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E‑cadherin on epithelial–mesenchymal 
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Abstract 

Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis 
and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to 
explore its mechanism and find action targets. Epithelial–mesenchymal transition (EMT) is associated with tumor 
malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article 
reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline 
opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
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Introduction
Thyroid cancer (TC) is one of the common head and 
neck tumors, which incidence rate increasing year by 
year. According to statistics, thyroid cancer is the fourth 
most common cancer in women, accounting for 5.7% of 
female malignant tumors [1]. The pathological classifi-
cation included differentiated thyroid carcinoma (DTC) 
and undifferentiated thyroid carcinoma (UTC). Both of 
them can have lymph node metastasis, lung metastasis 
and are more likely to have distant and early bone metas-
tasis, which seriously affect the prognosis and survival of 
patient [2]. Therefore, it is of great significance to explore 
the regulatory mechanism related to the metastasis of 
thyroid cancer. In the related studies of tumors, it has 
been shown that the malignant expression, metastasis 
and invasiveness of tumors are all related to epithelial–
mesenchymal transition (EMT) [3].

Epithelial–mesenchymal transition (EMT) means that 
epithelial cells, stimulated by certain cancer-promoting 
factors, lose epithelial characteristics and their stable cell 
structure is destroyed and their cytoskeleton recombines, 

which leads to the weakening or disappearance of inter-
cellular connections, eventually causing cells to express 
interstitial strong interstimic properties [4]. EMT in 
malignant tumor is a necessary process of metastasis and 
invasion, participating in the growth and development of 
cells and regulating the adhesion of cells [5–8]. The hall-
marks of EMT are low expression of the epithelial marker 
E-cadherin, and high expression of the mesenchymal 
markers N-cadherin and Vimentin [4].

E-cadherin, also known as epithelial-cell adhesion 
molecule cadherin-1 (Cadherin1, Cdh1), is one of the 
classical adhesion proteins in the calcium adhesion 
superfamily, mainly expressed in epithelial cells [8, 9]. 
E-cadherin maintains cell adhesion and epithelial struc-
tural integrity, becoming a key marker for regulating the 
occurrence of EMT [5, 7, 10]. Based on its physiological 
characteristics, the increased invasiveness of epithelial 
tumors is related to the low expression of E-cadherin [8]. 
For example, in colorectal cancer, gastric cancer, breast 
cancer and other cancers, E-cadherin has been identi-
fied as a tumor suppressor gene affecting epithelial mes-
enchymal transformation, and is closely related to TNM 
stage, lymph node metastasis, extracapsular invasion 
and low disease-free survival rate [11, 12]. Moreover, 
in recent years, there are more and more studies on the 
inhibition of epithelial mesenchymal transformation and 
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metastasis of thyroid cancer by regulating the expression 
of E-cadherin [13, 14]. It has been found that E-cadherin 
in TC is regulated by many signal pathways such as Wnt, 
PI3K/AKT, ERK1/2 and NF-κB. Therefore, the expres-
sion and regulation mechanism of E-cadherin in TC are 
reviewed signaling pathway of regulating E-cadherin, 
immune microenvironment, RNA and extracellular 
matrix to provide targets and new ideas for early diagno-
sis and treatment of thyroid tumors.

Signaling pathway of regulating E‑cadherin
Wnt/β‑catenin signaling pathway involved 
in the regulation of E‑cadherin
Wnt signal pathway includes classical Wnt pathway 
(Wnt/β-catenin), non-classical Wnt pathway and Wnt/
Ca2+ pathway, among which Wnt/β-catenin signal path-
way is the most widely and fully studied pathway [15]. 
The activity of Wnt/β-catenin signaling pathway depends 
on the content of β-catenin in the cytoplasm [16]. When 
the Wnt signal is activated, the Wnt ligand binds to the 
receptor complex and then inhibits the phosphorylation 
of β-catenin, resulting in the accumulation of β-catenin 
in the cytoplasm and nuclear transfer to regulate the 
downstream target genes to affect the apoptosis and pro-
liferation of the cells [16, 17].

The activation of Wnt/β-catenin signal pathway pro-
motes the proliferation and stem cell characteristics of 
TC [15]. FOXN3, acting as anti-tumor effect in thyroid 
tumors, inhibit the occurrence of EMT by down-regu-
lating the expression of β-catenin protein and up-regu-
lating the expression of E-cadherin [18]. However, after 
activating the Wnt/β-catenin signaling pathway, invasion 
and migration as well as the occurrence of EMT are pro-
moted, manifested by low expression of E-cadherin [19].

In addition to participating in gene regulation as an 
intermediary of Wnt signal pathway, β-catenin binds to 
E-cadherin in the absence of Wnt signal, and forms adhe-
sion junctions (adherin junction, AJ) with α-catenin and 
γ-catenin connections, thus playing the role of adhesion 
and maintaining cell-to-cell stability [20, 21]. Abnor-
mal expression of the complex formed by β-catenin and 
E-cadherin is closely related to the metastasis and recur-
rence of thyroid tumors [22]. A clinical study has shown 
that abnormal expression of β-catenin and deletion of 
E-cadherin on membrane in PTC patients, which may 
lead to low survival rate of patients [23]. However, when 
the above abnormal conditions are improved, the tumor 
grows slowly [23]. The use of Wnt inhibitor (DKK-1) can 
cause the accumulation of β-catenin in the cytoplasm and 
promote its formation of a complex with E-cadherin to 
maintain cell stability and inhibit the occurrence of EMT, 
thereby reducing cell migration and invasion [24]. On the 
other hand, the abnormal expression of them is related 

to the malignant degree of TC. Studies have shown that 
as the degree of differentiation increases E-cadherin is 
mainly expressed in the membrane and cytoplasm, while 
β-catenin is expressed in the cytoplasm, while E-cadherin 
and β-catenin almost disappear in poorly differentiated 
TC, which is related to the higher the TNM [25].

PI3K/AKT and MAPK signaling pathway involved 
in the regulation of E‑cadherin
PI3K/AKT is a common intracellular signal pathway. It 
has been found that PI3K/AKT signal pathway not only 
participates in cell proliferation and apoptosis, but also 
plays an important role in tumor growth, metastasis and 
tumor angiogenesis [26, 27]. It has been found that the 
activation of P13K/AKT signal pathway is related to the 
low expression of E-cadherin in thyroid carcinoma [28]. 
The PI3K/AKT signaling pathway in thyroid carcinoma is 
closely related to the high expression of oncogenes and 
the low expression of tumor suppressor genes. For exam-
ple, the high expression of oncogenes HPIP, CUX2, miR-
107 and miR-144-3p in thyroid carcinoma can activate 
PI3K/AKT signal pathway and down-regulate the expres-
sion of E-cadherin to induce the occurrence of EMT 
[29–32]. However, the low expression of tumor suppres-
sor genes miR-146b and ING5 in thyroid carcinoma can 
not inhibit the expression of PI3K/AKT, which leads to 
the low expression of E-cadherin and induces the occur-
rence of EMT [33, 34].

