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Abstract

Objective: Neoantigens derived from tumor-specific genomic alterations have demonstrated great potential for

immunotherapeutic  interventions  in  cancers.  However,  the  comprehensive  profile  of  hepatocellular  carcinoma

(HCC)  neoantigens  and  their  complex  interplay  with  immune  microenvironment  and  tumor  evolution  have  not

been fully addressed.

Methods: Here  we  integrated  whole  exome  sequencing  data,  transcriptome  sequencing  data  and  clinical

information of 72 primary HCC patients to characterize the HCC neoantigen profile, and systematically explored

its interactions with tumor clonal evolution, driver mutations and immune microenvironments.

Results: We observed that higher somatic mutation/neoantigen load was associated with better clinical outcomes

and HCC patients could be further divided into two subgroups with distinct prognosis based on their neoantigen

expression patterns. HCC subgroup with neoantigen expression probability high (NEP-H) showed more aggressive

pathologic features including increased incidence of tumor thrombus (P=0.038), higher recurrence rate (P=0.029),

more inclined to lack tumor capsule (P=0.026) and with more microsatellite instability sites (P=0.006). In addition,

NEP-H  subgroup  was  also  characterized  by  higher  chance  to  be  involved  in  tumor  clonal  evolution  [odds  ratio

(OR)=46.7,  P<0.001].  Gene  set  enrichment  analysis  revealed  that  upregulation  of  MYC  and  its  targets  could

suppress immune responses, leading to elevated neoantigen expression proportion in tumor cells. Furthermore, we

discovered  an  immune  escape  mechanism  that  tumors  could  become  more  inconspicuous  by  evolving  subclones

with less immunogenicity. We observed that smaller clonal mutation clusters with higher immunogenicity in tumor

were more likely to involve in clonal evolution. Based on identified neoantigen profiles, we also discovered series of

neoantigenic hotspot genes, which could serve as potential actionable targets in future.

Conclusions: Our  results  revealed  the  landscape  of  HCC  neoantigens  and  discovered  two  clinically  relevant

subgroups  with  distinct  neoantigen  expression  patterns,  suggesting  the  neoantigen  expression  should  be  fully

considered in future immunotherapeutic interventions.
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Introduction

Hepatocellular  carcinoma  (HCC),  the  most  common
primary liver  malignancy in  China,  ranks  the third among
causes  of  cancer  mortality  (1).  As  an  organ  with  distinct
anatomical  structure,  liver  is  constantly  exposed  to
exogenous  antigens  (2).  Consequently,  liver  micro-
environment  used  to  exhibit  immune  tolerance  features,
which benefit the immune escape of tumor cells (3). Recent
developed  cancer  immunotherapies,  aiming  to  deal  with
cancers by boosting human body’s own immune responses,
are  promising  strategies  for  HCC  treatment.  Immune
checkpoint  inhibitors  such  as  anti-PD-1  antibody  could
improve  the  overall  survival  (OS)  of  unresectable  HCC
patients compared to the first line sorafenib treatment, and
have  shown great  potential  for  HCC clinical  treatment  of
(4).  However,  a  large proportion of HCC patients did not
respond  to  checkpoint  blockade  treatment  [with  an
objective  response  rate  of  approximate  20%  (5)],  which  is
mainly due to the inefficiency of their T cells to effectively
recognize  tumor  cells.  Neoantigens,  tumor  specific
antigens  generated  from  tumor  genomic  alterations,  are
key  players  in  T  cells’  recognition  of  tumor  cells.
Neoantigen-based  cancer  immunotherapies  have  shown
excellent  capability  to  trigger  tumor-specific  immune
responses  in  solid  tumors  such  as  melanoma,  colorectal
cancer  and  cholangiocarcinoma,  demonstrating  great
potential  for  clinical  applications  (6,7).  Thus,  the
identification  and  systematic  profiling  of  neoantigens  in
HCC will greatly benefit future immunotherapies.

Tumors are dynamically evolving under the pressure of
its  surrounding  microenvironment,  and  interaction
between tumor neoantigens and the immune system also
plays crucial parts in tumor evolution. Recent studies have
emphasized  the  importance  of  immunoselection  of
neoantigens in cancer evolution and presented complicated
dynamics  contributed  by  both  tumor  antigenicity  and
immune cells (8-10). On one hand, tumor’s antigenicity
contributes  to  the  attraction  of  tumor-infiltrating
lymphocytes (9), while immune cells also in turn sculpt the
antigenicity of tumors via immunoediting (10). However,
there is still  a lack of studies fully clarifying the clinical
relevance of HCC neoantigens and their interactions with
clonal evolution as well as immune microenvironment. In
this  study,  we integrated clinical  data along with whole
exome and transcriptome sequencing data from 72 primary
HCC patients  to  perform a  comprehensive  profiling of
HCC neoantigens,  revealed distinct expression patterns
with  clinical  relevance,  and  further  explored  their
interactions with tumor clonal evolution, driver mutations

as well as immune microenvironments.

Materials and methods

Sample collection

Primary tumor tissues and paired peritumoral tissues from
72  patients  diagnosed  with  primary  HCC  and  received
surgical  operation  in  Mengchao Hepatobiliary  Hospital  of
Fujian  Medical  University  were  collected  during  surgery
operation  from  December  2014  to  September  2018.  The
diagnosis  of  primary  HCC  was  confirmed  by  at  least  two
experienced pathologists and none of the patients received
other  treatments  before  surgical  resection.  Written
informed  consent  was  obtained  from  each  participant
before sample collection. All study protocols were approved
by  the  Institution  Review  Board  of  Mengchao
Hepatobiliary  Hospital  of  Fujian  Medical  University  and
conducted  following  the  principles  of  the  Declaration  of
Helsinki.

