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In biomedical research, cell analysis is important to assess physiological and
pathophysiological information. Virtual microscopy offers the unique possibility to study
the compositions of tissues at a cellular scale. However, images acquired at such high
spatial resolution are massive, contain complex information, and are therefore difficult
to analyze automatically. In this article, we address the problem of individualization of
size-varying and touching neurons in optical microscopy two-dimensional (2-D) images.
Our approach is based on a series of processing steps that incorporate increasingly
more information. (1) After a step of segmentation of neuron class using a Random
Forest classifier, a novel min-max filter is used to enhance neurons’ centroids and
boundaries, enabling the use of region growing process based on a contour-based
model to drive it to neuron boundary and achieve individualization of touching neurons.
(2) Taking into account size-varying neurons, an adaptive multiscale procedure aiming at
individualizing touching neurons is proposed. This protocol was evaluated in 17 major
anatomical regions from three NeuN-stained macaque brain sections presenting diverse
and comprehensive neuron densities. Qualitative and quantitative analyses demonstrate
that the proposed method provides satisfactory results in most regions (e.g., caudate,
cortex, subiculum, and putamen) and outperforms a baseline Watershed algorithm.
Neuron counts obtained with our method show high correlation with an adapted
stereology technique performed by two experts (respectively, 0.983 and 0.975 for the
two experts). Neuron diameters obtained with our method ranged between 2 and
28.6 µm, matching values reported in the literature. Further works will aim to evaluate
the impact of staining and interindividual variability on our protocol.

Keywords: neuron individualization, touching neurons, size-varying neurons, microscopic images, macaque brain

INTRODUCTION

The brain is the main part of the central nervous system and controls most body functions. It is
constituted by a network of billions of neurons that range from 5 to 30 µm in diameter (Andersen
et al., 2016). Information about the number, morphology (size and shape, etc.), and distribution
(density and orientation, etc.) of neurons is essential to study brain development in health and
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disease. Such studies include development, aging (Williams and
Herrup, 1988; Pakkenberg and Gundersen, 1997; Larsen et al.,
2006; Pelvig et al., 2008; Karlsen and Pakkenberg, 2011; Walløe
et al., 2014), cyto-architecture (Andrey et al., 2010; Andersen
et al., 2016), and neurodegeneration (Thu et al., 2010; Waldvogel
et al., 2015). However, these studies are challenging because of
the varying size and color intensity of the neurons, their high
density in certain regions, and the large information content of
cellular-scale images. In this article, we define touching neurons
as neurons that are in contact and/or neurons that seem to
overlap because of the implicit projection of a three-dimensional
(3-D) sample into a two-dimensional (2-D) image. In practice,
stereology (Gundersen, 1986; West et al., 1991; Jelsing et al., 2006)
is the reference method used by neurobiologists to estimate the
number of cells in a region of interest (ROI). This technique
is robust and unbiased when properly used but relies on long
and tedious manual interventions. Moreover, the accuracy of the
measurement depends mainly on three factors: (1) the complexity
of the anatomical regions (cell density and organization), (2) the
parameters of the method (such as the number or the size of
sections to be considered and sampling of the optic dissectors
that are necessary to be adjusted), and (3) the experience of the
operator in stereology.

Today, more advanced techniques and more exhaustive
studies on cell individualization are under development using
new automated image processing methods. Conversely, to
stereology, which takes into account the whole thickness of a
sample and can deal with cells that are only partially embedded
in the field of view, image processing methods only have access
to flattened 2-D images. Mathematical morphology (Nedzved
et al., 2000; Shu et al., 2013) can be applied to segment partially
touching cells using the opening operation or the ultimate
residues, but only strives in low-density regions. Approach based
on concavity detection (Bai et al., 2008; Kothari et al., 2009;
Zhang et al., 2013; Qi, 2014; Riccio et al., 2019) allows concave
points on the contours of touching cells to be detected. Touching
cells can be optimally separated using ellipse registration or a
distance transformation algorithm, but false concave points due
to noise are often present. It is not possible to apply this method
to high-density cases where concavities may not be present.
Region growing (Zucker, 1976; Adams and Bischof, 1994)
can separate touching cells if appropriate seeds are detected.
Otherwise, the non-detection or the overdetection of seeds will
lead to, respectively, undersegmentation or oversegmentation.
The Watershed algorithm is widely used to separate touching
cells (Cousty et al., 2009) but easily generates oversegmentations
and undersegmentations mainly due to noise in the images. To
alleviate oversegmentation, algorithms have been proposed to
select appropriate initial seeds (Yang et al., 2006; Lee et al., 2013;
Shu et al., 2013; Dewan et al., 2014; Xu et al., 2014). Likewise,
if appropriate initial contours are obtained, active contours can
also avoid oversegmentation (Li et al., 2008). Graph-cut methods
(Daněk et al., 2009; Al-Kofahi et al., 2010; Lou et al., 2012) are
also popular today because they are robust to noise and integrate
visual information and topological constraints. Nevertheless,
these methods do not solve the problems of oversegmentation
and undersegmentation even in simple cases where only a few

cells are aggregated. The iCut algorithm (He et al., 2015) was
proposed to individualize touching cells but fails to separate
densely clustered cells in very dense regions [e.g., dentate gyrus
(DG), a subregion of the hippocampus] due to the absence of
concave points. In addition, this method produces non-natural
regular individualization results because of the a priori fixed cell
size. In recent years, the emergence of deep learning techniques
has led to several applications for the analysis of complex cells
of histology sections (Kainz et al., 2015; Zhang et al., 2015; Xie
et al., 2016). In Kainz et al. (2015), a function of the distance to
the center of the closest cell is designed to identify cell centers.
However, a parameter corresponding to the average object size
needs to be fixed a priori and cannot be adapted, making it
poorly adapted to size-varying cells or very dense regions. A Fully
Convolutional Regression Network (FCRN, Xie et al., 2016) was
proposed to perform a regression of a cell spatial density map,
providing an estimate of the number of cells. Nevertheless, the
model considers a fixed model of Gaussian at the center of each
cell (with σ = 2) that cannot be adapted to size-varying cells
either. Furthermore, the authors reported that their method gives
incorrect prediction in the case where a roughly rounded cell
is clumped with four or more cells. Yet, regions like the DG
contain thousands of aggregated cells. Deep learning, in addition,
requires a large number of manually segmented training images
and is computationally expensive. So far, a limited number of
methods have been proposed for individualizing touching cells
due to the complexity of the problem and the diversity of
the configurations (cell type, immunohistochemistry staining,
and digitization systems, etc.). In the case of a large number
of aggregated neurons (e.g., DG), none of these methods can
produce satisfactory results. Furthermore, most of the previous
studies have been performed on specific data presenting stable
object size or density that make these methods neither generic
nor adapted to size-varying objects such as neurons.

This article reports a new image processing protocol
aiming to automatically individualize size-varying and touching
neurons and offers a rigorous and extensive validation. The
experiment was performed on macaque brain sections stained
by immunohistochemistry using the neuronal nuclei (NeuN)
antibody. Noise in the digitized images was reduced by Gaussian
filtering. Due to the large uncertainty about neuron sizes, this
denoising step should be self-adaptive. Through an original
enumeration approach, values of the Gaussian filter width were
tested in a realistic range, and the optimal one was selected
when locally stable individualization results were produced at the
cellular level. Neuron center location and boundary information
were enhanced by min-max filtering (You et al., 2016). Finally,
neuron individualization was performed using a contour-based
model. The individualization results obtained in this study are
promising. The F-score of neurons counting using our approach
is equal to 0.816 ± 0.062 in the ROIs and can achieve a higher
score of 0.905 ± 0.001 in the subiculum. To the best of our
knowledge, the proposed method presents the unique ability to
process massive touching neurons in the DG with an F-score
superior to 0.85. Moreover, the proposed method was ultimately
compared with an adapted stereology technique, which is the gold
standard technique used in biology. The obtained results show
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a high linear correlation with stereology (respectively, 0.983 and
0.975 for the two experts) which makes our approach promising
for further biological studies.