From the above, it can be seen that there are many 
genes activating PI3K/AKT signal pathway in thyroid car-
cinoma. The mechanism of PI3K/AKT regulating E-cad-
herin can be summarized as follows. It has been found 
that activating AKT can destroy the adhesion junction 
structure (composed of E-cadherin, α-catenin, β-catenin 
and p130Cas proteins) between tumor cells, showing low 
expression of related proteins [35]. And the activation 
of AKT can directly induce the expression of Snail and 
then down-regulate the expression of E-cadherin to pro-
mote EMT [35]. The activation of AKT also exists in the 
thyroid carcinoma, and its activation can lead to the low 
expression of E-cadherin to induce EMT [36, 37]. The 
activation from gene to PI3K/AKT signal pathway seems 
to be closely related to PTEN and BRAF (V600E). PTEN 
and BRAF (V600E) are confirmed mutant genes in thy-
roid carcinoma, and they are closely related to the clini-
cal manifestations of thyroid carcinoma malignancy [36, 
38, 39]. PI3K molecules are divided into three categories, 
among which class I PI3K is closely related to carcino-
genesis [40, 41]. The phosphorylation of PIP2 located on 
the inside of the lipid membrane promotes the phospho-
rylation of PIP3 and after AKT is recruited to the mem-
brane, they bind to form p-AKT and finally activates the 
PI3K/AKT signal pathway [42].
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PTEN, as a tumor suppressor, can reverse the phos-
phorylation of PIP3 and the recruitment of AKT to the 
inner membrane by terminating the signal transduction 
of PI3K/AKT pathway [26, 43, 44]. For example, inhibi-
tion of miR-146b in TC can promote the expression of 
PTEN, then inhibit AKT activation, and promote the 
expression of E-cadherin to inhibit EMT [45]. In addi-
tion, other genes such as F-box11, HPIP and DTX can 
regulate E-cadherin through the PI3K/AKT pathway, but 
the mechanism is still unclear [29, 46, 47]. In addition, 
some studies have found that the activation of PI3K/AKT 
signal pathway may be related to M2-like macrophages 
[48]. It has been found that when M2-like macrophages 
are co-cultured with thyroid cancer cells, the secretion 
of IGF-1 and IGF-2 by M2-like macrophages can activate 
PI3K/AKT signal pathway to reduce the expression of 
E-cadherin, thus induce the occurrence of EMT [48].

Mitogen-activated protein kinase (MAPK) pathway is a 
pathway that activates mitogen-activated protein (MAP) 
through a phosphate cascade signal cascade (Ras/RAF/
MEK/ERK), via intracellular cascade proteins that even-
tually transfer signals into the nucleus to participate in 
process such as embryonic development, cell differentia-
tion, proliferation and death [49, 50]. It has been found 
that RET and TRK rearrangement, BRAF and Ras muta-
tions and B-Raf kinase in MAPKs signal pathway in TC 
lead to abnormal expression of MAPK/ERK, JNK/SAPK 
and p38/MAPK signal pathway [50, 51]. Silencing Kin17, 
DPP4 in TC can inhibit ERK1/2, JNK1 and P38, while 
promote E-cadherin, which may be related to the inhi-
bition of MAPK/ERK, JNK/SAPK and p38/MAP signal 
pathways [52, 53]. MAPK/ERK signal pathway in TC can 
inhibit the expression of E-cadherin by promoting the 
expression of transcription factors Snail and slug [54].

TGF‑β involved in the regulation of E‑cadherin
In tumors, TGF-β functions are complex and diverse 
due to different backgrounds and stages of tumors, not 
only acting as a suppressor to inhibit the occurrence and 
development of tumor cells in the early stage, but also to 
inhibit the invasion and metastasis in the late stage [55, 
56]. TGF-β pathway includes classical and non-classical 
pathways, among which the classical TGF-β pathway 
plays a major role in the occurrence of EMT. Relevant 
literature has shown that at the later stage of tumor pro-
gression TGF-β affects the metastasis of tumor cells by 
down-regulating the expression of E-cadherin [57, 58]. 
For example, in thyroid follicular carcinoma membra-
nous mice (ThrbPV/PV mice), the continuous activa-
tion of TGF-β/Smad2/3 signal pathway can reduce the 
expression of E-cadherin, thus promoting the occurrence 
of EMT [59, 60].

The classical TGF-β signal pathway is called SMAD 
signal pathway, in which TGF-β ligand specifically binds 
to T-β RI and T β-RII receptors, transmits the signal 
into the cell, induces the phosphorylation of Smad2 and 
Smad3 and forms a complex with Smad4 to aggregate 
into the nucleus and regulate the expression of target 
genes, while Smad6 and Smad7 inhibit the generation 
of classical TGF-β signaling pathways by competitively 
binding T-βR to Smad2 and Smad3 [56]. It has been 
found that TGF-β regulates the expression of E-cadherin 
in TC through a variety of ways, thus participating in the 
invasion and metastasis of TC. For example, an experi-
ment showed that by down-regulating Smurf, the ubiq-
uitin ligase of Smad3, the TFG-β/SMAD pathway could 
be affected, thus down-regulating the expression of EMT 
marker E-cadherin in thyroid cancer [61]. Another study 
found that E-cadherin was inhibited by affecting the 
expression of TGF-β/Smad2/3 pathway [62, 63]. It may be 
related to the regulation of the transcription factor Snail 
and the tumor suppressor gene BRAFV600E. A study 
has shown that the BRAFV600E gene mutation in thyroid 
tumors can down-regulate the expression of E-cadherin 
and induce the occurrence of EMT, and its abnor-
mal expression in thyroid tumors increases the secre-
tion of TGF-β, which further induces the occurrence of 
EMT and invasion, manifested as decreased expression 
of E-cadherin [64, 65]. However, the effect of TGF-β is 
extremely complex. Unlike the previous study, a clinical 
study found that the metastasis of thyroid tumors was 
not related to TGF-β but might be related to the overex-
pression of BRAFV600E in thyroid tumors and the acti-
vation of the transcription factor Snail, which decreased 
the expression of E-cadherin and ultimately promoted 
the occurrence of EMT [65]. This further indicates that 
TGF-β-related pathway can regulate the expression of 
E-cadherin and affect the occurrence of EMT, and thus 
affect the metastasis of thyroid cancer (Fig. 1).

