RBD 
(reported 3400 times) increases biding affinity compared with S477 [158, 188]

T478Kb RBD Multiple VOI and VOC [147]
Delta [89]

- Clinical: seem to increase infectivity [147, 158, 182] and enhance biding free energy by 
1.00 kcal/mol [147]

- Immune: linked to immune evasion [158]
- Structural: the Docking Energy of Omicron RBD-ACE2 for this mutation was − 517.03 

and decreased protein stability − 0.74 [119]
E484A RBD - Clinical: some evidence showing an increase in infectivity is available [94]

-  Immune: multiple reports of mAbs escapes[192]. Markedly resistant to LY-CoV555 
mAbs [193]. Together with K417N and Y505H, increases the evasion power of Omicron, 
compared with Delta variant, against 132 antibodies [179]. Alone, may disrupt Rockefel-
ler University mAbs and together with Q493R and Q498R may disrupt the antibody Reg-
danvimab by Celltrion, and with K417N and Q493R may seriously reduce the efficacy 
of Eli Lilly mAB cocktail [179]. Other reports of immune evasion against NAbs of the 
A-D group [180] and bamlanivimab [193, 194], CT-p59 [194], and convalescent sera 
[95] were also made. A study mapping RBS’s mutations affecting biding to Regeneron’s 
REGN-CO2 cocktail and Eli Lilly’s LY-CoV016 antibodies did not consider this muta-
tion as an escape mutation, though [195].

- Structural: the Docking Energy of Omicron RBD-ACE2 for this mutation was − 478.49 
and decreased protein stability − 0.79 [120]. Part of an “interface-destabilizing” group 
and independently can strongly impact hACE2 biding[187, 196]a. 

Also can be related to the acquirement of the ability to biding with the DDP4 receptor, the 
main receptor in MERS-CoV and abundantly distributed in human tissues [197]

Q493R RBD - Clinical: might be linked to mild but prolonged cases of COVID-19 [198]
- Immune: High level of C144 antibody resistance [189, 199]a. Together with E484A and 

Q498R may disrupt the antibody Regdanvimab by Celltrion, and together with K417N 
and E484A may seriously reduce the efficacy of Eli Lilly mAB cocktail [179]. It also 
seems to be selected and confers simultaneous resistance to bamlanivimab and etesiv-
imab[200–203]and Ly-CoV555[193]. 

- Structural: the Docking Energy of Omicron RBD-ACE2 for this mutation was − 581.53 
and decreased protein stability − 0.17 [120]. A high negative impact on biding was also 
reported for this mutation [204]a. Lower biding free energy when compared with Q493 
[205]

G496S RBD - Immune: it might be related to immune evasion of NAbs in Group A-D, which target the 
ACE2-bindind motif [180]

- Structural: enhanced the S1-RBD binding by 13 folds in Alpha and Beta models [204]a. 
The Docking Energy of Omicron RBD-ACE2 for this mutation was − 505.58 and 
decreased protein stability − 1.22 [120]
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Table 4   Mutations Q498R to L981F in spike protein of the Omicron variant: locations, previous association to other SARS-CoV-2 variants and 
current knowledge about them (December 2021)

S protein 
substitu-
tions

Location in spike Previous variants What is already known about this substitution

Q498R RBD (ACE2-RBD interface) [206] Some strains from USA, UK and Italy [207] - Clinical: it could relate to a previous appear-
ance of N501Y mutation, and the affinity for 
ACE-2 seems to increase dramatically [206]. 
This pair appeared in GISAID sequences 
from France, Netherlands, South Africa, 
Spain, the UK, and the USA between March 
and September 2021 [208]a

- Immune: could be linked with immune eva-
sion [206, 209, 210]. The presence of neutral-
izing antibodies C121 and C141 enriched the 
appearance of Q493R mutation [211]. Also, 
together with E484A and Q493R may disrupt 
the antibody Regdanvimab by Celltrion [179]

