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The antidiabetic drug metformin has been associated with reduced colorec-

tal cancer (CRC) risk and improved prognosis of CRC patients. However,

the detailed mechanisms underlying such beneficial effects remain

unknown. In this study, we aimed to evaluate metformin activity in CRC

models and unveil the underlying molecular mechanisms. We showed that

metformin inhibits CRC cell proliferation by arresting cells in the G1 phase

of the cell cycle and dramatically reduces colony formation of CRC cells.

We discovered that metformin causes a robust reduction of MYC protein

level. Through the use of luciferase assay and coincubation with either pro-

tein synthesis or proteasome inhibitors, we demonstrated that regulation of

MYC by metformin is independent of the proteasome and 30 UTR-

mediated regulation, but depends on protein synthesis. Data from poly-

some profiling and ribopuromycylation assays showed that metformin

induced widespread inhibition of protein synthesis. Repression of protein

synthesis by metformin preferentially affects cell cycle-associated proteins,

by altering signaling through the mTOR-4EBP-eIF4E and MNK1-eIF4G-

eIF4E axes. The inhibition of MYC protein synthesis may underlie met-

formin’s beneficial effects on CRC risk and prognosis.

1. Introduction

Colorectal cancer (CRC) is the third most frequent

cancer accounting for 8% of new cancer cases and the

third leading cause of cancer-related mortalities in the

United States (Siegel et al., 2017b). Moreover, the

CRC incidence and mortality rate in young adults

below 50 years of age increased by 22% and 13%,

respectively, from 2000 to 2013 in the United States

(Siegel et al., 2017a). The upward trend of CRC in

younger individuals urges discovery of novel and effec-

tive prevention strategies.

Metformin is the first-line treatment for people with

type 2 diabetes mellitus. Epidemiological studies sug-

gest metformin treatment decreases cancer risk in dia-

betic patients (Bodmer et al., 2010; Currie et al., 2009;
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Evans et al., 2005; Tsai et al., 2014). More recently, a

randomized phase 3 clinical trial showed that met-

formin is equally effective in preventing recurrence of

colorectal adenoma and polyps in patients without dia-

betes (Higurashi et al., 2016). The beneficial effect of

metformin in CRC is supported by experimental evi-

dence including reduction of spontaneous intestinal

polyp growth in ApcMin/+ mice and synergistic activity

with chemotherapeutic drugs in controlling CRC

growth (Tomimoto et al., 2008). Currently, multiple

clinical trials are evaluating the effect of combinations

of metformin with standard chemotherapeutics in

CRC treatment. However, the molecular mechanism

contributing to metformin’s beneficial effects in CRC

remains elusive (Thent et al., 2017).

In this report, we evaluated the effects of metformin

on CRC growth and characterized the underlying

molecular mechanisms therein. We showed that met-

formin reduces CRC cell proliferation and colony for-

mation by arresting cells in the G1 phase of the cell

cycle. We identified the MYC oncogene as a molecular

target of metformin and demonstrated robust inhibi-

tion of MYC protein synthesis by metformin without

affecting MYC mRNA levels. We further demon-

strated a broad effect of metformin on protein synthe-

sis, with a preference for cell cycle-related proteins,

and alteration of known pathways affecting protein

synthesis: AMPK-mTOR-4EBP-eIF4E and MNK1-

eIF4G-eIF4E.

2. Materials and methods

2.1. Cell lines and culture

The microsatellite instable (MSI) HCT116 and DLD1,

the microsatellite stable (MSS) HT29 and COLO320,

and HEK293 cells were obtained from the American

Type Culture Collection and validated by the Charac-

terized Cell Line Core at The University of Texas MD

Anderson Cancer Center using STR DNA fingerprint-

ing. The p53-deficient HCT116 cells (named HCT116

p53�/�) were a gift from Bert Vogelstein’s laboratory

(Bunz et al., 1999). Cells were maintained in Dul-

becco’s modified Eagle’s medium supplemented with

10% fetal bovine serum. All cultures were grown in

5% CO2 at 37 °C.

2.2. Reagents

The list of reagents is provided in Table S1. Briefly,

metformin hydrochloride was purchased from Abcam

(Cambridge, MA, USA); cycloheximide, AICAR, and

dorsomorphin were purchased from Sigma-Aldrich

(St. Louis, MO, USA); MG-132, MHY1485, and rapa-

mycin were purchased from EMD Millipore (Billerica,

MA, USA).