Our contributions are as follows. (1) We proposed an original
multiscale protocol to individualize size-varying and numerous
touching neurons. (2) We built three reliable image datasets that
are large, highly variable, and representative of the complexity
of the macaque brain (anatomical regions, neuron density,
neuron size) from 17 major anatomical regions. (3) We manually
generated four large reference databases as ground truth with
the contributions of five experts in the domain of biology
and image processing (segmentation and counting). (4) The
proposed method was compared with Watershed visually and
quantitatively with several indexes. (5) Originally, the proposed
method was compared with adapted stereology.

MATERIALS AND METHODS

Biological Material
All animal studies were conducted according to French
regulations (Directive 2010/63/EU–French Act Rural Code
R 214-87 to 131). The animal facility is authorized by
veterinarian inspectors (authorization no. D 92-032-02) and
complies with Standards for Humane Care and Use of
Laboratory Animals of the Office of Laboratory Animal Welfare
(OLAW–no. #A5826-01).

This work was performed on a 9-year-old healthy adult male
cynomolgus macaque, Macaca fascicularis. After euthanasia, its
brain was extracted from skull and frozen. The brain was then
cut into 40-µm-thick serial coronal sections. Eight interleaved
series were produced, leading to 0.32-mm interspace between
two consecutive sections of a series. About 133 brain sections of
one series were stained using a neuronal marker NeuN. These
sections were digitized using a whole-slide imaging bright field
scanner (Axio Scan.Z1, Zeiss) with an in-plane resolution of
0.22 µm (×20 magnification). In the current work, a subset of
three brain sections, the 81st, the 91st, and the 101st section
(noted Nos. 81, 91, and 101; Figure 1), along the rostro-caudal
axis from the frontal pole to the caudal end of the cerebral cortex
were selected and processed. They are representative of the most
frequent neuron distributions found in the entire brain. They
contain 17 major anatomical regions (Supplementary Table 1):
cortex, hippocampus, thalamus, and so on. Each digitized brain
section corresponds to about 140 GB of data.

Datasets
As the staining protocol was performed simultaneously for all
analyzed histological sections, the staining is assumed to be
similar among the sections treated, without bias in staining
intensity. Sections Nos. 81, 101 were selected for learning
segmentation of neuronal staining and section No. 91 for testing
the individualization method. Then, three different datasets were
produced for this study.

To learn how to segment neuronal staining, a segmentation
dataset of a hundred representative images (512 pixels × 512
pixels) from sections Nos. 81, 101 were extracted

(Supplementary Figures 1–3 and Supplementary Table 2)
and manually segmented into three classes (neuronal staining,
non-stained tissue, and background) by an expert.

To validate the individualization method, an individualization
dataset of 58 images (5,000 pixels × 5,000 pixels) extracted from
section No. 91 (Supplementary Figures 4, 5 and Supplementary
Table 3) presenting different neuron densities and different
anatomical regions was created. In these images, each neuron was
manually identified by an expert by a point in its center, noted
centroid whose intensity is the darkest among its neighbors,
providing information about the location and the number of
neurons (about 0–4,000 neurons per image).

To compare our method with stereological neuron counting,
an anatomical stereology dataset including eight large images
(including from 3 × 106 to 1.2 × 108 pixels) selected from
six anatomical regions presenting a wide range of neuron
densities were generated (Supplementary Figure 6). Neuron
counting methods based on 2-D image processing deal with
flattened images (single focus setting), which do not allow us
to differentiate entire neurons present in the histological section
from partial neurons produced at the surface of the section during
the cutting process. We chose the optical dissector method as a
reference to evaluate our methodology, but we did not take into
account dead zones to be able to compare the two approaches. In
this way, it was possible to evaluate the individualization process,
but a small bias was introduced in the counting process, possibly
resulting in overdetection due to partially embedded neurons.
Two biologist experts estimated the number of neurons on these
images directly under a microscope (Leica DM6000) with the
software Mercator (Explora Nova, Supplementary Figure 7)
using an adapted stereology technique.

The histological sections were stained by NeuN whose
expression is present in the nucleus as well as in the cytoplasm
of the neurons. The staining is darker in the nucleus and lighter
in the cytoplasm. Figure 2 shows the transverse profiles of pixel
intensity in three histological images ranging from low to high
neuron densities. Neurons stained by NeuN are considered to be
compact in this study (disk shape approximation). The reverse
intensity of the transverse profile was considered to be similar to a
Gaussian distribution. Therefore, we modeled this spatial profile
by a Gaussian distribution with σn as parameter, which can be
seen as the probability density of a pixel being a neuron pixel. σn
can be evaluated by the diameter d of a neuron of interest (NOI)
according to the three-sigma rule (Pukelsheim, 1994):

Pr (µ− 3σn ≤ x ≤ µ+ 3σn) ≈ 0.9773

2× 3σn + 1 ≤ d
(1)

where µ is the expectation, interpreted as neuron centroid, and
σn is the spatial standard deviation, related to the neuron size. x
is an observation from Gaussian distributed random variable.

Considering that the diameter of the largest neuron is 30 µm
(Andersen et al., 2016) (about 136 pixels at × 20 magnification),
we calculated that the value of σn is inferior to 23 pixels according
to the spatial resolution used in this work. Taking into account
the appropriate sampling for computation test, we investigated
integer values of σn ranging from 1 to 23 pixels.
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FIGURE 1 | (A) Location along the rostro-caudal axis of the three selected coronal sections (sagittal view). A, anterior; P, posterior. (B) Image of brain section No. 91
of 230,000 pixels × 188,000 pixels (50.74 mm × 41.33 mm), ∼145 GB.

FIGURE 2 | Transverse profiles of pixel intensity (B1–B3) in three histological images from anatomical regions of thalamus (A1), cortex (A2), and dentate gyrus (DG)
(A3).

To segment individual neurons, the general idea was to
first extract pixels corresponding to the neuron class and then
separate touching neurons, which can be transformed into a
problem of detection of the centroids of the neurons. Prior to the
detection, a previous denoising step was performed by applying
Gaussian filter parameterized by σ. Local minima corresponding
to expected centroids can then be detected by the proposed
min-max filter, which is able to enhance in a robust way the
information of the centroids as well as the contours of neurons
(see section “Centroid Detection Based on Min-Max Filter”). The
choice of the parameter σ influences the final detection result.

A small value of σ cannot remove all of the noise leading to
the overdetection of the centroids by min-max filter, whereas
a large value of σ will over smooth the image leading to the
underdetection of the centroids. We supposed in this paper that
the centroids can be correctly detected when the parameter of
the Gaussian filter is adapted to that of Gaussian model of the
NOI considered. Thus, the parameter σ of the Gaussian filter was
defined by the σn estimated on the NOI. In the case of touching
neurons, the estimation of σn was calculated by analyzing all
of the individualization results, associated to all possible values
of σ (ranging from 1 to 23 pixels). We assumed that σn
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was the one associated with the local stable individualization
result. In practice, this was obtained by considering at least two
consecutive σ, which gave stable individualization results (see
section “Estimation of the Optimal σ”). Once the optimal σ to
be used for each neuron was estimated, we applied the adaptive
Gaussian filter to reduce noise to detect centroids of neurons
of different sizes, and we performed the final individualization.
The general workflow of the proposed methodology is presented
in Figure 3.