- Structural: enhanced the S1-RBD bid-
ing[210] by 98 folds in Alpha and Beta mod-
els [204]a. The Docking Energy of Omicron 
RBD-ACE2 for this mutation was − 527.38 
and decreased protein stability − 0.17 [120]. 
It promotes a significant change in free 
energy (− 1.92 kcal/mol), contributing to a 
higher binding to the receptor, using Alpha 
and Beta variants as a model [204]. Helped, 
along with N460K and E484K, to strengthen 
de electrostatic complementarity between 
RBD and ACE2 [206, 212, 213]. In contrast, 
another study found low effects on biding 
by this mutation alone [211]. Also, despite 
arginine being a non-aromatic amino acid, it 
is involved with π-stacking interactions and 
conformation flexibility; therefore, the author 
suggested that this could be the reason why 
this combination is more tolerated [208]a

N501Yb RBD Beta and Gamma - Clinical: it seems to increase infectivity, 
improving binding free energy by 0.55 kcal/
mol [179, 190]

- Immune: evidence of immune evasion to 
mAbs [184, 190]

- Structural: increases RBD stability and 
High ACE2 binding affinity by 10-folds 
[120, 160, 186, 190, 214]. Paired up with 
Q498R mutation enhances affinity for ACE-2 
dramatically, about fourfold above N501Y 
alone [137, 206]. Also part of an “interface-
destabilizing” group and independently can 
strongly impact hACE2 biding [187]
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Table 4   (continued)

S protein 
substitu-
tions

Location in spike Previous variants What is already known about this substitution

Y505H RBD - Immune: together with E484A and Y505H, 
increased the evasion power of Omicron, 
compared with Delta variant, against 132 
antibodies [179]. Evasion against other 
antibodies, such as CT-q59, was also 
reported[194]

- Structure: enhanced the S1-RBD biding by 
14 folds in Alpha and Beta models [204]a. 
Increases RBD stability and low ACE2 bind-
ing affinity [120, 186], in SIFT tool protein 
stability analysis, this mutation affected pro-
tein function [120]. Another study shows that 
Y505H reduced the usage of ACE2 receptors, 
mainly because of the loss of hydrogen bonds 
and hydrophobic interactions [215]

T547K Decreased protein stability − 1.05 [120]
D614Gb - Clinical: Some evidence linked to vaccine 

breakthrough infection [168]
- Structural: Decreased protein stability − 0.93 

[120]
H655Y Furin site between S1/S2 [216]. 

Between the RBD and the FP 
[217]

Strains from USA, Scotland, China, South 
Africa strains [218]

Gamma [219]a, P.2 [220]

- Clinical: could be related to persistent infec-
tion [221]a . It might play a potential role in 
replication, transmissibility, and pathogenic-
ity [217, 219] a. It might not increase viral 
infectivity alone [217, 222], but the cluster 
with N679K+P681H is associated with 
an increase in cell invasion and improved 
metastasis [223]. Also, it might relate to 
tissue culture adaptations [224], which also 
appeared in Rhesus Macaques treated with 
Normal plasma [225]

- Immune: some evidence linking it to mAb 
evasion [224, 226]a

- Structural: decreased protein stability − 0.08 
[120]. In contrast, another study found 
that this mutations increases the structural 
stability in S protein, also associating this 
mutation with decreased molecular flexibility 
[73]. Evidence shows that may be related 
to improving spike glycoprotein fusion 
efficiency and host cell entry [217, 219, 224] 
a. Enhances spike cleavage and viral growth 
in both Vero E6 and human-like Vero-
TMPRSS2 cells [219]a. It seems to increase 
ACE2 binding interaction by 1.2-fold [227]

- Diagnostic: used before to discriminate 
between Beta and Gamma [228]

N679K Furin site between S1/S2 B.1.1.433, AT.1 B.1.258, B.1.1.7, P.1 and 
C.1.2

- Clinical: the cluster H655Y+N679K+P681H 
is associated with a higher in cell invasion 
and improved metastasis [223]

- Structural: decreased protein stability − 0.32 
[120]. Along with P681H, it might relate to 
beneficial enzyme-substrate coupling [229]
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almost no knowledge about them, making these genetic vari-
ations good subjects for further research.

