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Abstract

Phasic dopamine responses demonstrate remarkable simplicity; they code for the differences 

between received and predicted reward values. Yet this simplicity belies the subtle complexity of 

the psychological, computational, and contextual factors that influence this signal. Advances in 

behavioral paradigms and models, in monkeys and rodents, have demonstrated that phasic 

dopamine responses reflect numerous behavioral computations and factors including choice, 

subjective value, confidence, and context. The application of optogenetics has provided evidence 

that dopamine reward prediction error responses cause value learning. Furthermore, studies using 

advanced circuit tracing techniques have begun to uncover the biological network implementation 

of the reward learning algorithm. The purpose of this review is to summarize the recent advances 

in dopamine neurophysiology and synthesize an updated account of the behavioral function of 

dopamine signals.

Introduction

Reward prediction errors are arguably one of the oldest biological computations on Earth. 

The single cell bacteria that dominated life for over two billion years detected and responded 

to positive and negative differences, in time and space, in the concentrations of 

environmental substances [1]. Positive concentration changes evoke approach behavior in 

the form of movements towards the source, whereas increasing concentrations of harmful 

chemicals cause bacteria to avoid the source and ‘tumble’ away in random directions [2,3]. 

Much has changed in two billion (or so) years of evolution, but computation of unpredicted 

changes for better or worse remains critical to optimal behavioral function and is broadly 

employed in the brain. Phasic dopamine responses constitute the prime example of neuronal 

reward prediction error coding.

Dopamine neurons are predominantly located in the midbrain A8, A9, and A10 cell groups 

that correspond roughly to the Retrorubral Field (RRF), the Substantia Nigra pars compacta 
(SNc) and Ventral Tegmental Area (VTA), respectively [4]. These neurons receive synaptic 
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input from over 30 different brain regions [5–11], and send the majority of their projections 

to basal ganglia and frontal cortex areas involved in motor control, learning, and cognitive 

function [11–14]. They respond to rewards and reward predicting cues with phasic bursts of 

action potentials that code for reward prediction errors, the differences between received and 

predicted rewards [15,16•]. Dopamine prediction error responses are an ideal mechanism to 

guide behaviors to harvest more and better rewards. Positive prediction error responses 

indicate that the preceding action should be repeated or invigorated, whereas negative 

prediction error responses indicate that the preceding behavior should be decreased or 

avoided [17].

Recent studies have shown that numerous behavioral computations, including value, choice, 

confidence, and contextual expectations are factored into the canonical reward prediction 

error (RPE) response in dopamine neurons [18••,19–21,22••,23]. Next generation 

technologies have been critical to understanding the behavioral functions of dopamine 

neurons [24••,25••,26••,27,28], their downstream effects [29,30], and how they compute 

RPEs [6••,9,31,32••,33,34••]. This non-comprehensive review endeavors to highlight the 

recent novel findings in dopamine physiology as it pertains to reward coding and its 

behavioral consequences.

Phasic dopamine signals are reinforcement learning signals

Prediction errors are the fundamental element of reinforcement learning models, including 

the Rescorla-Wagner [35] and temporal difference (TD) [17] models. Prediction errors are 

used to update (i.e., learn) the value of predictive stimuli. The prediction error in TD models 

provides a theoretical account for phasic dopamine activity [36,37]. The TD prediction error 

(TDPE) is a diference between the predicted and actual value:

TDPE = Vactual − Vpredicted

Thus, subtraction is the fundamental operation that guides value updating. To verify that 

subtraction governs the response of dopamine neurons, the activity of optogenetically 

identified mouse dopamine neurons was recorded during reward delivery. The delivered 

rewards were either (a) completely unpredicted — neither the magnitude nor timing was 

known, or (b) followed a cue (odor) that predicted the average magnitude and exact timing 

— the prediction was a constant and only the exact reward magnitude was unknown. The 

constant reward expectation generated by the predictive odor reduced, by an equivalent 

amount, the dopamine response to every reward magnitude [32••]. This result indicates that 

dopamine neurons perform subtraction of expected reward value from actual value, as 

opposed to using divisive operations that are more commonly observed in neural circuits 

[38,39]. Moreover, every recorded dopamine neuron used a similar subtractive algorithm 

[31]. These results confirm that, just like the prediction error signal that forms the core of 

reinforcement learning models, the magnitude of the phasic dopamine response is governed 

by subtraction.