Tissue Segmentation
A Random Forest (RF) model (Breiman, 2001), including 100
decision trees for tissue segmentation, was generated using the
segmentation dataset, which was divided into two subsets, a
learning set and a validation set. Seventeen features (R, G, B, H,
S, V, X, Y, Z, L∗, a∗, b∗, M, V, LBP10, LBP40, and LBP63) were
studied to produce the RF model. Thereinto, four main color
spaces defined by CIE (Commission Internal de l’Eclairage) were
considered. They are RGB (Red, Green, and Blue), HSV (Hue,
Saturation, Value), XYZ (one CIE color space, which represents
perceptual uniformity), and L∗a∗b∗ (a typical CIE color space

transformed non-linearly from XYZ) (Cheng et al., 2001). M and
V are, respectively, the mean value and variance of gray-level
intensity computed in a cross of 10 pixels. Local binary pattern
(LBP) is a texture feature (Wang and He, 1990; Ojala et al.,
2002) computed in a disk. The radius of this disk is fixed
to 10, 40, and 63 pixels in this study, which correspond to
the radiuses of small, average, and large neurons. To produce
the RF model with optimal features while keeping satisfactory
segmentation performance, we selected four features, L∗, M, V,
and LBP40, which were progressively selected while keeping the
best candidate based on successive tests performed from the
entire set of features. This selection of features was confirmed in
previous work, aiming to objectively determine optimal features
and which pointed out that numerous combinations were
able to produce proposer segmentation (Vandenberghe et al.,
2015; Bouvier et al., 2018). This strategy of selection provided
relevant, limited, and intelligible features compared to deep
learning techniques, which can be assimilated to black boxes.
Previous works performed on histological sections supported
our choice as well based on the robustness of this approach
(Vandenberghe et al., 2015, 2018).

FIGURE 3 | Global strategy to perform the individualization of neurons.
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The individualization dataset was then segmented into three
classes based on the RF model produced. In practice, a median
filter (7 pixels × 7 pixels) was applied to reduce impulsional
noise and to regularize neuron contours in binary images. Then,
connected components presenting an area inferior to a third of
the surface of the smallest neuron (estimated to 127 pixels) were
removed. This step can possibly remove partial neurons detected,
as their size is insufficient to be counted. The binary image of
neuron class produced was noted by Im.

Selection of the Optimal σ for Each
Expected Neuron
The following procedure was performed on each connected
component, which was calculated based on Im.

As neuron size is variable in the brain (ranging from 5 to
30 µm in diameter), it is important to estimate the optimal σ of
the Gaussian filter to be applied to properly detect the centroids
of size-varying neurons in multiple brain regions using min-
max filter. The parameter of the optimal σ of Gaussian filter was
estimated in the following three steps.

Centroid Detection Based on Min-Max Filter
The detection of neuron centroids was performed on the
grayscale image Ig , which is the average of R, G, and B channels
of the original color image (Hanbury, 2008). The grayscale image
was filtered with a Gaussian kernel (Igf ), and non-neuron pixels
were masked out (Igfm). This image was used as an input to an
original min-max filter (You et al., 2016) resulting in an extrema
map (Ie). Briefly, for each pixel o of Igfm, let D(r, o) be the disk (not
including o) of radius r centered on o, N(D) the number of pixels
in D(r, o), Max(o) the number of pixels whose intensity value in
D(r, o) is inferior or equal to Igfm(o) and Min(o) the number of
pixels whose intensity value is superior to Igfm(o). The calculated
value was then:

Ie (o) =
Max (o)−Min (o)

N (D)
(2)

Consequently, pixels whose value is −1 are defined as minima in
the local disk while those whose value is 1 are defined as maxima.
r was fixed to 10 pixels corresponding to the expected minimum
neuron radius (2.5 µm). The two-step process (Gaussian filtering
combined with min-max filtering) can be repeated iteratively n
times to refine the extrema map. For densely clustered neurons,
performing this process one time is not sufficient to distinguish
them since their staining intensities are too similar or even equal
to extract ideal minima. In addition, in a few cases, if the intensity
of one neuron is entirely higher than that of its neighboring
neurons, its corresponding minima could not be determined.
On the contrary, multiple iterations would lead to excessive
enhancement since equation (2) is iteratively computed in the
disk of fixed radius r. Therefore, a compromise needs to be found.
n, the number of iterations, was set to n = 2 (see section “Number
of Iterations–n”). For a given value of σ, pixels of value −1 were
selected as neuron centroids, and each centroid was assigned a
unique label (id).

Neuron Individualization by Competitive Region
Growing
Neuron individualization was performed based on the use of a
discrete contour-based model. Contours were initialized as r0-
pixel-radius (1<r0<10) circles centered on each centroid, and
all pixels inside the contours were assigned with their centroids’
label (id). As the intensities of neuron boundaries in Ie are
close to its maxima, we proposed to give each contour point
an expanding speed that depends on the contour curvature and
Ie’s intensity. If the contour curvature on a point is smaller
and/or the Ie’s intensity on a point is darker (distant from the
boundary), the expansion speed should be faster, and vice versa.
Let p be a contour point, κ(p) the curvature-dependent term, h(p)
the intensity-dependent term, and o the position of the neuron
centroid. The next position p’ of p was calculated as:

−→

op
′

=
−→op +

−→op
op
× κ

(
p
)
× h

(
p
)

(3)

Let k(p) be the contour curvature at point p and c a predefined
curvature chosen by the user. K(p) was calculated by equation
(1), making the contour expanding for curvatures smaller than c
(k(p) < c) and shrinking for curvatures greater than c (k(p) > c),
which was calculated as:

κ
(
p
)
= c− k

(
p
)

(4)

The intensity-dependent term was inspired by the work of
Perona and Malik (1990). Let t be a coefficient empirically set to
0.8× max(Ie). h(p) was calculated as:

h
(
p
)
= exp

−( Ie
(
p
)
+ 1

2t

)2
 (5)

After each progression, the contour was smoothed by a mean
filter. It was implemented for each contour point by taking the
average position information of its two adjacent neighbor points.
Then, the distance between two consecutive points p and q was
examined; if it was superior to a predefined maximal distance
dmax, new points were interpolated automatically according to:

N =
−→pq

dmax
− 1

−→opi =
−→op +

−→pq
N + 1

× i

1 ≤ i ≤ N (6)

where N represents the number of new points to interpolate, and
pi is the ith point to interpolate.

Pixels around each contour point p within dmax distance were
examined. Those pixels nearer to their centroid compared to p
and not yet labeled were assigned their centroid’s id.

All cell contours in a connected component produced during
neuron class segmentation were simultaneously expanded, and
contour crossing was forbidden. The possibility to perform
individualization on connected components makes it possible
to massively parallelize the process. In our experiment,
we fixed the number of expanding iterations at 100. This
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number can be arbitrarily high and should be chosen so
that the computation time is low enough to enable the
contours to reach every neuron boundary. When several
cell contours were expanded too close, the new expansion
location may jump into another cell. It was forbidden,
and the expansion stopped. At the end of this process,
unlabeled pixels may exist, and they were assigned to a
label according to their neighbors in a 3 × 3 window by
majority voting.