2.3. Cell viability assay

Equal numbers of cells were seeded in 96-well plates

and allowed to adhere overnight. Cells were then incu-

bated in the presence of solvent control or the indi-

cated concentrations of metformin. Cell number was

assessed using the Cell Counting Kit 8 (Dojindo

Molecular Technologies, Gaithersburg, MD, USA),

and the absorbance was measured at 450 nm by spec-

trophotometry following the manufacturer’s instruc-

tions.

2.4. Cell cycle analysis

Equal numbers of cells were seeded in 10-cm dish to

reach 60% confluence after overnight incubation. Cells

were treated with metformin or solvent control for

48 h and fixed in 70% ethanol overnight at 4 °C. The
fixed cells were stained with 50 lg�mL�1 propidium

iodide (PI), containing 20 lg�mL�1 of RNase A for

15 min, and subsequently subjected to flow cytometric

analysis.

2.5. Colony-forming assay

Cells were trypsinized and seeded in 6-well plate at 500

or 1000 cells/well. After overnight incubation, cells

were exposed to metformin or vehicle control for

10 days. The cells were fixed with absolute methanol

and stained with 1% crystal violet (Sigma-Aldrich)

(Crowley et al., 2016).

2.6. RNA isolation, cDNA synthesis, and real-time

quantitative PCR

RNA isolation, cDNA synthesis, and PCR were per-

formed as previously described (Ohtsuka et al., 2016).

Primer sequences are available in Table S2.

2.7. Protein extraction and immunoblotting

Cells were lysed in Laemmli sample buffer (Bio-Rad Lab-

oratories, Hercules, CA, USA) containing protease inhi-

bitor cocktail (Sigma) and phosphatase inhibitor cocktail

2 (Sigma). The immunoblotting analysis was performed

as previously described (Ohtsuka et al., 2016). b-Actin

was used to ensure equivalent protein loading. The

immunoblotting images were semiquantified using the

IMAGEJ software (https://imagej.nih.gov/ij/), normalized
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to the signal of b-actin, and further normalized with the

control set as 1. See Table S1 for the list of antibodies.

2.8. Protein synthesis assay

1x106 cells were seeded and left to attach overnight

before specific treatments for 24 h in glucose-free

media. Samples were further processed according to

the manufacturer’s instructions using Protein Synthesis

Assay Kit (601100, Cayman Chemical, Ann Arbor,

MI, USA). Cells were then resuspended with OPP

Working Solution for 30 min at 37 °C, washed and

stained with the 5 FAM-Azide Staining Solution, and

analyzed by flow cytometry (FC500, Beckman Coulter,

Brea, CA, USA).

2.9. Polysome profiling assay

Briefly, metformin and control-treated cells were

grown to ~70% confluence. Cells were treated with

100 lg�mL�1 cycloheximide at 37 °C for 15 min prior

to harvesting. Cells were lysed in lysis buffer (Pere-

boom et al., 2014), using homogenization on ice.

Lysates were cleared by centrifugation at 1200 g for

10 min, and equal OD260 units were loaded onto a

17–50% sucrose gradient. Sucrose gradients were cen-

trifuged for 2 h at 178 305 g in a Beckman SW41

rotor (Beckman Coulter, Indiana, USA) at 4 °C prior

to fractionation. Fractionation was performed on an

ISCO UV spectrophotometer and gradient fractionator

(Teledyne ISCO, Nebraska, USA). Data were collected

with LABWORKS software (Lehi, UT, USA). Postcollec-

tion data analysis was performed in Microsoft Excel

and GRAPHPAD PRISM 7 (La Jolla, CA, USA).

2.10. 30-UTR luciferase assay

The miRNA 30 UTR target clones including MYC

(NM_002467.4) 30-UTR dual-luciferase reporter

(HmiT067350-MT05) and control dual-luciferase

reporter (CmiT000001-MT05) were purchased from

GeneCopoeia (Rockville, MD, USA). Cells were

transfected with the reporter plasmid using Lipofec-

tamine� 2000 (Thermo Fisher Scientific, Waltham,

MA, USA) for 24 h and then incubated with fresh

standard cell culture medium containing vehicle or

metformin for another 24 h. The cell culture medium

was collected and analyzed using Secrete-PairTM Dual

Luminescence Assay Kit (GeneCopoeia). The secreted

Gaussia Luciferase activity was normalized by the

activity of the constitutively expressed, secreted alka-

line phosphatase from the same plasmid. The normal-

ized Gaussia luciferase activity in the MYC 30-UTR

reporter was further normalized by that in the con-

trol plasmid.

2.11. Plasmid and virus generation

The lentivirus expression plasmids including pLOC-

MYC (Clone ID: PLOHS_100008545) and pLOC-RFP

(control vector) were purchased from Dharmacon

(Lafayette, CO, USA). We produced virus soup in 293

FT cells according to the instructions of the manufac-

turer and used it to induce MYC expression in CRC

cells.