More than two decades of research has provided strong correlational evidence that phasic 

dopamine responses constitute a reward learning signal (for a concise summary, see [16•], a 
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more comprehensive review is provided in [15]). However, new techniques like optogenetics 

finally permit us to ask whether dopamine signals cause learning to occur. Prediction error 

responses have been simulated using optogenetic techniques in a variety of behavioral tasks 

in mice [27,28,40], rats [26••,41,42], and monkeys [25••]. In every species tested, phasic 

optogenetic stimulation or suppression of dopamine neurons has resulted in behavioral 

obser-vations consistent with a critical role for dopamine neurons in reward learning.

A fundamental insight from animal learning theory is that rewards must be unpredicted, that 

is, they must generate reward prediction errors, for learning to occur [35]. The strongest 

evidence for the causal role of dopamine in learning comes from experimental manipulations 

in behavioral paradigms where prediction errors would not normally occur, and where no 

learning would normally happen. These paradigms reveal how introduction of phasic 

activations or suppressions of dopamine neurons affect learning. Effects of optical activation 

and suppression of dopamine neurons in rats have been tested during a blocking and an 

overestimation paradigm, respectively [24••,26••].

During blocking, formation of associative strength between a conditioned stimulus (CS) and 

an unconditioned stimulus (US) is ‘blocked’ by a secondary stimulus that fully predicts the 

US. Dopamine neurons do not respond to CSs that have been blocked [43]. Artificial phasic 

dopamine activations unblock the CS leading to increased conditioned responses (time spent 

in the reward port) and indicating learning of the unblocked CS-US association [26••]. Thus, 

optogenetic activation of phasic dopamine mimics the effects of positive prediction errors, 

and is sufficient to cause associative learning. During overexpectation, the compound 

presentation of two reward-predicting CSs generates heightened expectation — 

‘overexpectation’ — that likely corresponds to both rewards being delivered. The negative 

prediction errors associated with delivery of only one reward leads to extinction of the 

original CS-reward associations [35,44–46]. In a modified overexpectation paradigm, the 

two rewards were actually delivered, fulfilling the heightened expectations, and this 

modification eliminated the extinction. Phasic optogenetic silencing of dopamine neurons 

reinstates extinction learning in the modified overexpectation task [24••]. Thus, optogenetic 

silencing of dopamine mimics the effects of negative prediction errors, and is sufficient to 

cause extinction learning. Together, these findings provide evidence that phasic dopamine 

activations and suppressions constitute bidirectional teaching signals that cause increases 

and decreases (respectively) in the associative strengths between rewards and their 

predictors.

In many situations, including the behavioral tasks reviewed so far, dopamine signals update 

predictions using a ‘model-free’-like algorithm. That is, cue-outcome associations are 

updated according to direct experience of the cues and outcomes. In contrast, some 

outcomes can be used to update a model that contains multiple associations. Such ‘model-

based’ learning can occur, for instance, during a reversal learning task (for a review of 

model-free vs model-based reinforcement learning, see [47]). Monkeys learned that one cue 

predicted reward while another cue predicted no reward, and on a randomly selected trial the 

reward contingencies reversed. Model-based learning can use the outcome of the first 

reversal trial to update the value of both stimuli, even with no direct experience of the other 

cue-outcome association. Dopamine responses reflected values updated according to this 
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model-based rule [48]. This result suggests that the dopamine system is adapted to 

efficiently learn environmental reward contingencies whether they are experienced directly 

or merely inferred. Accordingly, this neuronal teaching signal can support multiple forms of 

reinforcement learning and likely updates value correlates throughout the brain.