E‑cadherin is related to the immunity/EMT/
metastasis axis
The progression of malignant tumors is associated with 
inflammatory responses, and inflammation may be a key 
precipitating factor for the development of EMT during 
tumor progression [66, 67]. Tumor cells form a chronic 
inflammatory microenvironment by recruiting immune 
cells and inflammatory cytokines [68]. In the chronic 
inflammatory microenvironment created by tumor cells, 
some immune cells and soluble inflammatory mediators 
can recruit immunosuppressive cells, damage immune 
cells or reduce the immunogenicity of cancer cells, thus 
enabling abnormal cells to escape immune surveillance 
to form tumors [69]. Immune cells promote the diffusion 
and migration of tumor cells through matrix remodeling, 
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induction of tumor cell invasion, migration and vascular 
infiltration [68]. This may be the mechanism of inflam-
matory reaction involved in tumorigenesis and develop-
ment. Inflammatory cells continuously produce cytokines 
that induce EMT, while EMT can promote cancer cells 
to produce pro-inflammatory cytokines, which support 
each other and promote tumorigenesis and metastasis 
[70]. This form that EMT/inflammation axis. It can be 
seen that there is a bidirectional regulation between EMT 
and the immune system, and immune escape and immu-
nosuppression play a key role in in tumor microenviron-
ment. So this will be the focus of the next exposition.

Immune cells involved in the regulation of E‑cadherin
Innate immune cells involved in the regulation of E‑cadherin
There are many kinds of innate immune cells in the 
immune microenvironment created by tumor tissues, in 
which macrophages and mast cells play an important role 
in the invasion and migration of thyroid cancer. As the 
largest number of immune cells in tumor microenviron-
ment, macrophages can promote the malignant progres-
sion of tumor [71, 72]. Existing studies have shown that 
the polarization of macrophages into M2 macrophages 
(MA-TAMs) in tumor microenvironment is closely 
related to the malignant phenotype of tumor [70]. M2 
macrophages can stimulate angiogenesis, inhibit T cell 
activity and release soluble cytokines to make tumor cells 
aggressive [73, 74]. A large number of studies have shown 
that M2 macrophages induce EMT by down-regulating 

the expression of E-cadherin [75–77]. In thyroid tumors, 
M2 macrophages can down-regulate the expression of 
Ecadherin, promote cell invasion and migration, and 
induce the occurrence of EMT [78]. There are a large 
number of inflammatory factors (such as TGF-β, TNF-α 
and IL) in the polarized environment of macrophages 
[76, 79]. These inflammatory factors can down-regulate 
the expression of β-catenin, thus inhibit the activation 
of Wnt/β-catenin signal pathway, and then up-regulate 
the expression of Ecadherin and inhibit EMT [77, 80]. In 
addition, the up-regulation of Wnt1 and Wnt3a is also 
present in the M2-TAM environment of thyroid can-
cer [78]. After gene knockout of Wnt1 and Wnt3a, the 
expression of β-catenin can be significantly decreased, 
then the Wnt signal pathway can be inhibited to up-regu-
late E-cadherin to inhibit EMT [78].

In addition, it was found that mast cells could also pro-
mote the occurrence of tumor EMT [81–83]. Mast cell 
infiltration also exists in the microenvironment of thy-
roid carcinoma, and the infiltration density of mast cells 
is closely related to the invasion of thyroid carcinoma 
[84]. Soluble factors (such as IL-8, IL-6, TBF- α, CXCR-1) 
and VEGF secreted by thyroid cancer cells can activate 
macrophages and recruit macrophages into tumor tissues 
[84, 85]. On the other hand, the activated macrophages 
secreted vesicles and mast cell chymase (MCC) could 
degrade the extracellular matrix and inhibit the expres-
sion of E-cadherin by overexpression of transcription fac-
tors Slug and Snail, thus inducing the occurrence of EMT 

Fig. 1  Pathway diagram for regulation of E-cadherin in thyroid cancer
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[28, 86]. Or activated mast cells regulate the occurrence 
of EMT by regulating downstream kinases and promote 
tumor invasion and metastasis [85]. Thus a biphasic reg-
ulatory loop is produced in the local part of the tumor. 
A study shows that mast cells activated by thyroid cancer 
may induce EMT through IL-8-p-Akt-Slug signal path-
way, and transcription factor Slug activation can inhibit 
the expression of E-cadherin and promote EMT [85]. 
To sum up, there is a biphasic regulatory loop between 
thyroid carcinoma and mast cells in the tumor. The 
cytokines produced by cancer cells activate mast cells, 
and mast cells promote the expression of transcription 
factors by activating downstream kinases, thus affecting 
the occurrence of EMT by regulating Ecadherin.

Adaptive immune cells involved in the regulation 
of E‑cadherin
Many studies have shown that chronic inflammation 
has a pro-cancer effect in TC [87]. Immunosuppression 
of tumor infiltrating lymphocytes has been confirmed in 
advanced cancer. Similarly, this feature also exists in thy-
roid cancer. Through the immunohistochemical study of 
the tumor tissues of 74 patients with PTC, it was found 
that the characteristics of EMT (positive expression of 
E-cadherin, negative expression of Vimentin) and down-
regulation of CD8+ surface markers occurred at the 
same time, and the characteristic changes were more 
significant in patients with lymph node metastasis and 
lymphatic invasion [88]. Through literature search, this 
process may be related to PD-1, a programmed death 
protein [89]. PD-1 exists on the surface of activated T 
cells, which mainly inhibits the activity of immune cells 
and regulates peripheral immune homeostasis [89]. Its 
ligand, programmed cell death ligand (PD-L1), as an 
immune checkpoint, its activation with EMT and its role 
in inhibiting tumor immune response have been con-
firmed [90–92]. There is also overexpression of PDL1 in 
thyroid carcinoma. It was found that there was a signifi-
cant positive correlation between the positive expression 
rate of PD-L1 and mesenchymal phenotype in patients 
with PTC (P = 0.012), and the correlation between PD-L1 
and EMT was enhanced in patients with recurrent and 
metastatic disease [88]. The induction of PD-L1 over-
expression in 8505C and K1 cells could significantly 
promote the occurrence of EMT, showing the transfor-
mation of pebble-like cells into extensive spindle-like 
cells [88]. The above results show that the activation of 
EMT is related to PD-L1. This regulatory process, on the 
one hand, is due to the fact that the promoter region of 
PD-L1 gene contains Zeb1 binding sites [93, 94]. Zeb1 
is a transcription factor of E-cadherin, which can induce 
EMT and maintain the stem cell nature of cancer cells 
to contribute to tumorigenesis [93]. A study found that 