2.12. Reverse-phase protein array

HT29, HCT116, HCT116 P53�/�, and DLD1 cells

were seeded in 100-mm dishes at 3 million cells per

dish with standard cell culture medium containing

25 mM glucose. The next day, cells were washed with

PBS and incubated in fresh glucose-free cell culture

medium in the presence of vehicle control or 2 mM

metformin for 24 h. Biological duplicates were used

for each treatment in all cell lines. Cells were lysed in

4 9 SDS sample buffer (40% glycerol, 8% SDS,

0.25 M Tris/HCl, 10% 2-mercaptoethanol, pH 6.8).

The concentration of proteins was adjusted to

1.0 lg�lL�1 before submission to the reverse-phase

protein array (RPPA) core facility at MD Anderson

Cancer Center for array and analysis. Briefly, serial

dilutions of samples were arrayed on nitrocellulose-

coated slides and run against 302 antibodies. Spot den-

sity was determined by Array Pro, and protein concen-

tration was determined by super curve fitting. The

relative protein expression after normalization was

used for comparison between vehicle control and met-

formin treatment.

2.13. Statistical analysis

The data are presented as mean � standard deviation.

Greater than or equal to 3 independent experiments

were conducted, and significance was assessed using

Student’s t-tests. P-values <0.05 were considered statis-

tically significant. Statistical analyses were performed

with GraphPad Prism 7 (La Jolla, CA, USA).

3. Results

3.1. Metformin inhibits CRC cell growth and

colony formation

We first evaluated the effect of metformin on CRC cel-

lular growth by means of a CCK-8 assay. Treatment
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of MSI HCT116 and MSS HT29 cells with metformin

results in a dose-dependent inhibition of cell growth,

with significant differences observed at a concentration

of 5 mM metformin at both 24 h and 48 h (Fig. 1A).

We observed similar cell growth inhibition in HCT116

p53�/� and DLD1 CRC cells (Fig. S1). To address

whether the inhibitory effect is due to reduced prolifer-

ation or increased cell death, we performed PI staining

for initial analysis of apoptosis and cell cycle distribu-

tion. Flow cytometric analysis revealed a clear cell

cycle arrest in G1, with a concomitant reduction of S-

phase cells (Fig. 1B). No induction of apoptosis in

sub-G1 phase cells was observed after 48-h metformin

treatment (Fig. S2). To further test the cytotoxic

effects of metformin on CRC cell growth, we per-

formed a colony formation assay to determine the

capacity of a single cell to grow into a colony. At a

concentration of 2 mM metformin, which minimally

reduced cell growth in the CCK8 proliferation assay,

metformin completely abrogated colony formation of

HCT116 and HT29 cells (Fig. 1C). The effect of met-

formin on colony formation was dose dependent

(Fig. 1D), and similar effects were observed in addi-

tional CRC cell lines (Fig. S3). Together, these data

suggest a strong inhibitory effect of metformin on

CRC cell growth.

3.2. Metformin reduces MYC protein expression

Wnt signaling is an essential factor in CRC initiation

and proliferation (Cancer Genome Atlas, 2012; Liu

et al., 2000; Phelps et al., 2009). We evaluated the

possibility that metformin inhibits CRC growth by

reducing Wnt signaling. To our surprise, we observed

an increase in Wnt activity in a TOPFLASH lucifer-

ase Wnt reporter assay, instead of the expected

decrease, following treatment with 10 mM metformin

(Fig. 2A). In concordance with the Wnt activity data,

10 mM metformin did not reduce expression of MYC

mRNA, a classical Wnt target gene, in all CRC cell

lines tested except for RKO cells (Figs 2B and S4).

However, 10 mM metformin caused almost complete

depletion of MYC protein in all tested CRC cell lines

(Figs 2B and S4). Cell growth inhibition by met-

formin is accompanied by a spindle-like morphologi-

cal shape and acidification of the media (Fig. 2C).

Cancer cells are known to enhance glycolysis in the

presence of metformin in an attempt to compensate

for energy loss following metformin inhibition of the

mitochondrial respiration chain complex (Marini

et al., 2016). To determine whether this compensation

causes the reduction of MYC protein, we examined

MYC protein during metformin treatment in either

standard culture conditions containing 25 mM of glu-

cose, or glucose-free culture conditions. The inhibitory

effect of metformin on MYC protein is also observed

under glucose-free conditions, with a clear MYC

reduction under 2 mM metformin concentration

(Fig. 2D). These data suggest that MYC reduction by

metformin is independent of glucose and is not the

consequence of enhanced glycolysis. We next tested

whether MYC reduction occurs in colony formation

assays. Because 2 mM metformin completely blocked

colony formation 10 days after cell seeding and no

material could be obtained, we examined MYC

expression in colonies formed in the presence of a

lower concentration of metformin (1 mM). Consis-

tently, we detected lower MYC protein expression in

the colonies exposed to metformin, in contrast to

those without metformin exposure (Fig. 2E).