Next-generation sequencing and mapping

DNA  and  RNA  extracted  from  HCC  tumor  and  paired
peritumoral  tissues  were  subjected  to  whole  exome
sequencing (WES) and whole transcriptome sequencing on
Illumina  HiSeq  X10  platform  (paired  end,  150  bp)  by
Annoroad  Gene  Tech.  (Beijing)  Co.,  Ltd.  Qualified  WES
sequencing  reads  were  aligned  to  hg19  human  genome
assembly  (GRCh37)  using  BWA  (11).  Duplicates  of  all
mapped reads were then marked and discarded using Picard
(12).  As for  transcriptome data,  all  reads with high quality
were  aligned  to  GRCh37  with  GENCODE  gene
annotation  using  STAR  (13).  The  expression  of  all  genes
was  quantified  using  transcripts  per  kilobase  per  million
mapped reads (TPM).

Human leukocyte antigen (HLA) genotyping

Four-digit  genotype  of  classical  HLA class  I  genes  (HLA-
A,  HLA-B  and  HLA-C)  for  all  included  patients  were
assessed  by  OptiType  (14)  based  on  RNA-seq  data,  while
HLA  class  II  alleles  (HLA-DRB1)  were  assessed  by
Seq2HLA (15) using default parameters.

Somatic  mutation,  RNA-editing  identification  and
neoantigens prediction

Somatic  mutations  of  HCC  tumor  were  identified  with
Mutect2 in GATK using paired peritumoral tissue samples
as  control  (16).  Somatic  mutations  fufuilling  following
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criteria were retained for downstream analysis: ≥20× depth
in  both  tumor  and  peritumoral  samples;  variant allele
frequencies (VAF)  ≥5%  in  tumor  samples;  VAF≤1%  in
peritumoral samples.

RNA editing sites were identified by RNAEditor (17).
Acquired RNA editing sites were further filtered by depth
and  allele  frequency  using  bam2R  algorithm  from  R
package DeepSNV (18) with following criteria: ≥20× depth
in tumor tissues, VAF≥5% in tumor tissues, VAF≤1% in
peritumoral tissues.

All qualified somatic mutations and RNA editing sites
were then annotated by variant effect predictor (VEP) (19).
Immunogenicity  of  all  mutations  was  evaluated  using
pVAC-Seq pipeline (20) with NetMHCpan binding affinity
predictor.  In brief,  for each missense mutation, binding
affinity of 8- and 9-mer peptides containing mutated amino
acids  to  patient’  s  HLA class  I  alleles  was  predicted  by
NetMHCpan (21), and binding affinity of corresponding
15-mer peptides to HLA class II alleles was predicted by
NetMHCpanII  (22).  Mutations  that  produce  mutant
peptides with IC50<500 nanomolar (nM) to either HLA
class I or HLA class II alleles were considered as candidate
neoantigens. All the somatic mutation-derived neoantigens
were further validated at RNA level by bam2R algorithm
from R package DeepSNV (18), and neoantigens with ≥20×
depth and VAF≥0.05 in tumor RNA-seq data were defined
as expressed neoantigens.

Microsatellite instability (MSI) evaluation

MSI  was  evaluated  by  MSIsensor  (23)  using  WES
sequencing  data  of  tumor  and  paired  peritumoral  tissues.
Both  numbers  of  somatic  MSI  sites  and  MSI  scores
inferred  by  MSIsensor  were  used  to  evaluate  the  MSI
degree.

Lymphocyte analysis

T  cell  receptor  (TCR)  and  immunoglobulin  RNA
repertoires  were  extracted  from  RNA-seq  data  and
processed  via  MiXCR (V3.0.12)  (24).  The  Clonality  index
of the lymphocytes was defined as 1−Pielou’s evenness, and
the  richness  of  lymphocyte  was  defined  as  the  number  of
unique clones identified by MiXCR.

Driver gene annotation

HCC-related  driver  genes  were  obtained  from  the
DriverDBv2  database  (25).  In  total,  674  driver  genes
identified  by  at  least  two  computational  algorithms  with

The  Cancer  Genome  Atlas  (TCGA)  HCC  dataset  were
included.  In  addition,  driver  genes  were  also  predicted  by
MutSigCV (26)  using  WES data  of  the  enrolled  72  HCC
patients,  genes  with  P<0.05  were  further  considered  as
driver genes.

Immune cell infiltration

Single  sample  Gene  Set  Enrichment  analysis  (ssGSEA)
(27) was  performed  to  assess  the  relative  level  of  immune
cell infiltration.  The  signature  genes  of  28  immune  cell
types  were  acquired  from Charoentong et  al. (28)  and  the
enrichment  score  of  each  immune  cell  type  calculated  by
ssGSEA  was  used  to  represent  the  relative  level  of
infiltrations.

Differential pathway enrichment analysis

All  the  hallmark  gene  sets  representing  well-defined
biological  states/processes  were  obtained  from  the
Molecular  Signatures  Database  (MSigDB)  (29),  and
enrichment  of  these  gene  sets  were  evaluated  by
ssGSEA (27). Student’s t-test was performed to evaluate the
differentially  enriched  pathways  between  different  groups
of  patients,  and  the  significantly  differentially  expressed
pathways were selected (P<0.05).

Clonal evolution assessment

To  reconstruct  the  clonal  structure  of  included  HCC
samples,  mutation  clustering  was  performed  with  Sclust
(30)  and  somatic  mutations  identified  by  Mutect2  with
adequate depth (≥20) in both tumor and peritumor tissues
were subjected to clonal evolution analysis. In brief, tumor
somatic mutations were clustered using their copy-number-
adjusted cancer  cell  fractions,  which were calculated based
on  read  counts.  The  identified  mutation  clusters  were
classified into three categories (31): clonal mutation clusters
were mutation clusters with the highest cancer cell fraction
in  each  sample,  containing  somatic  mutations  shared
among  all  tumor  cells;  subclonal  mutation  clusters  were
mutation clusters  with  medium cancer  cell  fraction,  which
represented  mutations  specifically  occur  in  tumor
subclones;  background  mutation  clusters  had  the  lowest
cancer  cell  fraction  (mostly  <0.1),  which  represented
randomly accumulated mutations scattered in tumor cells.

dN/dS analysis

The  dN/dS  ratio  was  calculated  for  each  patient  using  R
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package  dndscv  (V0.0.1.0)  (32).  In  short,  all  identified
somatic mutations for all patients were integrated and used
as  input  for  dndscv.  Then  dndscv  deployed  trinucleotide
context-dependent  substitution  models  to  evaluate  the
observed-over-expected  ratio  of  missense  and  nonsense
mutations.