Zeb1 can relieve the inhibition of PD-L1 in tumor cells, 
resulting in a decrease in the number of CD8+ T cells 
and an increase in the percentage of exhausted CD8+ T 
cells, leading to immunosuppression and metastatic nod-
ules [95]. Another part of the view is that the occurrence 
of thyroid cancer EMT is related to glycosylation. A large 
number of studies have confirmed the key role of abnor-
mal glycosylation in malignant tumors [96, 97]. Similarly, 
there is abnormal glycosylation in thyroid carcinoma, 
which may be related to FTU8, a fucosyltransferase [98]. 
FTU8 can mediate core fucosylation and thus partici-
pate in tumor invasion and metastasis [99, 100]. Through 
the study of lung and colon cancer, it was found that the 
up-regulation of FUT8 could increase the core fucosyla-
tion level of E-cadherin and decrease the expression of 
Ecadherin protein [99, 101]. There are N-glycosylation 
sites on the surface of PD-1 protein on T cell surface 
[102]. Through FTU8 gene knockout or drug inhibition 
of FUT8 activity, it can inhibit the expression of PD-1 
on T cell surface, thus promote the activation of T cells 
and inhibit tumorigenesis [102]. Through the preparation 
of FUT8 gene knockout and FUT8−/− mouse model, it 
was found that the activity of FUT8 regulates the total 
amount of E-cadherin [99]. Therefore, the regulation of 
EMT by T cells through E-cadherin may be related to 
PD-1, and this regulation process may be related to tran-
scription factor Zeb1 and glycosylation.

Inflammatory factors involved in the regulation 
of E‑cadherin
Inflammatory cytokines play an important role in main-
taining inflammatory microenvironment and tumor pro-
gression [103]. Abnormal expression of different types of 
cytokines can be found in different types of cancer. For 
example, in breast cancer [104], lung cancer [105] and 
liver cancer [106], the abnormal expression of inflam-
matory cytokines is closely related to the progression 
of tumor migration. There is also abnormal expression 
of inflammatory cytokines in thyroid carcinoma. The 
expression of IL-34 was up-regulated in serum and tis-
sue samples of PTC, and the overexpression of IL-34 
was significantly correlated with distant metastasis and 
lymphatic metastasis of tumor [13, 107]. Tumor necro-
sis factor-α (TNF-α) and interferon-γ (IFN-γ) can induce 
the malignant development of thyroid cancer cell line, 
change the cell morphology from fat circle to spindle 
shape gradually, increase the invasion and migration abil-
ity of cells, decrease E-cadherin and increase the expres-
sion of N-cadherin and Vimentin at protein level [101, 
108]. After stimulated by TNF-α and IFN-γ, E-cadherin 
was located in the cytoplasm and N-cadherin was located 
on the cell membrane, and the cancer cells showed inter-
stitial characteristics [101]. A study found that IL-1a can 
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cause ultrastructural changes in thyroid follicular cells, 
reduce the tightness between thyroid epithelial cells, 
and lead to the disintegration of intercellular adhesion 
junction structure (AJ), composed of E-cadherin and 
α-catenin, β-catenin, γ-catenin [109]. Further study found 
that the decreased expression of E-cadherin protein in 
thyroid cancer cell lines stimulated by inflammatory fac-
tors may be related to the activation of transcription fac-
tors Snail, Slug, Twist1 and Zeb1 [14]. This regulatory 
process can inhibit the invasion and migration of thy-
roid cancer cells induced by inflammatory cytokines by 
using AKT, NF-κB and SATAT3 signaling pathway [14]. 
Nuclear factor kappa B (NF-κB) is a transcription fac-
tor that regulates apoptosis, inflammation and immune 
response [110]. With studies suggesting that NF-κB may 
be a key link between inflammation and cancer, it’s over-
activation is related to the proliferation, angiogenesis and 
metastasis of many malignant tumors and can serve as a 
potent inductor of EMT [110–112]. Similarly, the abnor-
mal activation of NF-κB in thyroid carcinoma has been 
shown to be related to tumor proliferation, invasion and 

migration [113, 114]. Through the study of NF-κB in 
other tumors, its regulatory mechanism may be related to 
the NK-b/Twist axis [115, 116]. After knockout of NF-κB, 
the proliferation and migration ability of cells stimulated 
by TNF-α decreased, and the expression of E-cadherin 
was up-regulated, N-cadherin and Twsit was down-reg-
ulated [115]. However, the inhibitory effect of knockout 
Twist was the same as before [115]. After the thyroid 
cancer cells were treated with TNF-α, the expression of 
Twist mRNA was up-regulated and then the expression 
of E-cadherin was down-regulated [116]. After the use 
of NF-κB inhibitor, the expression of Twist mRNA and 
protein was inhibited, and the expression of E-cadherin 
protein was up-regulated [116]. To sum up, inflamma-
tory cytokines may activate transcription factors through 
signal pathways, thus down-regulating E-cadherin from 
promoting the occurrence of EMT.

Table 1  The regulatory mechanism of miRNAs on E-cadherin in thyroid cancer cells

TCs thyroid cancer cells, H high expression, L low expression

miRNAs Status in TCs Cell line origin Regulation and control approach Evidence of regulating E-cadherin 
in TCs

References

miR-203 L TPC-1 Up-regulation of AKT Low expression of E-cadherin
Induction of EMT T

[118]

miR-597-3P L SW579 Targeted up-regulation of RAB23 Low expression of E-cadherin
Induction of EMT

[119]

miR-599 L TPC-1 Targeted inhibition of Hey2 to inhibit 
Notch signaling pathway

High expression of Snail and Slug, low 
expression of E-cadherin
Induction of EMT

[125]

miR-20b L K1, TPC-1 Up-regulating SOS1 and ERK2 to acti-
vate MAPK/ERK signaling pathway
(up-regulation of p-MEK1/2, p-ERK1/2, 
t-ERK2)