This review summarizes the disease process, biology and 
replication cycle of SARS-CoV-2 and the important muta-
tions carried by the most worrisome variants thus far. Addi-
tionally, this study highlights the most recent knowledge 
about Omicron’s spike mutations.

Genomic sequencing of the different SARS-CoV-2 
variants and their hosts has undoubtedly led to the rapid 
development of vaccines by pharmaceutical companies 

around the world, allowing people to experience the pan-
demic in a slightly less catastrophic way. Of course, this 
happened differently in each country across the globe, 
mainly because different countries adopted distinct test-
ing procedures, social distancing, and specific vaccination 
schedules in an uncoordinated way. However, there is a 
consensus that Science has saved lives around the world 
and has provided different people with the possibility of 
being better prepared to face similar public health prob-
lems that may occur in the future.

Table 4   (continued)

S protein 
substitu-
tions

Location in spike Previous variants What is already known about this substitution

P681Hb Furin site between S1/S2 Alpha, Mu, Gamma, B.1.1.318 - Clinical: the cluster H655Y+N679K+P681H 
is associated with a higher cell invasion and 
improved metastasis [223]. It might facilitate 
the efficient spread and infection of the virus 
[220]

- Structural: decreased protein stability − 1.27 
[120]. Likely to improve furin cleavage 
[230]a

N764K N-terminal of S2 P.1 - Structural: decreased protein stability − 0.21, 
and in SIFT tool protein stability analysis, 
this mutation affected protein function[120]

D796Y HMN.19B [231] and A.27 [232] - Structural: decreased protein stability − 0.09 
[120]. It might be associated with ligand 
binding surfaces changes[233]. Appears in 
only 0.05% of global sequences [158]

N856K Between FP and HR1 Decrease protein stability − 0.38 [120]
Q954H HR1 Delta [234] a - Clinical: potential enhanced infectivity and 

transmission by affecting the fusion state 
of spike protein[234] a It might improve 
interaction affinity between HR1 and HR2, 
together with N969K and L981F, increasing 
membrane fusion and infectivity[196]a

- Structural: decreased protein stability − 0.86 
[120]

N969K HR1 - Clinical: it might enhance interaction affinity 
between HR1 and HR2, together with Q954H 
and L981F, increasing membrane fusion and 
infectivity [196] a

- Structural: decreased protein stability − 0.63 
[120]

L981F HR1 - Clinical: it might enhance interaction affinity 
between HR1 and HR2, together with Q954H 
and N969K, increasing membrane fusion and 
infectivity [196] a

Decreased protein stability − 1.24 [120]

The mutations were searched in Scielo®, Google academic®, and CAPES Periodicals by the name of the mutation and the words “mutation” 
and “spike”. Only the articles that were specifically about the mutation were selected, along with other relevant papers that appeared during the 
reading
a Articles still under peer review (preprints), please, analyze data with caution
b Mutations discussed in the text, also the research step was not done to these mutations, the data inserted in the table was a summarization of the 
data since an extensive work was already done and published about these mutations
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Fig. 3   Visual representation 
of Tables 2, 3, and 4, show-
ing all catalogued mutations 
of Omicron’s spike proteins. 
They were constructed using 
PyMOL 2.5.2® (The PyMOL 
Molecular Graphics System) 
and Biorender®

Fig. 4   Summary of the main information regarding the spike protein and its mutations. The box summarizes data considering common charac-
teristics of the protein and its major mutations, such as D614G, N439R, E484K, K417T, and N501Y
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