Statistical analysis

Patients  were  divided  into  two  groups  using  the  25th
percentile  of  each  mutation  feature.  Survival  analysis  of
different  groups  was  conducted  using  Kaplan-Meier
analysis,  and  log-rank  test  was  performed  to  examine  the
significance.  Univariate  and  multivariate  Cox  regression
analysis  were  performed  to  identify  the  independent
prognosis factors. Chi-square test or Fisher’s exact test for
categorical  variables and independent t-test for continuous
variables  were  applied  to  examine  the  differences  between
two groups. All statistical analyses were conducted using R
software  (Version  3.4.3;  R  Foundation  for  Statistical
Computing, Vienna, Austria), and P values of less than 0.05
were considered as statistically significant.

Results

Landscape of neoantigens in HCC

To  obtain  a  comprehensive  profile  of  HCC  neoantigens,
72 HCC patients receiving surgical operation in Mengchao
Hepatobiliary  Hospital  of  Fujian  Medical  University  were
enrolled  and  the  corresponding  tumor/peritumor  tissues
were  collected  for  WES  and  transcriptome  sequencing.
Clinicopathological  characteristics  and  predicted
neoantigen loads for all the 72 patients are demonstrated in
Figure 1A.

Despite  well-known  somatic  mutation  induced
neoantigens, recent reports also indicated that RNA editing
could serve as another major source of neoantigens (33).
For a majority of HCC patients in our analysis, somatic
mutations,  rather  than  RNA  editing  sites,  were  the
dominant  source  of  tumor  neoantigens  (Figure  1A).  In
total, a median of 298 somatic mutations and 138 somatic
mutation-derived  neoantigens  were  identified  in  each
patient  (Figure  1B),  while  a  large  proportion  of  them
showed  relatively  low  VAF with  only  a  median  of  140
somatic mutations and 70 somatic neoantigens showing
VAF greater  than  10% (Supplementary  Figure  S1).  Not
surprisingly,  the  load  of  somatic  mutation-derived
neoantigens  was  strongly  correlated  with  the  load  of

somatic mutations (R2=0.973, P<0.001, Figure 1C). As for
RNA editing, we only observed limited quantity of RNA
editing-derived  neoantigens  (median=10,  Figure  1D)
despite the relatively high RNA editing load (median=506).
This  is  majorly due to that  these RNA editing sites  are
mostly located in the transcripts’ UTRs, with only ~3% of
them  could  lead  to  missense  protein  alterations
(Supplementary  Figure  S2).  However,  a  significant
correlation between the RNA editing load and the RNA
editing-derived neoantigens (Figure 1E) was still observed.

Associations  between  HCC  neoantigen  and  patients’
clinical characteristics

With previous reports showing the prognostic relevance of
neoantigen/mutation  load  (9),  we  also  investigated  their
significance  in  HCC  prognosis.  Kaplan-Meier  analysis
showed  that  the  overall  neoantigen  load  (combining
neoantigens  derived  from  both  somatic  mutations  and
RNA  editing  sites)  rather  than  overall  mutation  load
(combining somatic mutations and RNA editing sites) was a
significant  HCC  prognosis  predictor  (Figure  2A,B),  with
higher  overall  neoantigen  load  indicating  significantly
better  OS  (P=0.004)  and  slightly  better  recurrence-free
survival (RFS) (P=0.062).

Further stratification analysis revealed that the somatic
mutation  load  was  the  major  component  significantly
associated with HCC prognosis (Figure 2C), while RNA
editing  load  showed  no  such  significant  association
(Supplementary Figure S3A,B). Accordantly, HCC patients
with  more  somatic  mutation-derived  neoantigens  had
significant better OS and RFS (both P<0.05, respectively,
Figure 2D), while RNA editing-derived neoantigens again
showed no such association (Supplementary Figure S3C,D).
These results suggested that somatic mutations and their
corresponding  neoantigens  significantly  contributed  to
patients’ prognosis, while the effect of RNA editing was
somehow limited. Considering this, our following analysis
only focused on somatic mutation-derived neoantigens.

Next,  clinicopathological  analysis  was  performed  to
compare  HCC patients  with  higher  and  lower  somatic
mutation/neoantigen load. Age is significantly related to
patients’  mutation/neoantigen  load  (both  P<0.05,
respectively),  consistent  with  the  fact  that  mutations
accumulated with aging. Additionally, higher neoantigen
load  group  also  showed  better  clinical  outcomes,  with
significantly less incidence of tumor microsatellite lesion
(P=0.009),  recurrence  (P=0.039)  and  tumor  thrombi
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Figure  1 Landscape  of  neoantigens  in  HCC.  (A)  Neoantigens  derived  from  somatic  mutations/RNA  editing  sites  (top)  and  clinical
characteristics  (bottom)  of  each  patient;  (B)  Density  plot  of  somatic  mutation  load  (red)  and  corresponding  neoantigen  load  (green);  (C)
Scatterplot showing correlation between somatic mutation load and corresponding neoantigen load (R2=0.973, P<0.001); (D) Density plot
of RNA editing load (red) and corresponding neoantigen load (green); (E) Scatterplot showing correlation between RNA editing load and
corresponding neoantigen load (R2=0.814, P<0.001). HCC, hepatocellular carcinoma; BCLC, Barcelona Clinic Liver Cancer.

368 Li et al. Neoantigen landscape of liver cancer

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2021;33(3):364-378



(P=0.063). Moreover, patients with higher neoantigen load
were more likely to have alcohol drinking history (P=0.059)
(Figure 2E). It is not surprising since the defective DNA
replication caused by alcohol has been reported to cause
somatic  mutation  accumulation  (34).  However,  both
neoantigen load and mutation load showed no association
with gender, TNM stages, Barcelona Clinic Liver Cancer
(BCLC)  stages  or  tumor  envelop  in  our  study
(Supplementary Figure S4).