Dopamine responses reflect behavioral computations associated with 

value

Most rewards do not possess a common physical scale for direct comparison, and they often 

enter awareness via biophysically distinct pathways. Food, drink, money, and social 

interaction are but a few examples of the larger category of objects, events, or thoughts that 

we readily recognize as rewards [15]. Despite the heterogeneity of reward features, 

individuals quickly appreciate reward value and readily exchange one reward for another. 

For example, individuals readily handover money in exchange for ice cream. This behavior 

implies that coding of reward value is not critically dependent of the sensory properties of 

rewards. When monkeys make choices between different reward types, dopamine responses 

are larger to more preferred rewards, compared to less preferred rewards. Importantly, when 

choices indicate indifference between two rewards, the dopamine responses to those rewards 

are indistinguishable (Figure 1a) [20]. Similarly, when rats have been fed to satiety on one 

reward, their choices indicate that value of the overfed reward is decreased, and the 

dopamine response to the overfed reward is also decreased [49]. These patterns of activity 

suggest that dopamine responses reflect the subjective value of rewards.

To demonstrate the functional relationship between subjective value and dopamine activity, 

subjective value was measured as a function of physical value in monkeys making choices 

between risky and safe outcomes. There is a mathematical relationship between risk 

attitudes, whether the monkey is risk seeking or risk avoiding, and the curvatures of the 

resulting value functions [50]. Choices between risky rewards revealed an ‘S’-shaped 

subjective value (utility) function that reflected risk seeking for small rewards and risk 

avoiding for large rewards (Figure 1b, red line) [23,51]. The magnitudes of dopamine 

responses to unpredicted rewards were correlated with the shape of the measured utility 

functions (Figure 1b) [23]. During behavioral choices, dopamine responses scaled with the 

value of the chosen options [21,52]. Moreover, dopamine responses were larger on trials 

when the monkey indicated the correct choice, compared to when it was mistaken (Figure 

1c) [19]. These results demonstrate that dopamine responses integrate moment-by-moment 

behavioral information with reinforcement learning to code the same dynamic value 

information that is used to make decisions.

Value may be gained from physical rewards, but also may be derived from the internal 

evaluation of performance. A novel study examined dopamine activity during bird song 

learning. As juvenile birds learned to sing, distorted audio feedback (DAF) was provided at 

unpredictable times. Dopamine neurons paused their firing when they heard the DAF, as 

though they were responding to a negative prediction error (Figure 1d). The response was 

contingent upon the bird singing; dopamine neurons were unaffected by DAF when they 

were not singing [18••]. This result demonstrates that dopamine neurons are active during 
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performance monitoring, but it remains unclear whether this response reflected the 

performance error itself or whether it reflected the value of that error. Developing behavioral 

technologies to measure the value of good performance is key to understanding how reward 

and motor systems interact to motivate motor learning.

Value has many sources, including long term reinforcement learning history, context, and 

trial-by-trial behavioral factors. Overall, these recent studies demonstrate that dopamine 

prediction error responses reflect these many sources of value, and provide deeper insights 

into the nature of biological reinforcement learning.

Biological implementation of reward prediction error computations

Dopamine neurons receive input from more than thirty brain areas, including the lateral 

hypothalamus, subthalamic nucleus, the pedunculopontine nucleus, the lateral habenula, the 

striatum, and the dorsal raphe nucleus [6••,7,11,53,54]. It is of considerable interest how 

dopamine neurons integrate information from these diverse brain regions to compute RPE.

Electrophysiological analysis of more than 200 neurons mono-synaptically connected to 

VTA dopamine neurons revealed that most input neurons coded for some computational 

components of RPEs, such as responses to unpredicted rewards or reward expectation. These 

different component responses were not localized to specific input nuclei, but rather were 

distributed across all the sampled nuclei [6••]. Thus, dopamine neurons receive distributed 

inputs from many structures in the brain that code for parts of the RPE, and appear to 

integrate these distributed inputs to compute RPE responses.

A critical factor determining the dopamine response is the cell type-identity of their inputs. 

For example, the lateral hypothalamus (LH) is a major source of input to the midbrain. 