Together, these data suggest a robust post-transcrip-

tional regulation of MYC by metformin.

3.3. Metformin blocks MYC protein synthesis

To characterize the post-transcriptional step at which

metformin reduces MYC protein, we treated cells with

cycloheximide (CHX) to block protein synthesis or

MG132 to block protein degradation (Schneider-

Poetsch et al., 2010; Tsubuki et al., 1996). We reason

that if metformin promotes MYC degradation, block-

age of protein degradation by MG132 should abro-

gate the metformin effect on MYC, while blockage of

protein synthesis with CHX should have an inverse

effect. We treated cells in standard culture conditions

with 10 mM metformin for 24 h, at which time point

MYC protein levels were reduced to half (Fig. 3A).

As expected, blockage of protein synthesis with CHX

resulted in a time-dependent reduction of MYC pro-

tein expression. However, we were unable to rescue

MYC expression with MG132 arguing against altered

MYC proteasomal degradation by metformin

(Fig. 3A,B). Consistently, metformin did not promote

the degradation of MYC protein in CHX kinetic

experiments (Fig. 3A,B). MYC phosphorylation at

threonine 58 is a well-characterized signal-promoting

MYC degradation (Sears et al., 2000; Yeh et al.,

2004). However, metformin treatment did not alter

Thr58 phosphorylation on MYC (p-MYC) (Fig. 3C).

This lack of p-MYC induction by metformin was also

observed in lysates from colony formation assays

(Fig. 3D). The above experimental data exclude the

possibility of changes in MYC turnover as a conse-

quence of metformin treatment, and suggest that met-

formin causes reduced MYC protein synthesis. Since

microRNA could block MYC protein synthesis by
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imperfect complementary binding to the 30-UTR of

the mRNA, we tested this possibility. Under condi-

tions where metformin significantly reduced MYC

protein expression, there is no significant change in

MYC 30-UTR luciferase reporter activity (Fig. 3E).

This suggests that the observed changes in MYC

Fig. 1. Metformin suppresses CRC cell growth and colony formation. (A) Metformin inhibits HCT116 and HT29 cell growth in a dose-

dependent manner. (B) Metformin arrests the HCT116 and HT29 cells at G1 phase. (C) Metformin at 2 mM completely abrogates the colony

formation ability of HCT116 and HT29 cells. (D) Metformin reduces colony formation of CRC cells in a dose-dependent fashion. The

proliferation data are presented as the means � SD of values obtained in 3 independent experiments. Student’s t-test was used to assess

significance relative to vehicle control. *P < 0.05.
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protein levels are not mediated by microRNA activity

on the 30-UTR of MYC mRNA.

It is possible that in glucose-free conditions, the regu-

latory MYC mechanisms stimulated by metformin are

different from those active under standard glucose con-

centrations. As such, we repeated our experiments in

glucose-free conditions. Similar to our data obtained

under standard glucose concentrations, we did not

observe enhanced degradation of MYC protein in glu-

cose-free conditions using CHX and MG132 assays

(Fig. 4A,B). p-MYC was not induced by metformin in

glucose-free media, similar to our data under standard

glucose concentrations (Fig. 4C). Interestingly, met-

formin reduced MYC protein expression even when

MYC was expressed from a pLOC lentiviral vector,

which contains only the MYC coding sequence without

UTRs (Fig. 4D). This finding further supports the pos-

sibility that MYC regulation by metformin is indepen-

dent of microRNA activity on the 30UTR of MYC.

Metformin is equally effective in reducing MYC levels

in COLO320 cells where MYC is amplified and

expressed at high levels (Alitalo et al., 1983; Trainer

et al., 1988) (Fig. 4E). Together, these data strongly

suggest that metformin blocks MYC protein synthesis.
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Fig. 2. Metformin reduces MYC protein expression in CRC cells. (A) Metformin increases Wnt activity as evaluated by TOPFLASH

luciferase reporter. (B) Metformin dramatically reduces MYC protein expression without affecting the MYC RNA level. (C) Metformin

promotes glycolysis, as shown by acidic medium, and change of cell morphology into spindle-like shape. (D) Metformin reduces MYC

protein expression in both standard culture condition and glucose-free condition. (E) Metformin diminishes MYC protein expression in colony

formation cells. The luciferase data in (A) are 2 independent experiments (exp1 and exp2) in quadruplicate, and data represent means � SD.