Two  subgroups  of  HCC patients  with  distinct  neoantigen
expression patterns

Besides  mutation  load  and  neoantigen  load  mentioned
above,  neoantigen  expression  is  another  important
indicator for tumor immunogenicity. We further extracted
neoantigens  that  can  be  steadily  detected  at  transcriptome
level  (VAF>0.05  in  transcriptome  sequencing  data)  and

defined  them as  expressed  neoantigens.  In  total,  a  median
of 22 expressed neoantigens were identified in each patient
(Supplementary  Figure  S5),  and  the  number  of  expressed
neoantigens  significantly  correlated  with  neoantigen  load
(R2=0.506,  P<0.001, Figure  3A).  Judging  from  the
distribution  of  correlation  plot  (Figure  3B),  we  discovered
two  clusters  of  patients  following  distinct  neoantigen
expression  patterns.  Intriguingly,  the  number  of  expressed
neoantigens  and  neoantigen  load  showed  excellent
correlation  within  each  cluster  (cluster  1:  R2=0.901,
P<0.001;  cluster  2:  R2=0.885,  P<0.001).  Survival  analysis
further  revealed  that  cluster  1  had  significantly  worse  OS
and  RFS  than  cluster  2  (P=0.006  for  OS  and  P=0.004  for
RFS). Meanwhile, the proportion of expressed neoantigens
(the  ratio  of  expressed  neoantigens  to  all  somatic
neoantigens)  was  significantly  lower  in  cluster  2  (P<0.001)
(Supplementary  Figure  S6).  Thus,  we  defined  cluster  1  as
neoantigen expression probability high (NEP-H) subgroup

 

Figure  2 Associations  between  loads  of  HCC  somatic  mutation/neoantigen  and  patients’  clinical  characteristics.  (A−D)  Kaplan-Meier
curves of OS and RFS for patients stratified by overall mutation load (A), overall neoantigen load (B), somatic mutation load (C), somatic
mutation-derived neoantigen load (D); (E) Column plot showing the ORs and 95% confidence intervals of the clinical parameters between
patients with  higher  or  lower  somatic  mutation/neoantigen load.  The ORs and P values  were  calculated  by  χ2 test.  HCC,  hepatocellular
carcinoma; OS, overall survival; RFS, recurrence-free survival; OR, odds ratio.
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and  cluster  2  as  neoantigen  expression  probability  low
(NEP-L)  subgroup.  Consistently,  the  proportion  of
expressed neoantigens  in  all  included patients  also  showed
significant  association  with  prognosis,  while  expressed
neoantigen  load  itself  did  not  possess  such  correlation
(Figure 3D,E).

Clinical  characteristic  analysis  revealed  that  NEP-H
group  was  associated  with  more  aggressive  pathologic
features  including  tumor  absence  of  capsule,  increased
incidence of tumor thrombus and higher recurrence rate
(all P<0.05, Figure 3F). These results indicated that higher
proportion  of  steadily  expressed  neoantigens  might  be
associated  with  neoantigen-expressing  tumor  cells  that
somehow escaped immune surveillance, which contribute
to  more  advanced  tumor  progression.  Univariate  Cox
regression  analysis  further  confirmed  that  NEP-H
subgroup had significant better OS and RFS (P=0.010 and
P=0.005, respectively, Supplementary Table S1,2). However,
multivariate  Cox  regression  suggested  that  only  tumor
thrombus was an independent survival prognostic factor in
both OS and RFS analysis. This might be explained by the
significant  association  between  NEP-H  subgroup  and
incidence of tumor thrombus (Figure 3F).

Furthermore,  we built  a  classifier  to identify  patients
from each group and defined it  as “neoantigen-express-
possibility-score”. The formula was estimated according to
the dividing line between the two subgroups (Figure 3B),
which  is  shown  as  follows.  Patients  with  neoantigen-
express-possibility-score >0 were then classified as NEP-H
and vice versa.

Neoant igen-express-prossibility =
70£ Neoant igen-load ¡ 191£
Expressed-neoant igen-load ¡ 8;400

Association  between  neoantigen  expression  and  MYC
regulation

We performed differential  pathway enrichment analysis  to
evaluate  the  differences  of  known  biological  states/
processes  in  different  subgroups,  using  all  the  hallmark
gene sets from MSigDB (29). The results showed that gene
sets  related  to  MYC  target  genes  were  the  most
significantly differentially expressed. Meanwhile, MYC gene
itself  was  also  significantly  overexpressed  in  NEP-H
subgroup  (P=0.006, Figure  3G).  Gene  set  enrichment
analysis  (GSEA)  of  two  MYC  target  gene  sets  (35,36)
further  confirmed  the  upregulation  of  MYC  targets  in
NEP-H  subgroup  (Figure  3H).  MYC  activation  is  a

molecular  hallmark  of  cancer  and  is  one  of  the  necessary
events  for  tumorigenesis  initiation  (37).  Increased  MYC
activity  is  often  related  with  aggressive  tumor  phenotypes
in many cancers (38), which could explain the worse clinical
outcomes of NEP-H subgroup. Additionally, recent studies
have  also  emphasized  the  importance  of  MYC on  directly
dampening  the  antitumor  responses,  which  contribute  to
tumor  immune  escape  (39).  Consistently,  we  observed
significant correlation between MYC and PD-1 expression
in HCC tumor and peritumor tissues (Supplementary Figure
S7), indicating the MYC-regulated immune suppression.

Interestingly, as predicted by MSIsensor (23), NEP-H
subgroup had significantly more MSI sites and higher MSI
score (P=0.006 and P=0.001, Figure 3I).  Relatively high
MSI degree  has  been reported to  be  related with  more
aggressive tumor features in HCC (40) and recent studies
have revealed the connection between MSI phenotype and
highly-expressed DNA repair genes in cancer (41), which is
consistent  with  our  observation  of  simultaneously
upregulation  of  DNA  repair  pathways  in  NEP-H
subgroup. This is possibly due to that MSI-high tumors
lacked the ability to repair DNA base-pairing mismatches,
and DNA repair pathways were activated alternatively. All
these  results  consistently  suggested  that  the  more
aggressive phenotypes of NEP-H subgroup were induced
by both immune suppression and DNA damage response.