Low expression of E-cadherin
Induction of EMT

[128]

miR-199a-5p L 8505C, SW1736 Targeted up-regulation of Snail Low expression of E-cadherin
Induction of EMT

[127]

miR-199a-5p L b-CPAP, SW579 Targeted up-regulation of STON2 Low expression of E-cadherin
Induction of EMT

[129]

miR-215 L K1, b-CPAP, TPC-1, IHH4 Up-regulating ARFGEF1 to activate AKT/
GSK-3β signaling pathway (up-regula-
tion of p-AKT, p-GSK-3β)

High expression of Snail, low expression 
of E-cadherin
Induction of EMT

[130]

miR-451a L b-CPAP, KTC-1 Targeted up-regulation of PSMB8 Low expression of E-cadherin
Induction of EMT

[131]

miR-613 L K1, TPC-1, b-CPAP Targeted up-regulation of TAGLN2 Low expression of E-cadherin
Induction of EMT

[132]

miR-630 L SW1763, TPC-1 Activation of JAK/STAT3 signal path (up-
regulation of p-JAK、p-ATAT3)

Low expression of E-cadherin
Induction of EMT

[133]

miR-483-3p H 8580C, FRO Targeted inhibition of PARDS High expression of Snail, Slug, Zeb1 and 
Twist, low expression of E-cadherin
Induction of EMT

[124]

miR-31 L TPC-1, b-CPAP Up-regulating Sox11 to activate ERK 
and AKT signaling pathway (up-regula-
tion of p-ERK1/2, p-AKT)

Low expression of E-cadherin
Induction of EMT

[126]
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E‑cadherin is related to RNAs
MicroRNAsinvolved in the regulation of E‑cadherin
MicroRNAs (miRNAs or miRs) are non-coding small 
RNA that is transcribed from DNA into a precursor miR-
NAs (pri-miRNAs) in the nucleus and processed into 
mature miRNAs for export to the cytoplasm, where they 
can then degrade or regulate mRNA by targeting the 
3′-untranslated region, thereby regulating cell growth, 
cycle, apoptosis and other biological processes [52, 117]. 
MiRNA can be used as both a tumor suppressor gene 
and a tumor promoting gene to regulate the occurrence 
of tumor EMT in thyroid carcinoma. For example, over-
expression of miR-203, MIR-597-3p, MIR-200b, miR-122 
and miR-146b-5p significantly increase the expression of 
E-cadherin and decrease the expression of Ncadherin or 
Vimentin [118–122]. On the contrary, MiR-144-3p and 
miR-483-3p in thyroid carcinom, as an oncogene, is over-
expressed in PTC to reduce E-cadherin to induce EMT 
[123, 124].

Although miRNAs is abundant in thyroid carcinoma, 
its expression is high or low to regulate the expression 
of Ecadherin. The regulatory mechanism is that miRNA 
affects target gene transcription by binding to the 3′-UTR 
of target gene mRNA [52, 117]. For example, in TPC-1 
cells, miR-599 as a suppressor gene, up-regulation of its 
expression can be targeted to bind to the 3’-UTR of Hey2, 
thus down-regulating its expression [125]. Down-regula-
tion of Hey2 expression inhibits Notch signal pathway, 
suppresses the expression of transcription factors Snail 
and Slug, thus up-regulates the expression of E-cadherin 
and inhibits the occurrence of EMT [125]. MiR-483-3p 
inhibits the expression of PARD3 by targeting the 3′-UTR 
of it, and then up-regulates the expression of Snail, Slug, 
Zeb1 and Twist to inhibit the expression of E-cadherin 
and finally induce EMT [124]. MiR-31 upregulates the 
expression of E-cadherin through targeted inhibition 
of Sox11 to inhibit ERK and AKT signaling pathways, 
thus inhibiting EMT [126]. In addition, miR199a-5p can 
directly inhibit the expression of Snail to up-regulate the 
expression of E-cadherin and induce EMT [127]. Many 
other situations in which miRNAS regulates E-cadherin 
are shown in Table 1.

lncRNAs involved in the regulation of E‑cadherin
LncRNAs are a type of coding gene that transcribes > 200 
nucleotides in length and don’t encode protein, act-
ing as a separate transcriptional unit, an intron of an 
enhancer (ERNAs) or promoter [134]. Cancer is now 
thought to occur in association with genetic mutations, 
and since the coding genome accounts for less than 2% 
of all sequences, studies suggest that cancer may also be 
driven by aberrations in the non-coding genome [53]. 
lncRNAs participate in the regulation of tumor cell 

proliferation, growth inhibition, invasion and metastasis 
and EMT [53, 135]. In thyroid tumors, the regulation of 
EMT by lncRNAs is bidirectional. The overexpression of 
lncRNAs may lead to the low expression of E-cadherin in 
thyroid tumors and cancer cells, which can induce EMT, 
while the low expression of lncRNA may also occur the 
above process. For example, there are high expressions of 
lncRNA-HOTAIR, lncRNA-NORAD, lncRNA-linc00673, 
lncRNA-SLC26A4-AS1, lncRNA-ROR, lncRNA-PVT1, 
lncRNA-HOTAIR and other lncRNAs in thyroid can-
cer patients, which are positively correlated with tumor 
malignant phenotype and lymph node metastasis, while 
lncRNAs knockout in thyroid cancer cells can up-reg-
ulate the expression of E-cadherin protein and inhibit 
the occurrence of EMT [19, 136–140]. On the contrary, 
the low expression of lncRNA-CASC2 and lncRNA-linc 
00106 in thyroid carcinoma was positively correlated 
with lymph node metastasis, and up-regulation of lncR-
NAs could up-regulate the expression of E-cadherin pro-
tein and inhibit the occurrence of EMT [141–143]. In 
addition, the expression level of the same lncRNA is also 
different in different thyroid cancer tumors. For exam-
ple, the expression level of lncRNA-BANCR in bCPAP 
is lower than that of CAL-62, WRO and FTC-133 [144]. 
MALAT1 is highly expressed in PTC, as an oncogene to 
promote tumor EMT, and as a tumor suppressor gene to 
inhibit tumorigenesis in poorly differentiated and ana-
plastic thyroid carcinoma [145].