Estimation of the Optimal σ

This individualization method using a single σ-fixed parameter
for the entire dataset has resulted in overindividualization and
under individualization due to inappropriate value of σ to treat
neurons presenting different sizes. A multiscale strategy was
thus integrated in this work to deal with this major issue.
We then tested all possible values of σ to obtain information
related to centroids, labels, and contours of neurons, and we
estimated the optimal σ for every expected neuron inside each
connected component. We analyzed the relationship between
σ-dependent contour image and the map of accumulated
contours calculated by summing all σ-dependent contours to
estimate the optimal value of σ for an expected neuron. Our
hypothesis was that consistent consecutive values of σ should
produce similar or close contours that will be accumulated in
the same location.

Figure 4 shows the individualization results depending
on σ values. Figure 4A presents the original image of a
connected component including three neurons. Figures 4B–J
display the σ-dependent label images overlapped with detected
centroids. Figures 4N–V display the σ-dependent contour
images. Figure 4M is the map of accumulated contours,
and Figure 4K is the map of the optimal σ determined.
Figure 4W illustrates the individualization result produced by the
proposed method. In Figure 4I, close individualization results
corresponding to the same number of neurons detected were
obtained for consecutive values of σ ranging from 8 to 11. It was
defined as a stable state (E). Figure 4J presents another stable
state for σ ranging from 12 to 23. In this example, the stable states

present when σ varies from 8 to 11 (E1, Figure 4I) and from 12 to
23 (E2, Figure 4J).

Next, we analyzed the σ-dependent neuron contours. The idea
was to first synthesize this information on a map of accumulated
contours (Figure 4M), which was calculated by summing σ-
dependent contour for all possible values of σ. Points of higher
intensity value in the map describe zones of higher probability
to be contours between touching neurons. Because a connected
component consists of at least one or multiple neurons and no
prior information about neuron size is known, intensity values
corresponding to real contours in the map may be different.
Therefore, to find the optimal contours, we proposed to study
all of the intensity levels that can be encountered in the map of
accumulated contours using a threshold s ranging from 1 to 23.
This approach enabled us to detect both small and high number
of consecutive values of σ producing stable contours of neurons.
A similarity criterion between the thresholded maps and each σ-
dependent contour result was then calculated according to the
Dice score:

Dice (σ, s) =
2× Nc (σ, s)

Ni (σ)+ Nas (s)
(7)

where Ni is the number of pixels in the σ-dependent contour
result, Nas is the number of pixels in s-dependent thresholded
map, and Nc is the number of pixels that exist in the same spatial
location in both σ-dependent contour result and s-dependent
thresholded map. This computation was performed at the
connected component level. The Dice score varied between 0 and
1 (perfect superimposition).

Table 1 lists Dice scores computed for the connected
component given in the example of Figure 4. The closer the
value is to 1, the more the σ-dependent contour is similar to
the s-dependent thresholded map. We then fixed a threshold of
Dice value (Sdice), which defines a sufficient similarity between
two contours. This threshold is calculated as follows:

Sdice = min
Ei∈E

∑
σ∈Ei

23∑
s=1

Dice (σ, s) /
(
23× Card (σ ∈ Ei)

)
Sdice = 0.8 if Sdice > 0.8

(8)

FIGURE 4 | σ-dependent individualization results. (A) Original image of a connected component including three neurons. (B–H) Individualization results for σ ranging
from 1 to 7. (I) Close individualization results for σ ranging from 8 to 11. (J) Individualization result for σ ranging from 12 to 23. (N–V) Contours of the individual
neurons corresponding to (B–J). The different colors in (B–J) represent the individual neurons, and the white points represent the detected centroids. The white
curves in (N–V) represent the contours of the individual neurons. (M) Map of accumulated contours, summation of all σ-dependent contours. Violet color represents
the minimum value (1 contour); blue-like color represents overlapped contours, which are candidate for individualization of touching neurons; and red color
represents the maximum value (23 cumulated contours). (K) Map of the optimal σ determined. The color blue represents σ = 5, and the red represents σ = 12. (W)
Illustration of the individualization results produced by the proposed method. The white points represent the detected centroids, and the red curves are the final
neuron contours.
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TABLE 1 | Table of Dice scores computed in the example of Figure 4.

s

σ 1 2 3 4 5 6 7 8 9 10–23

1 0.6634 0.7408 0.6359 0.5732 0.5502 0.5392 0.5241 0.5137 0.5109 0.5102

2 0.6296 0.7729 0.6745 0.6123 0.5896 0.5699 0.5554 0.5427 0.5408 0.5401

3 0.5716 0.7509 0.8048 0.7553 0.6984 0.6381 0.6135 0.6001 0.5970 0.5962

4 0.4932 0.6858 0.8009 0.8254 0.7872 0.7271 0.7008 0.6877 0.6844 0.6836

5 0.4629 0.6999 0.8355 0.8628 0.8246 0.7660 0.7404 0.7258 0.7224 0.7216

6 0.4352 0.6393 0.7781 0.8235 0.8209 0.7916 0.7737 0.7630 0.7595 0.7586

7 0.4017 0.5900 0.7378 0.8136 0.8315 0.8169 0.8191 0.8113 0.8078 0.8069

8 0.3713 0.5031 0.6486 0.7503 0.8113 0.8597 0.8663 0.8587 0.8551 0.8542

9 0.3570 0.4994 0.6329 0.7262 0.7892 0.8436 0.8658 0.8743 0.8771 0.8779

10 0.3617 0.4962 0.6413 0.7262 0.7844 0.8380 0.8551 0.8666 0.8694 0.8701

11 0.3527 0.4845 0.6263 0.7284 0.7950 0.8502 0.8728 0.8847 0.8860 0.8851

12–23 0.2906 0.4871 0.6630 0.7915 0.8793 0.9498 0.9782 0.9954 0.9991 1

The Dice scores vary between 0 and 1. The closer the Dice score is to 1, the more the σ-dependent contour is similar to the s-dependent thresholded map. Numbers
in blue are superior to Sdice and are local maxima for each fixed value of s. It represents the corresponding σ, which provides locally the best individualization result.
The detection of consecutive maximal Dice scores for a fixed σ corresponds to a locally stable segmentation, and this σ is a candidate (red color) for a subpart in this
connected component (neuron).

where Ei represents a stable state of the set E = {E1, E2, . . ., Em}
(m ≤ 11, theoretically up to 11 stable states). Card(σ ∈ Ei) is
the number of σ belonging to the state of Ei. 0.8 is a threshold
parameter defined empirically.

In Table 1, given a fixed s, the blue numbers are superior to
Sdice and are local maxima. It means that the corresponding σ

provides locally the best individualization result. Given a fixed σ,
when s increases, the effect of overindividualization is reduced,
but conversely the risk of under individualization increases. If
at least two consecutive maximal values of Dice exist, this σ is
selected as a candidate. In the example of Table 1, candidates for
the optimal σ are 5, 8, 9, and 12 (red color in σ column).

Then we generated the map of the optimal σ to save the
values of the optimal σ to be applied for each neuron when
applying adaptive Gaussian filtering. The pixels corresponding
to neurons in this map were initialized to σ = 23. The
study of the optimal σ was performed from the largest
value of σ candidate to the smallest. For each σ studied,
individualization results were compared with σ+1 result because
σ−1 result probably leads to overindividualization. If any of
the two NOIs individualized by σ and σ+1 were sufficiently
similar [Dice[NOIa(σ), NOIb(σ+1)] > 0.95, neuron region
reproducibility, equation (9)], this value of σ was selected as the
optimal one for the individualized NOI and was updated in the
map of the optimal σ. If not, σ kept its previous value.