The qRT-PCR data in (B) are presented as the means � SD (HCT116, n = 2; HT29, n = 4). Student’s t-test was used to assess significance.

*P < 0.05.
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3.4. Metformin induces widespread inhibition of

protein synthesis

AMP-activated protein kinase (AMPK) and mam-

malian target of rapamycin (mTOR) signaling have

previously been demonstrated to be essential met-

formin targets that control protein synthesis (Chan

et al., 2004; Howell et al., 2017; Larsson et al., 2012).

As reported, metformin activated AMPK as reflected

by increased p-ACC (Fig. S5) (Galdieri et al., 2016)

and inhibited mTOR as shown by decreased p-4EBP1

and p-eIF4E (Fig. 5A) (Dowling et al., 2007). Similar

to metformin, treatment of CRC cells with AICAR, a

chemical AMPK activator, leads to a dramatic reduc-

tion of MYC protein (Fig. 5B). In contrast,

MHY1485, a chemical mTOR activator, partially

reversed metformin’s effect on p-4EBP1, p-eIF4E, and

MYC expression (Fig. 5A). These data suggest that
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Fig. 3. Metformin blocks MYC protein synthesis in standard culture conditions. (A,B) Metformin-induced MYC reduction is neither rescued

by the proteasome inhibitor MG132, nor accelerated by the protein synthesis inhibitor CHX in HCT116 cells (A) and in HT29 cells (B). In A

and B, cells were treated with metformin for 24 h (10 mM), in the presence or absence of MG132 (10 lM). (C,D) Metformin does not

enhance the MYC phosphorylation at threonine 58 in 24 h treatment (C) or in colony formation samples (D). (E) Metformin does not reduce

luciferase activity of MYC 30UTR reporter, at the condition of causing MYC protein level changes. Cells were treated with metformin (5 mM,

10 mM) for 24 h, and culture medium was analyzed using the Secrete-PairTM Dual Luminescence Assay Kit.
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metformin reduces MYC expression in CRC cells

through AMPK activation and mTOR inhibition.

Because of the general effect of mTOR-4EBP-eIF4E

signaling in controlling protein synthesis, we tested

whether the repression of MYC by metformin repre-

sents a global blockage of protein synthesis. To this

end, we analyze the newly synthesized proteins by

employing a cell-permeable, puromycin analog O-pro-

pargyl-puromycin (OPP). The incorporation of OPP

into the C terminus of translating polypeptide chains

can be subsequently detected via copper-catalyzed click

chemistry using 5 FAM-Azide (Liu et al., 2012). Flow

cytometric analysis can then be used to detect in each

cell the total ongoing protein synthesis based on 5-

FAM fluorescence, if it is occurring. This method indi-

cated clear fluorescence in control OPP-treated sam-

ples, and as expected, low 5-FAM signal when

translation elongation was blocked with CHX
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Fig. 4. Metformin blocks MYC protein synthesis in glucose-free media. (A,B) Metformin-induced MYC reduction is neither rescued by the

proteasome inhibitor MG132, nor accelerated by the protein synthesis inhibitor CHX in HCT116 cells (A) and in HT29 cells (B). In A and B,

cells were treated with metformin for 24 h (2 mM), in the presence or absence of MG132 (10 lM). (C) Metformin does not enhance the

MYC phosphorylation at threonine 58. (D) Metformin reduces the overexpressed MYC protein in HT29 cells established with lentiviral MYC

plasmid lacking 50UTR and 30UTR. (E) Metformin reduces MYC protein in COLO320 cells that express high level of endogenous MYC due to

genomic amplification.
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(Fig. 5C). Metformin treatment resulted in a wide his-

togram peak with hallmarks of both the OPP control

and OPP CHX-treated samples, suggesting that a sub-

population of cells is subject to protein synthesis inhi-

bition (Figs 5C and S6A). We confirmed the

metformin effects on protein synthesis using the

ribopuromycylation assay, which detects all actively

translating ribosomes in the whole-cell population

(David et al., 2012; Schmidt et al., 2009). After met-

formin treatment, we incubated HT29 cells with puro-

mycin for 20 min to label newly synthesized proteins

(Fig. S6B). Labeled proteins can then be detected by
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Fig. 5. Metformin induces widespread inhibition of protein synthesis. (A) Metformin abrogates the expression of p-4EBP1 and p-eIF4E at

24 h, and the effect is partially rescued by coincubation of cells with the mTOR activator MHY1485, in HCT116 cells. (B) The AMPK

activator AICAR reduces MYC expression, similar as metformin in HCT116 cells. (C) Metformin blocks protein synthesis, as shown by

reduced FITC signal, in HT29 cells stained with OPP, a puromycin analog that incorporated only to newly synthesized proteins. (D) Left

panel shows the rational of using ribopuromycylation (puromycin labeling) to monitor protein synthesis, after which the newly synthesized

protein can be detected by antibody against puromycin. Metformin strongly blocks protein synthesis, shown by reduced puromycin labeling.