Neoantigen and tumor clonal evolution

Tumor  clonal  evolution,  which  reflects  the  complicated
interactions  between  tumor  cells  and  microenvironment,
has  become  an  important  concept  in  tumor  progression,
while  neoantigens  have  been  reported  to  be  one  major
player involved in clonal evolution in some types of cancers
(8).  We reconstructed  the  tumor  clonal  structure  for  each
tumor  sample  using  Sclust  algorithm  (30).  Based  on
identified  mutation  clusters,  patients  were  divided  into
groups with/without clonal evolution, and mutations within
different  clusters  were  categorized  into  clonal,  subclonal
and  background  mutations  (Supplementary  Figure  S8).
Then,  we defined the immunogenicity  of  mutation cluster
as  the  proportion  of  corresponding  mutant  peptides  with
predicted  binding  potential  to  patients’  own  HLA  alleles.
Interestingly,  the  immunogenicity  of  subclonal  mutation
cluster  was  significantly  lower  than  both  matched  clonal
and  background  mutation  clusters  (both  P<0.001)  (Figure
4A).  Considering  that  tumor  cells  evolved  under  the
pressure  of  immune  microenvironment,  lower  immuno-
genicity  of  subclonal  mutations  might  explain  the
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Figure  3 Two  subgroups  of  HCC  patients  with  distinct  neoantigen  expression  patterns.  (A)  Scatterplot  showing  correlation  between
neoantigen  load  and  expressed  neoantigen  load  (R2=0.506,  P<0.001);  (B)  Scatterplot  showing  two  subgroups  (marked  by  green  and  red,
respectively) with distinct neoantigen expression patterns (Cluster1: R2=0.901, P<0.001; Cluster2: R2=0.885, P<0.001); (C−E) Kaplan-Meier
curves  of  OS  and  RFS  for  patients  from  different  subgroups  (C)  or  stratified  by  proportion  of  expressed  neoantigens  (D)  and  load  of
expressed neoantigens (E); (F) ORs and 95% confidence intervals of the clinical parameters between patients from different subgroups. ORs
and P values were calculated by χ2 test (*) and Fisher’s exact test (#); (G) Heatmap showing the top hallmark gene sets differentially enriched
in  the  two  subgroups  (left),  and  violin  plot  comparing MYC expression  level  (TPM)  between  the  two  subgroups  (right);  (H)  GSEA plot
illustrating  two  MYC  target  gene  sets  significantly  enriched  in  NEP-H  subgroup  compared  with  NEP-L  subgroup;  (I)  Differences  of
microsatellite  instability  sites  and  MSI  scores  between  the  two  subgroups.  HCC,  hepatocellular  carcinoma;  OS,  overall  survival;  RFS,
recurrence-free survival; OR, odds ratio; BCLC, Barcelona Clinic Liver Cancer; NEP-H, neoantigen expression probability high; NEP-L,
neoantigen expression probability low; NES, normalized enrichment score; MSI, microsatellite instability.
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competitive advantages of the emerging tumor subclones.
Moreover, both higher clonal mutation/neoantigen load

and background mutation/neoantigen load were associated
with  better  OS  and  RFS  (all  P<0.05,  Figure  4B,C,
Supplementary  Figure  S8),  while  no  association  was
observed for subclonal mutations/neoantigen load (Figure
4D, Supplementary Figure S9). Considering that the clonal
mutation  clusters  represented  mutation  accumulation
before tumorigenesis  and background mutation clusters
represented  mutation  accumulation  along  tumor
progression, it is reasonable that these mutation clusters
c o u l d  r e f l e c t  d i f f e r e n t  a s p e c t s  o f  i m m u n e
microenvironment status. Surprisingly, higher subclonal

neoantigen load were correlated with better RFS in our
study (P=0.038, Supplementary Figure S9F).

The  association  between  neoantigens  and  clonal
evolution  further  revealed  that  tumors  with  clonal
evolution harbored significantly lower clonal  mutation/
neoantigen load (both P<0.001,  Figure  4E),  while  their
clonal  mutation  clusters  showed  significantly  higher
immunogenicity (P<0.001, Figure 4F). This result indicated
that tumors with less mutation accumulation but higher
immunogenicity  in  ancestry  clones  were  under  more
pressure of immune surveillance, and thus promoted the
emergence of tumor subclones.

Meanwhile,  tumors  with  clonal  evolution  carried  an
 

Figure 4 Neoantigens and tumor clonal evolution. (A) Differences of immunogenicity between clonal mutation clusters, matched subclonal
mutation clusters and matched background mutation clusters;  (B−D) Kaplan-Meier curves of OS stratified by clonal neoantigen load (B),
background  neoantigen  load  (C)  and  subclonal  neoantigen  load  (D);  (E)  Differences  of  clonal  mutation  load  and  clonal  neoantigen  load
between tumors with different clonal evolution states; (F) Difference of immunogenicity of clonal mutation clusters between tumors with
different clonal evolution states; (G) Patient-level proportion of expressed neoantigens, and matched subgroup information as well as clonal
evolution  state  were  also  shown (left).  ORs  and  95% confidence  intervals  for  the  probability  of  clonal  evolution  between  tumors  within
NEP-H  and  NEP-L  subgroup  (right).  OS,  overall  survival;  NEP-H,  neoantigen  expression  probability  high;  NEP-L,  neoantigen
expression probability low.
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average  of  two-fold  higher  proportion  of  expressed
neoantigens  and significant  higher  neoantigen-express-
possibility-score (both P<0.001, Figure 4G, Supplementary
Figure S10). Notably, NEP-H subgroup showed extremely
higher probability to involve in clonal evolution with an
odds ratio (OR) of 46.7 [95% confidence interval (95% CI):
9.2−236.0, P<0.001]. Recent study has shown that immune
responses strongly restricted intratumor genomic diversity
and favored clonal  dominance (42),  and thus the clonal
evolution indicated a weaker immune system that might
contribute  to  the  immune  escape  of  neoantigens.
Furthermore,  evaluation of  dN/dS acting on the entire
exome in each patient revealed that the dN/dS ratio varied
significantly between the two identified groups, with all
patients in NEP-L subgroup showed dN/dS smaller than 1,
while ~41% of the patients in NEP-H subgroup showed
dN/dS  lager  than  1  (P<0.001,  Figure  4G).  This  result
suggested  that  tumors  in  NEP-L  group  were  more
commonly  under  selective  pressure  presented  by  more
activate tumor microenvironment. This is also consistent
with their evolutionary patterns since the selective pressure
could restrict tumor clonal evolution.