Dice (NOIa (σ) , NOIb (σ+ 1))

=
2× S (NOIa (σ) , NOIb (σ+ 1))

S (NOIa (σ))+ S (NOIb (σ+ 1))
(9)

where NOIa(σ) and NOIb(σ+1) represent, respectively, one NOI
individualized by σ and σ+1, S[NOIa(σ)] and S[NOIb(σ+1)]
represent, respectively, the surface of NOIa individualized by σ

and the surface of NOIb individualized by σ+1, and S[NOIa(σ),
NOIb(σ+1)] is the number of pixels that exist in the same

spatial location in both two NOIs individualized. 0.95 was
defined empirically.

Note that neuron density in the DG is the highest in the
brain. As thousands of neurons are aggregated, the DG forms
an extremely large connected component. Moreover, the stained
neurons are similar to each other according to size in this region.
The detection of the neurons in DG region is therefore very
sensitive to the parameter σ of the Gaussian filter. However,
neuron sizes in the DG have a low variability, making it possible
to apply a fixed value of σ. To evaluate this σ, we selected
all of the images including the DG from the individualization
dataset (seven out of 58 images). Then, new binary images were
generated by keeping only the DG. With these binary images,
we computed the 23 σ-dependent individualization results using
the proposed method and the ground truth (manual counting
in the same regions). Using the evaluation method described
in section “Comparison of Automated and Manual Neuron
Counting,” the optimal σ was determined, and details will be
provided in section “Optimal σ for the Region of the DG.”
The DG represents a very small fraction of the total amount of
data processed and was the only region requiring the general
protocol to be adapted.

Adaptive Neuron Individualization Using
the Optimal σ
At this stage, we have defined an unsupervised strategy to
automatically determine the optimal σ to be applied to each
NOI. We then applied the two-step process (adaptive Gaussian
filtering using the map of the optimal σ as parameter and
min-max filtering) to detect the final centroids of neurons of
different sizes. The two-step process was applied twice (optimized
in section “Number of Iterations–n”) because according to
the experimental results on real data, one iteration led to
underdetection of centroids, and more than two iterations led
to overdetection. The detected centroids were selected as initial
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seeds for region growing process based on the discrete contour-
based model leading to the final individualization result.

Evaluation Methods of Neuron
Individualization
The proposed method was compared with the Watershed
algorithm (Cousty et al., 2009), which defines the watershed cuts
based on the principle of the drop of water on a topographic
surface. As Watershed is sensitive to noise, a preprocessing step
is necessary. We used Gaussian filter to reduce noise in the
images from the individualization dataset. The choice of σ is
crucial because we have no a priori information about neuron
size. Therefore, Gaussian filter with the optimal σ computed for
each NOI by the proposed method was applied before using
Watershed algorithm.

The quality of neuron individualization was evaluated by three
evaluation methods, which are introduced in the following parts.

Comparison of Automated and Manual Neuron
Counting
The relative count error ε was used to validate the neuron count
(Kothari et al., 2009). It was defined as the absolute difference
between the automated (Na) and expert count (Ne) divided by
the expert count:

ε =
|Na − Ne|

Ne
(10)

The smaller the relative count error is, the more accurate the
automated method count.

In addition, a complementary individualization score that
considers the colocalization of the neurons individualized using
the automated method compared to the centroids pointed
by the expert was defined. If exactly one expert centroid is
superimposed on the neuron area automatically detected, this
one is considered as a true positive. Otherwise, it is either
oversegmented (zeros expert centroid) or undersegmented (more
than 1 expert centroid). Recall (R), Precision (P), and F-score (F)
were calculated according to:

R =
Nt

Ne
; P =

Nt

Na
; F = 2

R× P
R+ P

(11)

where Nt is the number of correctly automatically segmented
neurons (true positive), Ne is the expert count, and Na is the
automatic counting of neurons.

The bigger the value of the F-score is, the better performance
the method reaches. This validation method was widely used in
previously published works (Al-Kofahi et al., 2010; Shu et al.,
2013; Zhang et al., 2013; He et al., 2015; Poulain et al., 2015;
Molnar et al., 2016).

These two validation methods are generic but do not take
into account certain properties of the segmented neurons (e.g.,
individualization quality and shape/contour accuracy). This led
us to propose a second method.

Study of the Location of the Centroids and the
Contours of the Neurons
The interest of this approach is to consider local spatial
information at the individual neuron level. The expert manually

segmented individual neurons by marking their centroids and
drawing their contours. Because this is a tremendous work
that is time-consuming, we proposed a trade-off approach to
produce preliminary results based on certain representative
images and to assess the quality using the following indexes:
the distances of the contours (Distance_mean_contour) or the
centroids (Distance_centroid) between automated and manual
individualization results, the overlapping fraction between
neurons automatically and manually individualized (Dicearea)
[equation (12)]. Based on the individualization dataset, a
representative subset of nine images corresponding to seven
anatomical regions (caudate, claustrum, cortex, hippocampus,
putamen, subiculum, and thalamus) was chosen. On each
image, 100 neurons were randomly selected and segmented
by an expert.

dmin(i, j) = min
j∈Cauto

{√
(ix − jx)2 + (iy − jy)2

}
dmean =

1
Nmanual

∑
#i∈Cmanual

#j∈Cauto

dmin
(
i, j
)

Dicearea =
2× Scommon

Smanual + Sauto

(12)

where Nmanual is the number of points in the contour drawn by
the expert, dmin is for each point i(ix,iy) of the contour drawn
by the expert, the minimal distance with the point j(jx,jy) in the
contour delineated by the automatic method, dmean is the average
distance between neuron contours segmented manually and
automatically, C represents neuron contour, Smanual is the neuron
surface derived from the contour drawn by the expert, Sauto is
the neuron surface segmented by the automatic method, and
Scommon is the overlapped area between manual and automatically
segmented neurons.

These metrics allow different automated individualization
methods to be efficiently evaluated. However, this work was
limited due to the important number of manual operations
required. A posteriori, the methods listed above (section
“Comparison of Automated and Manual Neuron Counting”
and section “Study of the Location of the Centroids and
the Contours of the Neurons”), respectively, implied to
manually deal with about 112,000 neurons in 50 images (5,000
pixels × 5,000 pixels) and 900 neurons in nine images in the
individualization dataset.

The gold standard method for estimating the number of cells
in an anatomical region is stereology. This led us to the third
evaluation method.

Comparison of Automated Neuron Counting Versus
Stereology
Biologists were asked to estimate the number of neurons in the
stereology dataset (eight regions) with quantitative stereological
counting techniques based on optical dissectors. Compared
to classical stereological approach, dead zone regions were
not considered to make possible to compare the results with
our counting methodology. Two experts counted the neurons
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in samples from every anatomical region directly under a
microscope using the software Mercator. Then, the number
of neurons was estimated according to the optimal sampling
fraction (two settings tested), and the two counting results were
compared (method vs. experts).

RESULTS

Before presenting the results, it is important to mention that
the individualization dataset consists of 58 images, in which
eight images were discarded. They concern four blurred images
(one image of caudate, two images of cortex, and one image of
putamen) for which the expert cannot give ground truth and four
images without staining tissue (two images of white matter and
two images of ventricle).