Optogenetic activations of GABAergic projections from the LH to the VTA cause phasic 

dopamine release in the striatum and promote reward seeking behaviors [9,33]. By contrast, 

phasic activations of LH glutamatergic projections to the midbrain result in avoidance 

behaviors [9]. The appetitive and aversive effects of LH inputs seem to operate through di-

synaptic mechanisms involving local GABA neurons in the vicinity of the VTA [9]. 

However, the exact identity and location of GABA neurons mediating the disinhibition that 

could lead to dopamine activations remains unclear. Although LH-GABA neurons synapse 

onto GABAergic neurons in the VTA [9], previous research has failed to find consistent, 

phasic inhibition of VTA-GABA neurons at the precise moments when such inhibitions 

could mediate dopamine activations [55].

Similar to the input from the LH, the different cell types in the dorsal raphe nucleus (DRN) 

differentially contribute to appetitive and aversive dopamine-mediated behaviors. Both 

serotonergic and glutamatergic projections from the DRN appear to provide appetitive 

information to dopamine neurons [53–56], whereas DRN GABA neuron activity is 

correlated with aversive responses [56].

Glutamatergic projection neurons in the lateral habenula (LHb) are a major source of 

aversive information to dopamine neurons. Activation of LHb inhibits the majority of 

dopamine neurons via di-synaptic connections with GABAergic neurons in the rostromedial 
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tegmental nucleus (RMTg) [57–59]. Activation of this pathway causes conditioned place 

aversion [10,60], whereas lesioning this pathway disrupts the normal inhibitory responses to 

unpredicted reward omission [8••]. Thus, the majority of LHb activation is related to 

negative prediction error responses (pauses) in dopamine neurons. Studies in the mouse have 

recently discovered a group of dopamine neurons that receive mono-synaptic, excitatory 

drive from the LHb [10,61]. Notably, this group of dopamine neurons has different 

electrophysiological properties than dopamine neurons that have been identified with 

apomorphine [62–65] and optogenetics [31,32••,55]. They emit action potentials at much 

higher rates than classical dopamine neurons, and do not express somatodendritic dopamine 

D2 receptors [61]. As such, they are likely insensitive to apomorphine. Because of the 

distinct electrophysiological properties and putative apomorphine insensitivity, these 

neurons are not likely to be sampled by studies that use traditional waveform identification 

techniques [62–65]. Therefore, it remains to be seen what the behavioral function of these 

neurons is, and indeed whether they code for prediction errors.

Diversity of dopamine responses

The majority of dopamine neurons are activated by reward [31,55,66]. However, dopamine 

neurons do not respond solely to rewards, nor do all dopamine neurons respond identically. 

In fact, numerous other stimuli elicit dopamine responses, including noxious, aversive, and 

physically salient stimuli [64,67–73], novelty [21,73], and large movements [74,75]. 

Likewise, the well-known role of dopamine neuron loss in movement disorders and 

Parkinson’s disease clearly implicates these neurons in movement, albeit indirectly. These 

observations have generated intense interest into the functional heterogeneity of the 

dopamine population.

Phasic dopamine responses display complex temporal dynamics that may reflect different 

variables and even have multiple behavioral functions [19,21,70,71,76]. Dopamine neurons 

generally encode RPEs at latencies between 150 and 250 ms following reward; the longer 

latencies are observed when stimuli are hard to distinguish or the experiment highly 

dynamic [19,21,77]. On the other hand, many non-reward activations of dopamine neurons 

occur very early in the response, within 50–200 ms of the behavioral event. Aversive air-

puffs evoke short-latency activations and inhibitions in dorsolateral and ventromedial 

dopamine neurons, respectively [72]. Similarly, aversive electrical shocks activate dopamine 

neurons projecting to the dorsolateral striatum (DLS), whereas the same stimuli inhibit 

dopamine neurons projecting to the dorsomedial striatum (DMS) [68]. The Ca2+ signal used 

to detect the electric shock activations and inhibitions has a slower time-course than action 

potential signals [78]. Nevertheless, in dopamine neurons that project to the DLS, activations 

driven by electric shock appear faster and shorter than activations driven by reward [68]. 