Immune cell infiltration and neoantigens

Since  immune  cells  involved  in  the  process  of  antigen
presentation, we further use gene signatures of 28 immune
cell  types  to  evaluate  the  association  between  neoantigens
and these immune cell  types  based on RNA-seq data  (28).
Clustering  according  to  these  immune  cell  signatures
identified two clusters with distinct immune cell infiltration
patterns,  revealing  a  small  immunologically  hot  subset
(Figure  5A).  Lymphocyte  richness  and  clonality  were
significantly increased in these immunologically hot tumors
(P=0.020  and  P=0.002, Figure  5B).  Surprisingly,  patients
with  immunologically  hot  tumors  have  significantly  worse
OS  (P=0.010)  and  slightly  worse  RFS  (P=0.124)  (Figure
5C).  Furthermore,  the hot tumors possessed slightly lower
somatic  mutation/neoantigen  load  (P=0.054  and  P=0.120,
Figure  5D).  Differences  were  largely  owing  to  the
significantly  lower  background  mutation/neoantigen  load
in these immunologically hot tumors (Supplementary Figure
S11). It is a common belief that infiltration of immune cells
into  tumor  tissues  was  associated  with  reduction  of  tumor
burden  and  improved  clinical  prognosis.  However,
increasing  studies  have  also  suggested  that  the  aberrantly
more infiltration of immune cells into tumor could induce
focal  capsule  disruptions  and  thus  facilitate  cancer

invasion/metastasis  (43,44).  Reduction  of  background
mutations  and  neoantigens  in  those  hot  tumors  might
indicate stronger immune activity of their immune system,
while over-activated immune system might also disrupt the
tumor  capsule.  Consistently,  immunologically  hot  tumors
were  more  likely  to  have  no  capsule  with  an  OR  of  10.4
(95%  CI:  2.18−49.8;  P<0.001).  Additionally,  those
immunologically  hot  tumors  were  also  characterized  by
more  advanced  tumor  stages  and  more  possibility  to  have
microsatellite lesions (all P<0.05, Figure 5E), indicating the
impact  of  aberrant  tumor-infiltrating  immune  cells  on
tumor progression. Furthermore, we also found infiltrating
levels of several immune cell types correlated to proportion
of expressed neoantigen proportions, suggesting they might
affect neoantigen expression (Figure 5F).

Neoantigens and driver mutations

Immunotherapies  targeting  neoantigens  have  achieved
excellent  therapeutic  effects  in  multiple  cancer  types  (6,7),
and  neoantigens  derived  from  recurrently  mutated  genes
rather  than  rarely  mutated  genes  are  considered  as  better
candidates  for  clinical  utilization.  We  identified  a  list  of
neoantigenic hotspot genes for HCC patients, with the top
5  of  them  (TTN, TP53, OBSCN, MUC16 and CTNNB1)
covering  69.4%  of  the  HCC  patients  (Figure  6A).
Noteworthily,  neoantigenic  hotspot  genes  are  mainly
overlapped  with  known  HCC  driver  genes,  such  as TP53
and CTNB1. Annotation of driver genes by both DriverDB
database and MutsigCV algorithm revealed that mutations
from driver genes were more likely to produce neoantigens
(both P<0.001, Figure 6B). Meanwhile, neoantigens located
on  driver  genes  were  more  likely  to  be  clonal  mutations
(P<0.001, Figure  6C),  supporting  that  driver  mutations
occurred  in  the  early  stage  of  tumor  formation  (both
P<0.001, Figure  6B).  Interestingly,  relatively  low  coverage
of neoantigens at hotspot genes were observed for NEP-H
subgroup, and all  six HCC tumors with no neoantigens in
the top thirty hotspot genes belonged to NEP-H subgroup
(Figure  6A).  Further  analysis  revealed  that  NEP-L
subgroup  had  ~2  fold  more  driver  mutation-derived
neoantigens (both P<0.001, Figure 6D),  indicating that the
accumulation of driver gene mutations could greatly affect
the  interactions  between  tumor  and  immune
microenvironment.

Interestingly, we also found that neoantigens in a subset
of hotspot genes (DNAH9, NBPF12, ANKRD20A4, NBPF10
and ZNF292) preferentially occurred in NEP-L subgroup
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and favored tumors without clonal evolution (Figure 6E).
Furthermore, neoantigens in three of these genes (DNAH9,
NBPF12 and ANKRD20A4) could only be observed in NEP-
L  subgroup,  covering  82.6%  of  tumors  from  NEP-L
subgroup. Meanwhile, neoantigenic mutations on DNAH9
and NBPF12 were also specially observed in tumors without
clonal evolution. Possible explanation for this intriguing
phenomenon might be that neoantigen from these genes
could affected tumor’s response to immune system, which
resulted in suppression of neoantigen expression, and then
the more active immune microenvironment restricted the

tumor cell  evolution. The above results  demonstrated a
strong correlation between neoantigenic hotspot genes and
neoantigen expression patterns, which further influenced
tumor evolution.