Parameters Optimization
Number of Iterations–n
Example of neuron detection with different number of iterations
is shown in Figure 5. We found that a consistent estimation
between the expert and automated method was obtained for two
iterations (10 centroids detected) because one iteration of min-
max map computation leads to underdetection of neurons and
three iterations to overdetection. The setting of two iterations of
min-max map computation enabled to detect small, blurred, as
well as bright neurons.

To generalize this illustrative example, we extended this
study to the individualization dataset. The relative count error ε

(Table 2) and the F-score (Figure 6) were computed by grouping
the images corresponding to the same anatomical regions (50
images grouped into seven groups: caudate, claustrum, cortex,
hippocampus, putamen, subiculum, and thalamus).

From Table 2, we observe that for all of the anatomical
regions, the smallest average value of the relative count error
(0.105 ± 0.114) is obtained for two iterations. Looking at the
results region by region, we find that in the cortex, the relative
error is similar for n = 2 and n = 3, but the standard deviation is
smaller for n = 2, which provides more stable individualization
results. In the claustrum and putamen, although the relative
count error is smaller for n = 3, the standard deviation is
greater. Considering the average relative count error, n = 2 is
consequently the optimal processing to perform.

TABLE 2 | Relative count error based on the number of iteration.

Anatomical regions Number of iteration – n

1 2 3

Caudate 0.163 ± 0.057 0.073 ± 0.073 0.111 ± 0.067

Claustrum 0.520 ± 0.051 0.074 ± 0.003 0.028 ± 0.015

Cortex 0.248 ± 0.055 0.051 ± 0.033 0.048 ± 0.045

Hippocampus 0.231 ± 0.179 0.186 ± 0.161 0.276 ± 0.221

Putamen 0.427 ± 0.183 0.085 ± 0.081 0.066 ± 0.086

Subiculum 0.185 ± 0.023 0.033 ± 0.026 0.047 ± 0.028

Thalamus 0.302 ± 0.050 0.167 ± 0.061 0.217 ± 0.063

Average 0.257 ± 0.131 0.105 ± 0.114 0.137 ± 0.167

The values in bold are the smallest average value of relative count error among
three iterations for each anatomical region.

FIGURE 6 | F-score computed with different number of iterations. The
F-score presents the biggest values for all anatomical regions when we
performed two iterations of the two-step process (adaptive Gaussian filtering
and min-max filtering).

For F-score based on Figure 6, the value for n = 2 provides the
best scores for all anatomical regions.

In summary, the optimal number of iterations selected is 2.

Optimal σ for the Region of the DG
It was mentioned previously that the DG is a particular case.
σ = 5 is the optimal value of σ determined using F-score criteria
[equation (11)].

Figure 7 shows the F-score for σ varying from 1 to 23 on the
images including only DG regions. The average maximal value is
0.885 for σ = 5, and the F-score for every image including DG

FIGURE 5 | Min-max map computation (σ = 4). (A) Original color image. (B) One iteration Ie. (C) Two iterations Ie. (D) Three iterations Ie. Red crosses are neuron
centroids marked by the expert, whereas green crosses are the detected neuron centroids figure from You et al. (2016).
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FIGURE 7 | F-score computed for different values of σ for the region of dentate gyrus (DG). The different colors represent the seven images of DG. “hip” is the
abbreviation for the name of the anatomical region of the hippocampus.

is superior to 0.850, which denotes a good quality of counting
process. Values of σ between 4 and 6 provided high F-scores as
well, which demonstrate the robustness of our choice.

The need to specifically process the DG is justified by the fact
that it represents a particular case with a massive aggregation
of small neurons. The size of the left DG on section No.
91 corresponds to 106 pixels. In practice, the identification
of the related connected components of DG is simple due
to its size compared to other connected components that are
significantly smaller.

Comparison of Automated and Manual
Neuron Counting
In terms of performance of the individualization of neurons,
iCut, and Watershed were compared with the proposed
method (for size-fixed neurons) in You et al., 2016. The
results showed that our method gave the best individualization
performance. However, due to the algorithmic complexity of
iCut [O(n3), where n is the number of foreground pixels in the
image], we could not compare it with other methods on the
individualization dataset. In addition, for the individualization
of size-varying neurons, iCut is no longer adapted because a
unique parameter for object size is fixed a priori. Therefore,
we compared the proposed method with Watershed on the
individualization dataset.

Figure 8 presents typical results on three different images
presenting different neuron densities. Image 1 illustrates image of
thalamus region with a few individual neurons, image 2 represents
moderately dense image of cortex region in which several neurons
touch each other, and image 3 represents extremely dense
image of DG region in which many neurons are aggregated.
Figures 8A1–A3 are the ground truth (red dots centroids

manually annotated). Figures 8B1–B3 represent neuron
classification results that are insufficient to segment individual
neurons when aggregated neurons are present. Figures 8C1–C3
present the images of the optimal σ evaluated by the proposed
method (local values estimated at neuron level). Figures 8D1–D3
present two-iteration min-max maps in which neuron centers
appear in dark and neuron contours appear in bright-intensity
values. Figures 8E1–E3 show the final individualization results
obtained by the proposed method. Figures 8F1–F3 present
the individualization results obtained by Watershed algorithm
using our optimal σ map. Both methods perform well in simple
cases. However, in more complex situations, Watershed results
present overindividualization and under individualization, and
making the segmented contours unnatural (straight borders,
large neurons detected). Visually, the proposed method provides
better neuron individualization results.

Figure 9 shows the F-scores obtained with the proposed
method for the 50 images of the individualization dataset
demonstrating its ability to individualize the neurons with high
F-scores, especially in the caudate, cortex, and subiculum, where
average F-scores are, respectively, 0.874, 0.877, and 0.905. The
F-scores computed in the hippocampus vary from 0.726 to
0.898 due to the heterogeneity of this region, which contains
different kinds and distributions of neurons. Particularly, in the
subregions CA2 and CA3, the intensity of certain neuron centers
is lighter. These staining changes may be due to unsuitable
staining marker (Mullen et al., 1992) corresponding to different
levels of expression of the antigen. As the staining for this kind
of neuron does not respect our hypothesis, the proposed method
is not suitable in this case. All the same, the proposed method
provides a good performance (F-score > 0.726).

The same evaluation was realized on the results produced
using the Watershed algorithm. The mean F-score and standard
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FIGURE 8 | Neuron individualization results shown in images of 512 pixels × 512 pixels extracted from those obtained on the individualization dataset. Images 1–3
represent the anatomical region of thalamus, cortex, and DG, presenting different neuron densities. (A1–A3) Original images. Red points represent neuron centroids
marked by the expert. (B1–B3) Binary images of segmented neuron class. (C1–C3) Images of optimal σ. (D1–D3) Min-max maps obtained after the two-step
process of adaptive Gaussian filtering and min-max filtering. (E1–E3) Individualization results obtained using the proposed method. (F1–F3) Individualization results
obtained using Watershed algorithm.

FIGURE 9 | F-score calculated using our method on 50 images of the individualization dataset. L (respectively, R) means that this image is extracted from the left
(respectively, right) side of the section.

deviation for seven anatomical regions are displayed in
Table 3, showing that the proposed method systematically
provides higher F-score values for every anatomical region.
Moreover, the standard deviation of the proposed method is
smaller, which demonstrates a good robustness for both simple
and complex cases.

Study of the Location of the Centroids
and the Contours of the Neurons
The quality of the individualization process between the
proposed method and the Watershed algorithm using the optimal
σ map was compared.