AICAR induces a similar yet weaker effect. HT29 cells were treated with metformin (2.5 mM) or AICAR (0.5 mM) for 24 h, and then, the

cells were incubated with puromycin (10 lg/mL) for 20 min. Total proteins were isolated and detected by western blot using puromycin

antibody. (E) Metformin causes an increase of mRNA association with polysomes and a reduction of mRNA association with monosomes.
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western blot using antibodies against puromycin. In

control cells, we observed puromycin-labeled proteins

that correspond to a wide range of sizes and with high

intensity (Fig. 5D). In contrast, metformin greatly

reduced the levels of nascent puromycin-labeled pro-

teins (Fig. 5D). The AMPK activator AICAR, which

induced a weaker yet more uniform inhibition on pro-

tein synthesis (Fig. S7), reduced ribopuromycylation in

the whole-cell population to a lesser extent than met-

formin (Figs 5D and S8). Co-treatment with

MHY1485 and metformin did not significantly dimin-

ish the inhibitory effect of metformin on protein synth-

esis in either of these assays (Figs S7 and S8). This

suggests that partial rescue of mTOR signaling

(Fig. 5A), which reverses protein expression of sensi-

tive genes such as MYC, is not strong enough to

rescue global protein synthesis.

To further analyze the metformin effect on protein

synthesis, we performed polysome profiling to exam-

ine the association of mRNA with ribosomes (Chasse

et al., 2017). Polysome profiling showed a decrease in

polyribosomal mRNA, and an increase in abundance

of monoribosomal mRNA after metformin treatment.

This is a hallmark shift in polysome complexes

indicative of translational repression. In HT29 and

HCT116 cells, the polysome/monosome ratio reduced

from 1.85 (control) to 0.64 (metformin) and from

0.35 (control) to 0.17 (metformin), respectively

(Fig. 5E). Taken together, these results suggest that

metformin blocks protein synthesis, probably as a

consequence of its effect on AMPK and mTOR sig-

naling. However, it is important to note that not all

translation disappears in any of these assays upon

metformin treatment, which suggests this effect is

specific for a subset of mRNAs.

3.5. Metformin represses protein synthesis with a

preference on cell cycle-related proteins

To test whether metformin inhibits expression of a

subset of mRNAs, we sought to identify the panel of

proteins affected by metformin using RPPA in four

CRC cell lines with biological duplicates of each.

Using the criteria that proteins should change in the

same direction in both duplicates, we identified 3

upregulated proteins and 16 downregulated proteins in

all four cell lines during metformin treatment, includ-

ing the already demonstrated MYC protein (Fig. 6A

and Table S3). We selected several known important

proteins in cancer biology, including STAT3,

CDC25C, and PLK1, and validated RPPA data by

western blotting (Fig. 6B). The RNA level of these

genes is not affected by metformin (Fig. S9),

suggesting that protein synthesis is responsible for the

reduced protein expression. These data are consistent

with changes in translation of subsets of mRNAs

(Fig. 5C,D,E). Enrichment pathway analysis of the 16

downregulated proteins identified in RPPA revealed

proteins that regulate cell cycle (Fig. 6C), indicating

preferential inhibition of cell cycle-related genes by

metformin. In addition, MAP kinase-interacting pro-

tein kinase 1 (MNK1), which regulates eIF4E phos-

phorylation and is bound by eIF4G, is one of the

downregulated proteins identified by RPPA. Western

blot data showed that p-MNK1, the activate form of

MNK1, was reduced during metformin treatment

(Fig. 6D). More recently, MNK1 was reported to reg-

ulate mTORC1 signaling by promoting association of

mTORC1 with its substrates (Brown and Gromeier,

2017). Thus, reduction of MNK1 by metformin

further inhibits protein synthesis by mTORC-indepen-

dent (eIF4G-eIF4E) as well as mTORC-dependent

(mTORC1: substrate) mechanisms (Fig. 6E).