Thus, dopamine responses to aversive stimuli are heterogeneous, but short-latency non-

reward responses appear to arise earlier than RPE coding.

Context sensitivity also plays an important role in dopamine response heterogeneity. Context 

can be defined by numerous factors including the overall reward availability, task dynamics, 

and the physical nature of stimuli and rewards. In particular, the overall reward availability 

strongly modulates dopamine responses to rewards, reward predictors, and nonrewards. For 
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example, when the overall availability of rewards was low (i.e., rewards were only delivered 

on a small fraction of trials) dopamine neurons responded to aversive stimuli with 

inhibitions. However, when the overall availability of rewards was high, the very same 

dopamine neuron respond to aversive stimuli with short-latency activations, rather than 

inhibitions [34••]. Neutral cues were similarly influenced by the amount of reward delivered 

in a specific context; greater overall reward availability resulted in greater responses to 

neutral cues [79]. Because of the influence of overall reward availability, the short-latency 

activations observed in these (and other) studies are likely instances of pseudo-conditioning, 

a process of generalization between USs, rather than true responses to nonrewarding stimuli 

[80]. In a similar fashion, sensory stimulus (CS) generalization has a major impact on the 

number of dopamine neurons that respond to aversive-predicting CS. When visual cues are 

used to predict both rewarding and aversive outcomes, more than half of dopamine neurons 

can respond to the aversive visual cue [66,72]. This is in contrast to when an auditory cue is 

used to predict a reward and a visual cue is used to predict an aversive air puff, only 15% of 

dopamine neurons respond to the aversive visual cue [66]. Thus, less stimulus generalization 

translates into fewer dopamine neurons responding to aversive events. These critical studies 

highlight the importance of considering behavioral and contextual factors, in addition to the 

underlying circuits, when designing behavioral tasks and interpreting the motivational 

implications of dopamine activity.

Conclusions

The value assigned to rewards is a highly dynamic quantity influenced by numerous factors. 

Dopamine responses code for subjective reward value (utility) [20,21,23] and reflect the 

numerous behavioral factors that influence value, including choice [21,81], confidence [19], 

context [34••,79], and satiety [49]. Optogenetic stimulation and suppression of dopamine 

neurons demonstrates that these signals cause value learning [24••,26••], which likely 

updates action values in the striatum and elsewhere [34••,82–84]. Beyond learning, 

dopamine neurons have many behavioral functions including roles in movement and 

motivation. Not discussed here, but at the cutting edge of dopamine investigations, are 

studies deciphering the precise behavioral roles of prediction error coding and dopamine 

release at the interface between motivation and movement [29,30].

Our current understanding of dopamine neurons has been greatly facilitated by recent 

technological developments, including optogenetics and advanced circuit tracing techniques. 

Optogenetic technologies have been used to unambiguously identify dopamine neurons and 

test their behavioral function [6••,22••,31,32••,34••,55]. These studies have confirmed the 

major role that dopamine neurons have in reward coding [55], and detailed the algorithm 

used by the dopamine population [31,32••]. Optogenetics stimulation has been used to test 

and confirm the hypothesis that phasic dopamine activations and suppressions constitute a 

bi-directional teaching signal for value learning [24••,26••]. Optogenetic stimulation of 

monkey dopamine neurons biases the choices of the animal to the stimulation-reinforced 

options, and translates these technological capabilities into a species with greater anatomical 

and functional homology with humans [25••].
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In the physical dopamine circuit, perhaps more than anywhere else in the brain, we are 

starting to understand the Marr-level III implementation of the reward prediction error 

algorithm [85]. Recent studies have mapped the anatomical and functional inputs of 

dopamine neurons [6••,8••,9,10,33,34••,61]. These results demonstrate how different cell 

types and the micro-circuits they form are critical to understand how dopamine responses 

are shaped. An important question for future studies to address is, ‘what level of circuit 

detail is relevant to behavioral function?’ Advancing technological capabilities are revealing 

ever more complex circuit maps with ever finer details, but it is critical that these findings 

are interpreted in light of well-founded behavioral theories and experiments [86]. 