Figure 10 presents a comparison synthesis of the results
for the supplementary parameters investigated. It shows that
neurons segmented by the proposed method superimpose better
with the neurons segmented manually than those segmented
with Watershed. The average value of Dicearea is 0.77 for the
proposed method and 0.72 for Watershed. The detected centroids
and segmented contours, compared to Watershed, are closer
to those segmented manually by the expert. The average value

of the distance between centroids (Distance_centroid) and of
the distance between contours (Distance_mean_contour) are,
respectively, 1.31 and 0.98 µm for the proposed method, and
1.45 and 1.26 µm for Watershed. Again, we observe that the
quality of individualization of neurons using our method is
superior compared to the one obtained with Watershed. These
quantitative indexes are of major interest because they resume
and confirm the qualitative evaluation of the individualization

TABLE 3 | F-scores computed using two neuron individualization methods, the
proposed method and a Watershed algorithm.

Anatomical regions Proposed method Watershed (optimal σ)

Caudate 0.874 ± 0.003 0.791 ± 0.004

Claustrum 0.851 ± 0.015 0.762 ± 0.028

Cortex 0.877 ± 0.014 0.798 ± 0.020

Hippocampus 0.816 ± 0.062 0.687 ± 0.080

Putamen 0.881 ± 0.042 0.813 ± 0.039

Subiculum 0.905 ± 0.001 0.831 ± 0.006

Thalamus 0.841 ± 0.034 0.736 ± 0.039
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FIGURE 10 | Results obtained to compare the different individualization methods, the proposed method and Watershed using new criteria (Dicearea,
Distance_centroid and Distance_mean_contour). Dicearea represents the overlapping fraction between neurons automatically and manually individualized,
Distance_mean_contour and Distance_centroid represent, respectively, the distances of the contours and the centroids between automated and manual
individualization results.

previously mentioned in Figure 9. They provide additional
quantitative local and spatial information concerning neuron
individualization quality.

Comparison of Automated Neuron
Counting Versus Stereology
We validated the proposed method by comparing our results
with an adapted stereology technique using the method of the
optical dissectors, which is the gold standard method in biology
to count objects. No dead zones were considered for stereology
technique to enable comparison in the same conditions (no
depth information available in image processing approach).
This technique is operator-dependent, two experts (b1 and b2)
performed the counting twice by modifying the sampling fraction
to obtain a stable estimation of the number of neurons and
ensured the high counting accuracy. In this study, the sampling
fraction varied from 1/100 to 1/4 on eight large images. The
results obtained with stereology using the second sampling were
selected (Supplementary Table 4). As the surface of eight images
are very different, neuron density instead of neuron number was
considered to normalize the results obtained using the proposed
method and the adapted stereology technique. The analysis was
performed with linear regression shown in Figure 11. The dark
gray color represents the confidence interval around the solid
line in dark blue color. The correlation coefficient between
neuron densities was computed with the proposed method and
the adapted stereology technique performed by two experts
(b1 and b2). The high correlation values (0.983 for b1 and 0.975
for b2) and the low p-value (1.20e-05 for b1 and 3.76e-05 for b2)
state that the proposed method is very promising to estimate
the neuron density and the number of neurons in different
anatomical regions.

Average Neuron Radius in Different
Anatomical Regions
Figure 12 shows the average radius of individualized neurons in
different anatomical regions of the macaque brain. Six summary

statistics (minimum, first quartile, average, median, third
quartile, and maximum) are listed in Supplementary Table 5.

We observe that most of the neurons, which remain in the
range of the first and third quartiles, in the claustrum (average
radius ranging from 2.99 to 4.52 µm) and the putamen (average
radius varying from 3.31 to 4.73 µm) are smaller than the
neurons of the other regions (average radius varying from 3.34
to 6.02 µm). The average radius of individualized neurons in our
study varies from 1 to 14.3 µm (corresponding from 2 to 28.6 µm
in diameter, five outliers for neurons were excluded), which
corresponds quite well to the study by Andersen et al. (2016) who
estimated that the size of neurons varies between 5 and 30 µm in
diameter. The detection of the very small neurons may be due to
the production of partial neurons during the cutting process or
to a problem during the digitization (focal plane of scanning not
centered on the neuron, position of the neurons in the depth of
the cut, damaged cells during staining, etc.).

Execution Time
The proposed method was implemented in C++ on a 64-bit
computer workstation under Linux (CPU: Intel Xeon E5-2630
v3 at 2.4 GHz, RAM: 128 GB). Twenty-three cores of the
computer were used for the parallel calculation of 58 images
of the individualization dataset [BrainVISA Soma-Workflow
module (Laguitton et al., 2011), CPU parallelization]. The average
execution time for the final individualization result was 15.6 h,
that is, 16.1 min per image of 5,000 pixels × 5,000 pixels. This
execution time is very reasonable compared to the necessary time
to do stereology, and it is perfectly adapted to deal with large
images especially with parallelization.

DISCUSSION

We proposed a novel method for the individualization of size-
varying and large number of touching neurons in microscopic
macaque brain image. We first applied an RF classifier, a reliable
segmentation approach, based on four features (L∗, M, V,
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FIGURE 11 | Scatterplot of neuron density calculated by the proposed method compared with stereological estimations produced by the two experts. The unit is
the number of neurons per square millimeter.

and LBP40) to segment stained and non-stained tissue. This
combination of features presented a limited number of color
and texture features, which give satisfactory segmentation results.
Alternative methods can also be considered and plugged into our
protocol. In particular, convolutional neural networks (CNN)-
based methods are promising approaches. As a preliminary test,
we applied U-net (Ronneberger et al., 2015) on the segmentation
dataset, and we obtained comparable segmentation results. To
individualize the touching size-varying neurons, we model each
neuron individually (centroid and contour) to deal with different
sizes and densities. The proposed method investigates all possible
individualization results parameterized by σ, which defines the
size of the Gaussian kernel filter, and then determines the
optimal σ for each NOI based on the Dice score. Using this
adaptive Gaussian filter and an original min-max filter, the key
information such as location (centroid) and boundary of each

FIGURE 12 | Average radius of individualized neurons.

expected NOI is enhanced in a map of extrema. The multiple
studies performed in the present work confirmed the genericity
and interest to use the min-max filter. Finally, a discrete contour-
based model is applied to achieve neuron individualization. This
model is a robust region-based segmentation method. Instead
of examining all neighboring pixels of initial seeds used in
traditional region growing methods, this model examines several
pixels of discrete contour. Taking advantage of information about
pixel intensity in the extrema map and contour curvature at
the pixel level, discrete contours expand through a competition
approach. Besides, the use of discrete contour alleviates the noise
on the neuron contour finally segmented and saves execution
time. Considering the general satisfactory results obtained by
U-net on other biological data, a future work will be initiated soon
to test the ability of U-net to individualize touching cell as it was
recently proposed (Falk et al., 2019).