Discussion

Based on our identified neoantigen profiles, we discovered
two  clinically  relevant  subgroups  with  distinct  neoantigen
expression  patterns.  Previous  studies  have  demonstrated
that  the  abundance  of  neoantigens  could  greatly  influence

 

Figure 5 Neoantigens  and  immune cell  infiltration.  (A)  Heatmap showing  HCC sample  clustering  based  on  estimated  infiltration  of  28
immune cell types; (B) Differences of T cell clonality and T cell richness between immunologically cold and immunologically hot tumors;
(C) Kaplan-Meier curves of OS (left) and RFS (right) comparing patients with immunologically cold or immunologically hot tumors; (D)
Differences  of  somatic  mutation  load  (left)  and  somatic  neoantigen  load  (right)  between  immunologically  hot  and  immunologically  cold
tumors;  (E)  ORs  and  95%  confidence  intervals  comparing  the  clinical  parameters  between  immunologically  hot  tumors  and
immunologically cold tumors; (F) Scatterplots showing correlation between proportion of expressed neoantigens and the level of estimated
infiltration of different immune cells, only immune cell types with significant correlation were shown. HCC, hepatocellular carcinoma; OS,
overall survival; RFS, recurrence-free survival; OR, odds ratio; BCLC, Barcelona Clinic Liver Cancer.
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Figure 6 Neoantigens and driver mutations. (A) Waterfall plot summarizing the distribution of the top 30 neoantigenic hotspot genes in
HCC patients. Driver genes identified by DriverDB/MutsigCV were marked with “+”; (B,C) ORs and 95% confidence intervals of driver
mutations to be categorized as clonal mutations (B) and to be neoantigens (C); (D) Differences of neoantigens derived from driver genes
between NEP-H and NEP-L subgroup; (E) Neoantigenic hotspot genes preferentially occurred in tumors with clonal evolution as well as
NEP-L  subgroup.  HCC,  hepatocellular  carcinoma;  OS,  overall  survival;  NEP-H,  neoantigen  expression  probability  high;  NEP-L,
neoantigen expression probability low.
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tumor phenotypes and prognosis, while we further explored
the  different  factors  underlying  neoantigen  expression,
showing  that  the  neoantigen  expression  pattern  could
represent  an  integrated  status  sculpted  by  tumor
neoantigen,  immune  environment  and  tumor  clonal
evolution.  Mutation  accumulation  during  early  stage  of
tumor  development  could  largely  determine  the  initial
pattern  of  interaction  between  tumor  and  immune
microenvironment,  while  this  interaction  continuously
change  along  with  tumor  clonal  evolution.  Different
biological  pathways  such  as  MYC  activation  and  DNA
damage  repair  could  contribute  to  the  intricate  dynamics,
resulting  in  different  tumor  phenotypes  and  prognosis.
Thus,  the  neoantigen  expression  pattern  could  provide  a
different  view  than  the  abundance  of  neoantigens,  which
could be utilized in future clinical applications.

It is known that tumor could evolve to encounter attack
of immune system. In our analysis, we discover an immune
escape  mechanism  that  tumors  could  become  more
inconspicuous  by  evolv ing  subclones  with  less
immunogenicity.  Consistently,  an  evaluated  level  of
immunoediting  in  subclone  mutations  compared  with
clonal mutations was also suggested by a recent study of
lung  cancer  (8).  Furthermore,  we  also  observed  that
ancestral  clones  with  lower  number  of  mutation
accumulation, but higher immunogenicity were more likely
to involve in clonal evolution, indicating that tumors with
less competitive ancestral clones might be more likely to
evolve  more  competitive  subclones  under  immune
pressure.

Considering the success of neoantigen-based treatment
in  some  cancers  (6,7)  and  recent  demonstration  of
immunogenicity of the frequent driver mutations (45), a
series of neoantigenic hotspot genes observed by our study
could be potential actionable targets for HCC in future.
Meanwhile, we also discovered that driver gene neoantigen
distribution is closely related to tumor clonal evolution and
neoantigen expression patterns, which suggested that driver
gene mutation accumulation could also play key roles in the
interaction between tumor cells and microenvironment.

From  a  clinical  perspective,  the  differentially
characterized  neoantigen  expression  subgroups  could
greatly  help future immunotherapeutic  interventions in
HCC,  for  patients  in  each  group  have  shown  distinct
clinical  outcomes  and  immune  microenvironment.
Considering  its  immune  suppression  phenotype  and
evaluated proportion of expressed neoantigens,  NEP-H
subgroup  might  be  more  fitting  to  receive  immune

checkpoint  blockade  treatment,  which  can  relieve
immunosuppression  and  then  facilitate  neoantigen-
involved  antitumor  response.  NEP-L  subgroup,  with
higher driver gene neoantigen burden and better prognosis
after  surgery,  might  better  benefit  from  surgery
accompanied by neoantigen vaccines based on customized
driver mutation panels. Furthermore, with the classification
system  reflecting  an  integrated  status  of  HCC  tumor
contributed  by  driver  mutation  accumulation,  immune
environment and clonal evolution, how such status might
change during patients’ clinical course is also worth further
investigation, for it might shed light on the development of
novel  strategies  that  could  better  benefit  patients’
prognosis.

Conclusions

Our  results  demonstrated  that  neoantigen-directed  tumor
evolution indeed took place in HCC, which resulted in two
clinically  relevant  subgroups  with  distinct  neoantigen
expression  patterns.  Different  mechanisms  contributing  to
the  generation  of  these  two  subgroups  suggested  that  the
neoantigen expression patterns should be fully evaluated in
future immunotherapeutic interventions.
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Figure  S1 Frequency  distribution  of  somatic  mutations  and  neoantigens.  Density  plot  of  mutant  variant  allele  frequency  of  somatic
mutations (A) and neoantigens derived from somatic mutations (B). The red dash lines represent the median of the frequencies.

 

Figure  S2 Classification  of  identified  RNA  editing  sites.  (A)  Pie
chart  showing  the  proportion  of  identified  RNA  editing  sites
classified  as  3-UTR  variants,  5-UTR  variants,  missense  variants
and synonymous variants.