There are many kinds of lncRNAs, but the mecha-
nism of regulating E-cadherin can be summarized as 
the following three points. First of all, lncRNAs can 
play a sponge role on miRNAs to inhibit the expres-
sion of miRNAs, thus affecting the expression of down-
stream transcription factors by regulating related signal 
pathways to regulate the expression of E-cadherin, and 
finally regulate the occurrence of EMT. Overexpression 
of LncRNA-UCA1 can down-regulate the expression of 
transcription factor Snail by activating Hippo and JNK 
signal pathways, and up-regulate the expression of E-cad-
herin to inhibit the occurrence of EMT [146]. In addi-
tion, lnc-TUG1, lnc-NORAD and LINC02471 inhibit the 
expression of E-cadherin by regulating the expression of 
miRNAs and promoting the expression of transcription 
factors Snail, Slug and Zeb1, thus promoting the occur-
rence of EMT [136, 147, 148]. Secondly, lncRNAs can 
directly regulate the expression of tumor-related genes, 
and then regulate the expression of E-cadherin. For 
example, KLF-2-like factor 2 (KLLF2), as a tumor sup-
pressor gene, has low expression in thyroid carcinoma 
and is associated with lymph node metastasis, malignant 
histological type and high TNM stage [149]. LIN00673 
is highly expressed in thyroid carcinoma and knockout 
of LIN00673 can enhance the expression of KLF-2 and 
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increase the expression of E-cadherin, thus inhibit the 
occurrence of EMT [149]. On the contrary, CRABP2 
(retinoic acid binding protein 2) is a necessary protein 
for tumor growth [150]. Overexpression of LINC01816 
in thyroid carcinoma can target miR-34c-5p to act as a 
sponge, and then up-regulate the expression of CRABP2 
and inhibit the expression of E-cadherin, thus promot-
ing the occurrence of EMT [151]. Thirdly, LncRNAs can 
directly regulate the relevant signal pathways to regulate 
E-cadherin. The overexpression of lnc-BANCR in bCPAP 
cells can down-regulate the expression of E-cadherin 
and inhibit EMT by activating Raf/MEK/ERK signal 

pathway [144]. LncRNA-HOTAIR is highly expressed 
in thyroid carcinoma [19]. Inhibition of HOTAIR can 
decrease the expression of Wnt inhibitory factor (WIFI), 
up-regulate β-catenin, activate Wnt/β-catenin signal 
pathway, and then down-regulate E-cadherin to promote 
the occurrence of EMT [19]. On the contrary, knock-
out of LINC00106 gene can down-regulate E-cadherin 
and β-catenin, and induce the occurrence of EMT [152]. 
LINC00313 promotes the methylation of ALX4 promoter 
by recruiting methylated proteins, while LINC00313 
knockout can inhibit the methylation of ALX4 [153]. The 
accumulation of ALX4 in the cytoplasm can inactivate 

Table 2  The regulatory mechanism of lncRNAs on E-cadherin in thyroid cancer cells

TCs thyroid cancer cells, H high expression, L low expression

LncRNAs Status in TCs Cell line origin Regulation and control approach Evidence of regulating E-cadherin 
in TCs

References

UCA1 H TPC-1 Down-regulation of miR-15a to 
activate Hippo and JNK signaling 
pathways (up-regulation of p/t-MST, p/
tYAP, p/t-c-jun和p/t-JNK)

High expression of Snail and Zeb1, low 
expression of E-cadherin
Induction of EMT

[146]

TUG1 H FTC-133 Down-regulation of miR-145 High expression of Zeb1, low expres-
sion of E-cadherin
Induction of EMT

[147]

NORAD H K1, bCPAP, TPC1, NPA187 Down-regulation of miR-202-5p High expression of Zeb1, low expres-
sion of E-cadherin
Induction of EMT

[136]

LINC02471 H TPC-1, IHH4 Down-regulation of miR-375 High expression of Snail, low expres-
sion of E-cadherin
Induction of EMT

[148]

PAR5 L 8505C, FRO Up-regulation of EZH2 Low expression of E-cadherin
Induction of EMT

[143]

ZFAS1 H TPC-1 Inhibition of miR-373-3p/MMP-3 axis High expression of Snail and Slug, low 
expression of E-cadherin
Induction of EMT

[154]

LINC00637 H TPC-1, bCPAP Down-regulation of Kruppel-like factor 
2(KLF2)

Low expression of E-cadherin
Induction of EMT

[149]

LINC01816 H C643 Sponge action on miR-34c-5p to 
upregulate CRABP2

Low expression of E-cadherin
Induction of EMT

[151]

BANCR H bCPAP Activation of Raf/MEK/ERK (up-regula-
tion of p-c-Raf, p-ERK1/2, p-MEK1/2)

Low expression of E-cadherin
Induction of EMT

[144]

LINC00106 L bCPC, TPC-1 Down-regulation of β-catenin Low expression of E-cadherin
Induction of EMT

[152]

HOTAIR H TPC-1 Activation of Wnt/β-catenin (down-
regulation of WIFI, up-regulation of 
β-catenin)

Low expression of E-cadherin
Induction of EMT

[19]

LINC00313 H TPC-1, SW579 The methylated proteins (DNMT1 and 
DNMT3b) promoted the methylation 
of ALX4 to activate AKT-mTOR signal-
ing pathway (up-regulation of p-mTOR 
and p-AKT)

Low expression of E-cadherin
Induction of EMT

[153]

N384546 H KTC-1, bCPAP Activation of miR-145-5p/AKT (down-
regulation of miR-145-5p to activate 
Akt)

Low expression of E-cadherin
Induction of EMT

[140]

SLC26A4-AS1 L TPC-1 Activation of MAPK signal pathway 
(up-regulation of p-JNK1/2 and ERK, 
down-regulation of TP53)

Low expression of E-cadherin
Induction of EMT

[138]
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the AKT/mTOR signal pathway and down-regulate the 
expression of E-cadherin, thus promoting the occurrence 
of EMT [153]. In thyroid carcinoma, lncRNA-ZFAS1 and 
its transcription factor GREB3 are up-regulated [154]. 
GREB3 activates the expression of lncRNA-ZFAS1 and 
then targets to inhibit the expression of miR373-3p/
MMP-3 to up-regulation of Slug and Snail, and then 
down-regulation of E-cadherin to promote the occur-
rence of EMT [154] (Table 2).