Nevertheless, these developments promise to provide deeper insights into the behavioral 

functions and information processing capacities of this critical neural system.

The next step, I believe, is to gain a broader and clearer appreciation of the nature of reward 

predictions. To say that dopamine neurons code for reward prediction errors is to imply 

subtraction is taking place. The operation of subtraction includes three terms, the minuend 

(the number being subtracted from), the subtrahend (the number being subtracted), and the 

resulting difference. Recent studies have confirmed that dopamine prediction error responses 

truly represent differences [31,32••]. Therefore, to fully understand the dopamine signal, we 

need to understand how dopamine neurons code the minuend (reward) and the subtrahend 

(prediction). Regarding the former, significant progress has been made in understanding how 

the brain codes for rewards. Signals related to subjective value have been recorded in 

multiple brain areas. Dopamine neurons reflect multiple attributes of reward, including 

reward magnitude [87], probability [88,89], and delay [90]. They integrate these attributes 

and code for a highly specified form of subjective reward value, economic utility, that places 

the value of different rewards on a common scale for easy comparison [20,23]. Well-defined 

and easily measured utility functions, therefore, provide a rigorous account of the 

dopaminergic minuend (Figure 1b). However, we know less about the dopaminergic 

subtrahend: reward predictions. The classical model for dopamine activity, the TD model, 

predicts the time-discounted expected value of future rewards [36]. Although this quantity is 

surely factored into dopamine signals, the results reviewed here demonstrate that this model 

provides an inadequate description of dopamine activity. Inference about hidden states of the 

world as well as factors related to decision confidence are incorporated into dopamine 

responses [19,22••]; both of these factors are well beyond simple first-order reward statistics. 

These results indicate that the reward predictions made by dopamine neurons, and by 

implication the brain, are far richer than was previously thought. Fortunately, the well-

defined nature of the dopamine signal provides an excellent substrate to learn about the 

shape and character of neuronal predictions.
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Figure 1: 
Dopamine neurons reflect the behavioral computations of value. (a) Dopamine neurons 

represent a common scale of value. Monkeys indicated preference between different reward 

types by making choices. Orange and brown boxes represent the CSs that were associated 

with the different rewards, and that the monkeys chose between. ‘Greater than’ symbols 

indicate more preferred, whereas tildes indicate choice indifference. Peri-Stimulus Time 

Histogram (PSTH) of dopamine responses to onset of visual reward-predicting CS. 

Individual PSTH are color and dash coded according to the CS. Dopamine responses were 

largest for the most preferred rewards, smallest for the least preferred rewards, and 

indistinguishable for rewards that the monkey was indifferent between. This figure was 

modified and reproduced with permission from Ref. [20]. (b) The mathematical relationship 

between subjective value (utility) and physical reward size was described by an S-shaped 

function (red line). Grey bars indicate dopamine responses to unpredicted rewards that 

varied in magnitude between 0.1 ml and 1.2 ml in 0.1 ml increments. Error bars are SEM 

across 16 neurons. This figure was modified and reproduced with permission from Ref. [23]. 

(c) Raster plot (top) and PSTH (bottom) of one dopamine neuron in response to the onset of 

a RDM stimulus. Data are divided according to the accuracy of the subsequent choice. 
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Dopamine neurons were more active on trials when the monkey chose correctly (green), 

rather than incorrectly (red). Numbers along the side of the raster plot indicate RDM 

coherence. Shaded error bars on PSTH are SEM across trials. This figure was modified and 

reproduced with permission from Ref. [19]. (d) Dopamine neurons are silenced by distorted 

audio feedback (DAF) during bird song learning. Voltage traces (top) and raster plots 

(bottom) around normal (‘Normal’) and distorted (‘DAF’) audio feedback. This figure was 

modified and reproduced with permission from Ref. [18••].
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