4. Discussion

Accumulating evidence supports the beneficial use of

metformin in reducing CRC risk and malignancy

(Bodmer et al., 2010; Currie et al., 2009; Evans et al.,

2005; Tsai et al., 2014), but the underlying mechanisms

remain unclear. Increased transcription of Wnt target

genes by the b-catenin/TCF complex is an essential

mechanism driving CRC carcinogenesis, progression,

and metastasis (Cancer Genome Atlas, N, 2012; Fodde

and Brabletz, 2007; Liu et al., 2000; Phelps et al.,

2009; Vermeulen et al., 2010). It is thus reasonable to

suspect that metformin might regulate Wnt signaling

to exert beneficial activities in CRC. Indeed, met-

formin was shown to reduce the size of intestinal

polyps in ApcMin/+ carcinogenesis mouse model

(Tomimoto et al., 2008). However, our data revealed

an increase, not a decrease, in Wnt activity following

metformin treatment. In contrast, MYC protein

expression was dramatically reduced by metformin,

despite a lack of change at mRNA level (He et al.,

1998). In the study with ApcMin/+ mouse model,

metformin did not alter MYC RNA expression, and

its effect on MYC protein was not tested (Tomimoto

et al., 2008). Our data suggest that the beneficial

activity of metformin is not by inhibition of MYC

transcription, but by inhibition of its translation.

Indeed, MYC is one of the most well-known oncoge-

nes, and comprehensive analysis of gene expression in

TCGA clearly revealed a pivotal role for MYC in

CRC (Cancer Genome Atlas, N, 2012; Gabay et al.,

2014).
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MYC is a desired but so far ‘undruggable’ target for

cancer treatment. Recent insights into its regulation

have led to therapeutic opportunities, as exemplified

by reducing MYC transcription using BRD4 inhibitors

(Filippakopoulos et al., 2010; Mertz et al., 2011).

Compared with these emerging drug developments,

metformin has several advantages as a MYC inhibitor:

(a) As a first-line drug treating diabetes, metformin is

safe, and its side effects are well characterized. (b)

Metformin robustly reduces the protein synthesis of

MYC, irrespective of its transcriptional status in many

CRC cell lines. In contrast, the BRD4 inhibitor JQ1

only reduces MYC in certain CRC cell types. (c) The

short half-life of MYC protein sensitizes it to protein

synthesis inhibition. (d) The oral route of metformin is

ideal for diseases of the digestive system. (e) Met-

formin’s effect on MYC is independent of glucose, and

not a mere consequence of compensated glycolysis of

cells in response to energy loss. These features make

metformin an attractive candidate for potential use

against many MYC-driven cancers.

Several previous studies reported MYC regulation

by metformin, via either microRNA regulation in

breast cancer or protein degradation in prostate cancer

(Akinyeke et al., 2013; Blandino et al., 2012). We

acknowledge that metformin is a potent drug with

multiple mechanisms, which can be context dependent.

However, under the conditions used in our experi-

ments, metformin did not affect MYC 3-UTR lucifer-

ase reporter activity. This was further substantiated by

Fig. 6. Metformin preferably represses the protein synthesis of cell cycle-related genes. (A) Venn diagram of proteins that are

downregulated by metformin (2 mM for 24 h) in four CRC cell lines identified with reverse-phase protein array (RPPA). (B) Validation of the

overlapping downregulated proteins by western blot. (C) Enrich analysis of the 16 downregulated proteins by RPPA revealed an enrichment

of proteins that regulate cell cycle. (D) Metformin reduces the expression of p-MNK1, concordant with the downregulated MNK1 by

metformin in RPPA analysis. (E) A schematic diagram presenting the proposed mechanism of metformin effects.
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the fact that metformin reduced ectopic expression of

MYC from a pLOC expression vector lacking MYC

UTR region. Furthermore, we did not observe evi-

dence of increased MYC protein degradation using

multiple strategies. These discrepancies with previous

studies may be due to different drug concentrations,

time points, and cell types. Nevertheless, considering

the well-established effect of metformin in mTOR sig-

naling and protein synthesis, it is reasonable that pro-

tein synthesis of MYC would be affected.

We found that metformin causes a broad downregu-

lation of protein synthesis only in a subpopulation of

cells, whereas CHX reduced protein synthesis in the

whole-cell population. We suspect that a subpopula-

tion of cells at a specific cell cycle stage is preferen-

tially targeted by metformin. Indeed, RPPA data

revealed an enrichment of cell cycle-related genes

including CDC25C and PLK1 in proteins downregu-

lated by metformin, echoing a previous report showing

selective translational inhibition of cell cycle regulators

such as cyclin E2 and ODC1 by metformin in breast

cancer cells (Larsson et al., 2012). However, the gene

sets regulated by metformin in the previous report are

different from the ones that we identified, and whether

these genes represent a context-dependent ‘eIF4E-sen-

sitive’ signature (Jia et al., 2012; Yanagiya et al., 2012)

remains unresolved.