The proposed method provides good performances both
qualitatively and quantitatively. It is worth mentioning that
our method is able to handle the most difficult cases
involving massive touching neurons like in the DG, which
is part of the hippocampus. This region of the hippocampus
is extremely complex to analyze. An interesting biological
result is that the size of the neurons in DG regions is
stable based on the single optimal value of σ estimated
(Figure 7). The hippocampus contains a wide range of
neurons with different sizes and different kinds of neurons
in several subregions (CA2 and CA3), which can lead to
different staining and non-optimal individualization results.
The F-scores in the CA2 and CA3 vary between 0.726 and
0.788. Nevertheless, the mean F-score still reaches 0.816 in
the hippocampus, denoting that several subregions (CA1, CA4,
and DG) of the hippocampus can be successfully treated
by the proposed method. Most of the biological studies
aiming to count neurons avoid to target this region due
to its complexity and favor optic density for quantitative
measurements (Brureau et al., 2017).
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The proposed method was compared with Watershed, a
reference individualization method in the literature. In addition
to the F-score described above, three supplementary criteria were
proposed in this article: mean distance between the centroids,
mean distance between the contours, and Dice superimpositions.
According to these criteria, the neurons individualized by
the proposed method are better superimposed with manual
segmentation results than Watershed (0.77 for the proposed
method vs. 0.72 for Watershed). Moreover, the centroids and
contours segmented by the proposed method are closer to those
segmented by the experts (respectively, 9.98 and 21.89% closer)
than Watershed. Therefore, the proposed method is proven to be
an efficient method to properly identify centroids and accurately
estimate the location of neuron contours. All datasets produced
in this study will be made available to enable fair benchmarking.

To further validate the proposed method, we also applied
stereology, the gold standard in the domain, onto a dedicated
dataset with the participation of the two experts. They were asked
to estimate the number of neurons in various anatomical ROIs,
which were selected in accordance with their interest in biology.
Therefore, we obtained a wide range of neuron densities present
in the brain (ranging from 343 to 8,167 neurons per mm2).
The neuron density calculated by the proposed method is highly
correlated with those estimated by the stereology technique
(0.983 and 0.975 respectively, for b1 and b2 experts). In this
work, the dead zones classically used in stereology that exclude
cut cells were not considered image processing approaches and
cannot deal with this phenomenon (Z-stack can be envisioned
but will dramatically increase the amount of data to deal with).
In this situation, the results obtained by the experts and by our
method were consistent. Nevertheless, it will be necessary to
precisely estimate the bias introduced at this occasion to evaluate,
based on a tolerance level to be defined, if our method could
be or not an alternative to stereology in biological studies. This
point is the main limitation of the proposed method compared to
stereology. On the other hand, our method makes it possible to
rapidly analyze large amounts of data, which can provide a first
screening at brain-section level to identify and investigate regions
of interest. Such a strategy is hardly feasible with stereology. This
work is a preliminarily study in major anatomical ROIs on a
single histological section and is certainly worth being extended
to study entire brains (series of histological sections) and multiple
animals (Amunts et al., 2013). Future work will also aim to
evaluate the effects of staining variations as well as intersubject
effects in our protocol. These preliminary results demonstrate
the potential of the proposed method to individualize and count
the neurons with high accuracy. To our knowledge, this is the
first study in this field to use stereology to evaluate an automated
analysis method.

The validation work performed in this study constitutes an
original contribution and produced original processed data.
In total, five experts participated in this time-consuming and
tedious work. Four reference databases annotated by experts
were derived from this study and can be used for future
research and development: (1) manual segmentation of neuronal
staining in 100 images (512 pixels × 512 pixels) in the
segmentation dataset, (2) 111,971 neuron centroids manually

marked in the individualization dataset concerning 50 images
(5,000 pixels × 5,000 pixels), (3) 900 neuron centroids and
contours drawn by experts in the individualization dataset
concerning nine images, and (4) 37,000 neurons counted by
experts using stereology technique in the stereology dataset.

With the ability to count neurons of the proposed method,
it is possible to extend neuron counting to series of sections
or to an entire brain. For instance, the section 91 consists of
about 230,000 pixels× 188,000 pixels. We can divide this section
into about 1,730 images of 5,000 pixels × 5,000 pixels. These
images can be processed in parallel by the proposed method.
The number of neurons in one section can then be calculated
and mesoscopic quantitative heat maps of neuron density derived
(Vandenberghe et al., 2016). The use of a supercomputer can
dramatically decrease computation time, making it possible to
significantly extend this study to produce original cartographies
of neuron distribution through the brain.

Preliminary results of parallelization of segmentation codes
have demonstrated a high scalability of our method. This work
is carried out on a CPU-based architecture but may be extended
to GPU architectures in the future, particularly with regard to the
implementation of deep learning methods.

A first application aiming to compute neuron size was
performed on the individualization dataset. Although neurons
have various shapes and may be cut according to their
location in the histological section, we can still estimate the
average neuron radius with statistical tools, thanks to the large
number of neurons processed. This information can be used
to roughly estimate neuron size or to perform comparative
studies considering that similar biases are introduced in various
measurements. The statistical result shows that neuron size
calculated by the proposed method (2–28.6 µm in diameter)
fits well with the size that was read in the literature (5–
30 µm in diameter). It is important to keep in mind that
morphological measurements made in 2-D remain an estimate
and that it is necessary to acquire volumes to obtain more precise
measurements. In this context, the first strength of our approach
is the new extracted information to enrich current knowledge of
the available data. For instance, the proposed individualization
method provides interesting descriptive information (location,
size, intensity, shape, and network organization) on the
population of neurons for each region. In anatomical regions, this
information can be used to better describe brain development,
aging, disease, or even evaluate a therapy by producing analyses
at the cellular level. The second strength of our approach is
the scalability of these technologies (to whole section, brain,
and groups) as all processings are performed at the connected
component level, which makes parallelization schemes extremely
efficient. It will support interesting perspectives for biological
studies targeting cytoarchitecture analysis.

Nowadays, neuron individualization is still an important and
challenging subject of research in the field of neuroscience. In
2014, Schmitz et al. (2014) compared available methods for
cell segmentation, showing that the individualization of cells
is a complex problem and stressing the need to develop new
approaches in this area. Although several works have been
done over the past years, most of the proposed methods are
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based on mathematical morphology, detection of concavities, the
Watershed algorithm, and graph-cut algorithms. Deep learning
is a promising approach in the future but needs to be carefully
investigated to evaluate its ability to robustly solve this question.
Most of these methods have been focused on relatively simple or
very specific cases. When we deal with complex cases, such as the
DG, where thousands of neurons are aggregated, these methods
cannot properly individualize neurons. In fact, the reason why
the existing image processing methods do not perform well is
that they are performed on 2-D images, with a single scanning
focus plane, which increases the difficulty of individualizing
touching neurons. It might be possible to acquire several planes
associated to the depth in the sections when scanning using
Z-stack technique so as to reconstruct a pseudo-3-D volume and
apply an improved version of the proposed method. However,
new problems would inevitably arise, in particular the increase
of the volumetry of the data to deal with.

Nevertheless, this work is promising. The proposed tool can
help address major biological challenges, such as improving
our understanding of brain development or aging, deciphering
pathology mechanisms, or evaluating novel therapies in
neurodegenerative diseases.

CONCLUSION

This paper presents a robust and efficient method to individualize
size-varying and touching neurons in microscopic images of
macaque brain sections. The results obtained are promising.
The accuracy of the proposed method is close to 0.816
in the hippocampus, which is a very complex anatomical
region and superior to 0.841 in the other regions studied
(caudate, claustrum, cortex, putamen, subiculum, and thalamus).
Moreover, the accuracy and performance of the proposed
method are significantly higher qualitatively and quantitatively
compared to Watershed algorithm in the anatomical regions
tested. Compared with an adapted stereology technique, we
found that the counting results obtained with our method are
highly correlated (0.983 for b1 and 0.975 for b2) and could be
considered as a reliable alternative. Supplementary researches
based on extended datasets (sections and animals) should be
envisioned to confirm this point. The average neuron radius
estimated by the proposed method is coherent compared to the
acknowledged findings of literature. The automated detection
of millions of neurons in the whole brain is still challenging.

Perspectives of this work will be to extend the application of the
proposed method to entire brains.
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