E‑cadherin is related to extracellular matrix
Matrix metalloproteinases family (MMPs) involved 
in the regulation of E‑cadherin
Extracellular matrix participates in cell movement and 
apoptosis and provides cytoskeleton support, of which 
matrix metalloproteinases is the major components [155]. 
MMPs are zinc-dependent endopeptidases that degrade 
various protein components of the extracellular matrix 
(ECM) and are closely related to tumor invasion, metasta-
sis, and angiogenesis [156–158]. In the early growth phase 
of tumor, MMPs inhibitor restrain tumor growth and 
degrade it [159]. MMPs promote the development of EMT 
in tumor cells by regulating a variety of regulatory factors 
[157]. TGF-β can promote EMT in TC, manifested as low 
expression of E-cadherin, while inhibiting the expression of 
MMP-9 can inhibit the occurrence [160]. EGFR is related 
to angiogenesis and tumor growth. MMP-2/9 activates 
EGFR to regulate E-cadherin through ERK1/2 and AKT/
GSK3-β/β-catenin [161]. Twist (an E-cadherin transcrip-
tion factor) can induce the formation of actin enrichment 
membrane protrusions that recruit MMP-7, MMP-9 and 
MMP-14 on the membrane to degrade locally and destroy 
the cytoskeleton [162]. The above studies may be a power-
ful explanation for the regulation of E-cadherin by MMPs 
to promote tumor invasion and migration.

Different cadherins involved in the regulation 
of E‑cadherin
Cadherin is a Ca2+-dependent intercellular adhesion 
molecule, which acts as a bridge between cells in the 
extracellular matrix and participates in the regulation of 
tumor invasion, migration and angiogenesis [163]. E-cad-
herin (CdH1), as a tumor suppressor of EMT, has a sig-
nificant correlation with malignant phenotype, invasion 
and migration of tumor cells [164]. In addition, cadherin 
also includes CDH5 (VE-Cadherin), cadherin 6 (CDH6), 
cadherin 17 (CDH17), N-cadherin and so on, which play 
a similar role to E-cadherin in EMT, or regulate E-cad-
herin through some pathways.

Abnormal expression of N-cadherin in thyroid tumors 
significantly inhibits expression of E-cadherin, the con-
version of E-cadherin to N-cadherin is the key factor to 
promote the development of malignant tumors [6]. A 

study has shown that E-cadherin expression can be up-
regulated by inhibiting the expression of N-cadherin in 
thyroid tumors, possibly by promoting the expression of 
transcription factors Twist, Snail, and Slug to promote 
the occurrence of EMT and invasive migration [165]. 
Studies have shown that CDH16 appears to be another 
marker of EMT, regardless of E-cadherin negative or 
positive expression, CDH16 is negative and declined to 
a greater extent than E-cadherin [166]. RGD motifs in 
CDH17 and CDH5 promote tumor migration and inva-
sion by activating α2β1 integrin signal and CDH6 activat-
ing αIIbβ3 integrin signal [167, 168]. Placental adhesin 
(CDH3) promote the growth, migration and invasion of 
TC, which may play a role by up-regulating E-cadherin 
and down-regulating N-cadherin [169]. E-cadherin is not 
expressed in TPC1 and bCPAP, but N-cadherin is down-
regulated by silencing CDH6 to inhibit EMT, which may 
be regulated by the inhibition of forming autophagosome 
by the combination of LC3 and Flag-GABARAP after 
CDH6 silencing [170].

Conclusion
The article reviews the expression of E-cadherin in TC 
and the related pathways regulating its expression. To 
sum up, it can be concluded that the low expression of 
E-cadherin in thyroid carcinoma promotes the invasion 
and migration of tumor cells, thus inducing the occur-
rence of EMT. The signaling pathways regulating this 
process include Wnt/β-catenin, PI3K/AKT, MAPK and 
TGF-β signaling pathways, as well as tumor microen-
vironment regulated by immune system, miRNA and 
lncRNA regulating oncogenes or tumor suppressor 
genes and extracellular matrix. By inhibiting E-cadherin, 
it reduces the contact between cells, induces the occur-
rence of EMT, and leads to the movement of thyroid 
tumor. From in vitro and in vivo studies, E-cadherin may 
be a promising biomarker for malignant phenotypes such 
as tumor invasiveness, distant metastasis and lymph 
node metastasis, which may make E-cadherin an indica-
tor of early diagnosis and prognosis of TCs.

As the adhesion between protein-dimensional cells on 
the membrane, E-cadherin surface molecules show dys-
function when tumor cells metastasize and decompose 
into molecules soluble in extracellular matrix and blood, 
so the changes of E-cadherin can be detected in patient’s 
serum [171, 172]. Serum E-cadherin is higher in thyroid 
papillary carcinoma than in benign nodules and normal 
tissues, while the expression of E-cadherin in thyroid 
papillary carcinoma was lower than that in paracancerous 
tissues, and it was significantly correlated with malignant 
phenotypes such as lymphatic metastasis and distant 
metastasis [158, 172]. And the low expression of E-cad-
herin in cancer tissues may be related to the activation of 
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its promoter methylation [13]. It has been found that thy-
roid cancers with lymphatic metastasis are more likely to 
have Ecadherin methylation and low expression of E-cad-
herin [13]. Thyroid tumors are divided into benign tumor, 
differentiated thyroid carcinoma, poorly differentiated 
thyroid carcinoma and undifferentiated thyroid carci-
noma according to the pathological types [62]. With the 
increase of malignant degree, the positive expression rate 
of E-cadherin decreases gradually, which is negatively 
correlated with higher clinical stage, distant lymph node 
metastasis, extracapsular infiltration and lower disease-
free survival rate [62, 173]. And in gastric cancer, breast 
cancer, ovarian cancer and other tumors also showed that 
the low expression of E-cadherin-induced EMT is related 
to the invasive characteristics of tumors, and become an 
independent prognostic factor of tumor patients [75]. 
Interestingly, in one study, there was no difference in the 
expression of E-cadherin among neoplastic, adenoma 
and non-neoplastic lesions [174]. We think this may be 
the result of the small sample size.

To sum up, it can be seen that the occurrence of malig-
nant expression type of thyroid carcinoma is significantly 
related to the low expression of E-cadherin, whether 
in  vivo or in  vitro. This suggests that E-cadherin may 
provide a basis for the diagnosis of thyroid tumors and 
assist in malignant degree and pathological classification. 
By reviewing the mechanism of regulating E-cadherin, 
E-cadherin may provide a new idea for the treatment of 
thyroid cancer, which provides a wealth of options for 
treatment of TC, not limited to traditional surgery, radi-
oiodine therapy and radiochemotherapy [175]. From 
E-cadherin to explore the treatment strategy of thyroid 
cancer include the following three aspects: (1) block the 
transduction of signal pathways related to the regula-
tion of E-cadherin in thyroid carcinoma; (2) inhibition 
of expression of transcription factors upstream of E-cad-
herin; (3) immune activation regulates the tumor micro-
environment of thyroid cancer.