 

 

Figure S3 Associations  between HCC RNA editing and HCC prognosis.  Kaplan-Meier  curves  of  OS and RFS for  patients  stratified by
HCC  RNA  editing  sites  (A,B)  and  corresponding  neoantigens  (C,D).  HCC,  hepatocellular  carcinoma;  OS,  overall  survival;  RFS,
recurrence-free survival.

 

Figure  S4 Associations  between  loads  of  HCC  somatic
mutation/neoantigen  and  patients’  clinical  characteristics.  HCC,
hepatocellular carcinoma; BCLC, Barcelona Clinic Liver Cancer.

 

Figure  S5 Density  plot  of  expressed  neoantigens.  The  red  dash
line represents the median of the expressed neoantigens.



 

Figure  S6 Difference  of  expressed  neoantigen  proportion
between  subgroup  NEP-H  and  NEP-L  (P<0.001).  NEP,
neoantigen expression probability.
 

Figure  S7 Correlation  between  MYC  and  PD-1  expression.  Scatterplot  showing  correlation  between  MYC  expression  level  and  PD-1
expression level in both HCC tumor (R2=0.312, P=0.008) (A) and peritumor (R2=0.387, P<0.001) (B) tissue based on RNA-seq data.

 

Figure S8 Tumor with and without clonal evolution. Classification of tumor without clonal evolution (A) and tumor with clonal evolution
(B) according to the mutation clusters.



 

 

Figure S9 Association between somatic mutations/neoantigens from different mutation clusters with HCC prognosis. (A,B) Kaplan-Meier
curves  of  OS  (P<0.001)  (A)  and  RFS  (P=0.018)  (B)  for  patients  stratified  by  clonal  mutation  load;  (C)  Kaplan-Meier  curves  of  RFS  for
patients stratified by clonal neoantigen load (P=0.052); (D,E) Kaplan-Meier curves of OS (P=0.222) (D) and RFS (P=0.466) (E) for patients
stratified by subclonal mutation load; (F) Kaplan-Meier curves of RFS for patients stratified by subclonal neoantigen load (P=0.038); (G,H)
Kaplan-Meier  curves  of  OS (P=0.012)  (G)  and RFS (P=0.047)  (H)  for  patients  stratified  by  background mutation load;  (I)  Kaplan-Meier
curves of RFS for patients stratified by background neoantigen load (P=0.004). HCC, hepatocellular carcinoma; OS, overall survival; RFS,
recurrence-free survival.



 

 

Figure S10 Association between clonal evolution and proportion of expressed neoantigens. Difference of expressed neoantigen proportion
(P<0.001) (A) and neoantigen-expressing probability score (P<0.001) (B) between tumors with and without clonal evolution.

 

Figure S11 Association between background mutations/neoantigens and immune cell infiltration. The differences of somatic background
mutation  load  (P<0.001)  (A)  and  background  neoantigen  load  (P<0.001)  (B)  between  immunologically  hot  and  immunologically  cold
tumors.



 

Table S1 Univariate and multivariate Cox regression analysis of variables associated with overall survival

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Gender (female vs. male) 0.035 (0.000−2.558) 0.126 − −
Age (>55 vs. ≤55 years) 0.903 (0.404−2.017) 0.803 − −
TNM stage (III+IV vs. I+II) 2.425 (1.082−5.433) 0.031 0.998 (0.232−4.295) 0.998

BCLC stage (B+C vs. A) 2.787 (1.239−6.269) 0.013 1.965 (0.447−8.642) 0.371

Tumor envelope (with vs. without) 0.422 (0.141−1.259) 0.122 − −
Tumor thrombi (positive vs. negative) 10.738 (2.477−46.545) 0.002 7.943 (1.519−41.522) 0.014

Microsatellite lesion (positive vs. negative) 2.488 (1.008−6.143) 0.048 0.796 (0.226−2.800) 0.722

Alcohol (drinker vs. nondrinker) 0.909 (0.337−2.453) 0.851 − −
Neoantigen load (high vs. low) 0.278 (0.124−0.624) 0.002 0.399 (0.054−2.932) 0.367

Somatic mutation load (high vs. Low) 0.386 (0.171−0.871) 0.022 1.587 (0.219−11.477) 0.647

Neoantigen expression propability (NEP-H vs. NEP-L)   4.918 (1.462−16.544) 0.010 2.831 (0.675−11.875) 0.155

BCLC, Barcelona Clinic Liver Cancer; NEP, neoantigen expression probability; HR, hazard ratio; 95% CI, 95% confidence interval.

Table S2 Univariate and multivariate Cox regression analysis of variables associated with recurrence-free survival

Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Gender (female vs. male) 0.278 (0.100−0.775)   0.014 0.274 (0.076−0.989) 0.048

Age (>55 vs. ≤55 years) 0.666 (0.382−1.163)   0.153 − −
TNM stage (III+IV vs. I+II) 2.994 (1.685−5.319) <0.001 1.157 (0.484−2.770) 0.743

BCLC stage (B+C vs. A) 3.354 (1.873−6.004) <0.001 1.618 (0.645−4.058) 0.305

Tumor envelope (with vs. without) 0.426 (0.188−0.967)   0.041 0.866 (0.328−2.286) 0.771

Tumor thrombi (positive vs. negative) 4.089 (2.040−8.198) <0.001 3.751 (1.461−9.629) 0.006

Microsatellite lesion (positive vs. negative) 3.127 (1.679−5.822) <0.001 1.519 (0.684−3.374) 0.305

Alcohol (drinker vs. nondrinker) 1.721 (0.909−3.258)   0.096 − −
Neoantigen load (high vs. low) 0.445 (0.242−0.818)   0.009 0.748 (0.308−1.820) 0.523

Somatic mutation load (high vs. low) 0.567 (0.307−1.048)   0.070 − −
Neoantigen expression propability (NEP-H vs. NEP-L) 2.567 (1.326−4.970)   0.005 1.635 (0.635−4.214) 0.308

BCLC, Barcelona Clinic Liver Cancer; NEP, neoantigen expression probability; HR, hazard ratio; 95% CI, 95% confidence interval.