We propose a mechanism of mTOR-4EBP-eIF4E

axis in regulating translation of MYC and other genes.

Interestingly, 4EBP1 has been reported to selectively

block translation of genes encoding cell cycle regula-

tors (Larsson et al., 2012). In addition, MNK1, which

regulates eIF4E phosphorylation via binding to

eIF4G, is one of the downregulated proteins identified

by RPPA in our study (Pyronnet et al., 1999; Ueda

et al., 2004). It is possible that MNK1 further regu-

lates eIF4E activity via a positive feedback loop in

controlling translational initiation. We were surprised

that this potent regulation of cap-dependent transla-

tion could have such a strong effect on subsets of

mRNA, but this selectivity has been observed before

(Yi et al., 2013). Cell cycle genes including MYC usu-

ally possess complex 50-UTR structure and are more

dependent on the unwinding activity of the DEAD-

box RNA helicase eIF4A (Koromilas et al., 1992;

Morita et al., 2015). As a key component of the eIF4F

heterotrimeric complex, eIF4E not only performs cap-

binding function, but also stimulates eIF4A helicase

activity to initiate translation (Feoktistova et al.,

2013). It is thus possible that the increased availability

of eIF4E selectively stimulates the translation of genes

that depend on the unwinding activity of eIF4A, such

as cell cycle regulators, but not that of housekeeping

genes (Feoktistova et al., 2013). MYC is a strong tran-

scriptional activator of eIF4E (Jones et al., 1996), and

thus, by targeting this eIF4E-MYC feed-forward loop

(Fig. 6E), metformin could achieve cell cycle arrest

and growth inhibition of CRC cells (Lin et al., 2009).

Additionally, other eIF4E-independent mechanisms

have recently been shown to sustain translation for

some mRNAs (Guan et al., 2017; Lee et al., 2015;

Uniacke et al., 2012). Indeed, eIF4A inhibition has

been reported as a promising strategy to reduce MYC

expression in colorectal tumors (Wiegering et al.,

2015), and the possibility of metformin directly inhibit-

ing eIF4A activity cannot be excluded.

Our study has some limitations. First, although

MYC is involved in regulating cancer metabolism, the

detailed metabolic changes caused by metformin have

not been determined in the current study. Second, we

acknowledge that inhibition of protein synthesis by

metformin affects multiple proteins, with MYC being

just one of them. Third, our findings that metformin

regulates the protein synthesis of MYC have not been

validated in mouse models. The previous work using

ApcMin/+ mice revealed AMPK activation and mTOR

inhibition, and lack of change on MYC mRNA

expression in the polyps of metformin-treated animals

(Tomimoto et al., 2008). Whether the expression of

MYC protein is reduced in such model remains to be

determined.

5. Conclusions

Our study demonstrated a mechanism of metformin

action in CRC, by blocking translation of the MYC

oncogene. This mechanism not only explains the bene-

ficial effect of metformin in CRC prevention, but also

provides additional molecular insight into why high

MYC-expressing cancer cells, which are usually ‘ad-

dicted’ to MYC, are more sensitive to metformin treat-

ment (Javeshghani et al., 2012). The use of metformin

might thus represent a combinatorial strategy to

reverse the resistance of CRC cells with high MYC

levels to chemotherapeutic drugs.
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Fig. S1. Metformin inhibits the growth of HCT116

p53�/� and DLD1 cells.

Fig. S2. Metformin arrests cells at G1 phase without

increasing subG1 population of HCT116 and HT29

cells.

Fig. S3. Metformin inhibits colony formation of

HCT116 p53�/� and DLD1 cells in a dose-dependent

manner.

Fig. S4. Metformin reduces both the RNA and protein

levels of MYC in RKO cells.

Fig. S5. Metformin activates AMPK as reflected by

increased p-ACC expression.

Fig. S6. (A) Protein synthesis kit flow chart. (B) Puro-

mycin pull-down assay flow chart.

Fig. S7. Metformin blocks protein synthesis in HT29

cells by OPP-based protein synthesis assay.

Fig. S8. Metformin blocks protein synthesis in HT29

cells by ribopuromycylation assay.

Fig. S9. Metformin does not reduce the RNA expres-

sion level of RPPA candidate genes as shown by qRT-

PCR, at the condition that reduces their protein

expression in HCT116 and HT29 cells.

Table S1. List of reagents.

Table S2. List of primers.

Table S3. RPPA analysis identified 16 proteins that

are downregulated by metformin in all four cell lines,

including the already demonstrated MYC protein.
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