The expression of E-cadherin is regulated by pathway 
inhibitors in thyroid carcinoma, which is mainly concen-
trated in Wnt/β-catenin, PI3K/AKT and MAPK signal 
pathways. The Wnt pathway inhibitor (DKK-1) reverses 
the deletion of E-cadherin expression in PTC cell mem-
brane, thereby inducing EMT [176, 177]. High expres-
sion of β-catenin and abnormal localization of nucleus 
and cytoplasm were found in thyroid carcinoma [178]. 
In one study, the non-steroidal anti-inflammatory drug, 
sulinda hypothesis, decreased the expression of β-catenin 
in thyroid cancer cells and showed nuclear transfer to 
the cell membrane [178]. In addition, it was also found 
that the process of reversing β-catenin was only found 
in 8505murine C and KTC-1 cells with BRAF (V600E) 
mutation [178]. β-Catenin inhibitors can obviously 

inhibit the resistance of thyroid cancer cells to BRAF 
(V600E) inhibitors, thus inhibiting the occurrence of 
EMT [179]. Inhibition of EMT by inhibiting RTK and 
Akt/mTOR signaling pathways and promoting the 
expression of E-cadherin in thyroid cancer cells [180]. 
In clinical studies, kinase inhibitors Sorafenib, Vande-
tanib, Cabozantinib and Lenvatinib have been approved 
by FDA and the European Medical Association (EMA) 
for the treatment of medullary thyroid carcinoma and 
advanced RAI-R (refractory to radioiodine therapy) and 
poorly differentiated thyroid cancer [181]. A phase I 
clinical study found that thisirolimus, a mTOR inhibitor, 
enhanced the limited rate of sorafenib in the treatment 
of recurrent or metastatic radioiodine refractory thyroid 
cancer (RAITC), compared with sorafenib alone [182]. 
A retrospective study of clinical mortality and causes 
of death in patients with thyroid cancer found that the 
mortality rate of patients using tyrosine kinase inhibitor 
(TKI) (15.8%) was lower than that of patients undergo-
ing surgery (64.2%), radiotherapy (53.3%) and cytotoxic 
chemotherapy (24.2%) [183]. Surgery and radiotherapy 
combined with TKI was the most effective, and the con-
comitant median survival rate was 34.3  months [183]. 
Distant metastasis has become the main cause of thyroid 
surface death in patients without TKI treatment [183].

A large number of studies have shown that malignant 
phenotype can be improved by regulating the expres-
sion of upstream transcription factors of E-cadherin. As 
an oncogene of thyroid cancer, BRAFV600E mutation 
can induce the development of thyroid cancer [39]. The 
carcinogenicity of BRAFV600E is caused by the activa-
tion of MAPK signal pathway [184]. The study found that 
thyroid cancer patients’ with BRAFV600E mutation were 
treated with BRAFV600E inhibitor (Dabrafenib) com-
bined with MEK inhibitor (Trametinib) symptoms were 
relieved and the median survival time was increased [185, 
186]. In addition, the efficacy of Dabrafenib combined 
with Trametinib in metastatic non-small cell lung can-
cer (NSCLC) and advanced melanoma with BRAFV600E 
mutation has also been confirmed, which can prolong the 
median progression-free survival (PFS) and global sur-
vival (OS) of tumor patients with less physical toxicity 
[187, 188]. In addition, there is the regulation of tumor 
suppressor factor PTEN. Resveratrol can promote PTEN 
expression and nuclear metastasis in thyroid cancer cells, 
and at the same time induce E-cadherin transfer from 
cytoplasm to cell membrane to enhance intercellular 
adhesion and inhibit the occurrence of EMT [189]. Green 
tea extract (EGCG) and Combretastatin A4 can directly 
inhibit transcription factors Snail, Slug, Zeb1 and Twist1 
to up-regulate the expression of E-cadherin and inhibit 
the occurrence of EMT [190, 191].
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It can be seen from the above that immunosup-
pression and immune escape are the main causes 
of immune system EMT in thyroid cancer. Then the 
corresponding immunotherapy includes immune 
checkpoint inhibitors and immunization. Immuno-
suppressive molecule PD-1 is overexpressed on acti-
vated T cell membrane and inhibits T cell function by 
binding to its ligand [89]. Therefore, the specific rec-
ognition of T cells to tumor immune antigens can be 
improved by immune checkpoint inhibitors in patients 
with T cell inflammatory phenotype [192, 193]. The 
therapeutic value of anti-PD-1 and PD-L1 drugs, 
pembrolizumab, nivolumab and atezolizumab, in 
recurrent or metastatic head and neck squamous cell 
carcinoma, non-small cell lung cancer and melanoma 
has been confirmed, showing that the patients have 
higher survival rate and safety [194–196]. And a meta 
analysis confirmed that anti-PD-1 drugs (nivolumab, 
pembrolizumab, atezolizumab) did not cause seri-
ous organ-specific immune adverse events such as 
pneumonia, colitis and hypophysitis, on the contrary, 
tumor-targeted drugs and chemotherapeutic drugs 
had a higher risk of organ-specific immune adverse 
events, with a high security [197]. The concentra-
tion of macrophages in tumor microenvironment was 
positively correlated with extraglandular invasion and 
extracapsular invasion, and negatively correlated with 
survival rate [198]. Therefore, inhibiting the polari-
zation of macrophages may be a therapeutic idea. It 
has been found that zoledronic acid (ZA) can inhibit 
M2-like polarization of macrophages and inhibit the 
characteristics of thyroid cancer stem cells and the 
occurrence of EMT, which is characterized by low 
expression of stem cell markers CD133 and Oct4 and 
high expression of E-cadherin [199].

It can be seen from the above that in thyroid carci-
noma, the expression of E-cadherin is affected by reg-
ulating signal pathways, upstream genes and immune 
microenvironment, thus affecting the occurrence of 
EMT. There are a variety of methods, whether they 
have been clinically proven, or are still in the experi-
mental stage, or are simply studied in  vitro. These 
results suggest that it is a new idea to regulate E-cad-
herin to affect the occurrence of thyroid EMT and 
improve the malignant expression of tumors.

Overall, the malignant phenotype of thyroid cancer is 
negatively correlated with E-cadherin, and its complex 
regulatory mechanisms and widely involved cytokines 
may provide new ideas for the early diagnosis, progno-
sis and treatment of thyroid cancer.
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