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ABSTRACT Tuberculosis is the most frequent cause of death in humans from a sin-
gle infectious agent. Due to low numbers of bacteria present in sputum during early
infection, diagnosis does not usually occur until �3 to 4 months after symptoms de-
velop. We created a new more sensitive diagnostic that can be carried out in 10 min
with no processing or technical expertise. This assay utilizes the Mycobacterium
tuberculosis-specific biomarker BlaC in reporter enzyme fluorescence (REF) that has
been optimized for clinical samples, designated REFtb, along with a more specific
fluorogenic substrate, CDG-3. We report the first evaluation of clinical specimens
with REFtb assays in comparison to the gold standards for tuberculosis diagnosis,
culture and smear microscopy. REFtb assays allowed diagnosis of 160 patients from
16 different countries with a sensitivity of 89% for smear-positive, culture-positive
samples and 88% for smear-negative, culture-positive samples with a specificity of
82%. The negative predictive value of REFtb for tuberculosis infection is 93%, and
the positive predictive value is 79%. Overall, these data point toward the need for
larger accuracy studies by third parties using a commercially available REFtb kit to
determine whether incorporation of REFtb into the clinical toolbox for suspected tu-
berculosis patients would improve case identification. If results similar to our own
can be obtained by all diagnostic laboratories, REFtb would allow proper treatment
of more than 85% of patients that would be missed during their initial visit to a
clinic using current diagnostic strategies, reducing the potential for further spread of
disease.
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In 2014, the World Health Organization (WHO) made a projected target of reducing
the tuberculosis (TB) burden 90% by 2035, which would indicate cessation of the

ongoing global epidemic (1). Rapid, sensitive, and low-cost diagnostics for early stages
of patient care or point of care (POC) are an urgent need in the fight against
tuberculosis. Development of POC diagnostics would be facilitated by identification of
new biomarkers and simplification of testing platforms, allowing a new test to be
effectively used in resource limited environments (2). Progress in tuberculosis-
associated biomarker discovery has been slow, and implementation of biomarkers for
diagnostics has been challenging (3–8). Recent advances have led to the development
of several effective diagnostics, including GeneXpert MTB/RIF (9), with the ability to
detect Mycobacterium tuberculosis and test for drug resistance in less than 2 h (3, 10).
Despite several attempts to have GeneXpert more widely utilized, the cost associated
with the assay has been a roadblock to utilization in all areas (10–12). The gold standard
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tests, culture and smear microscopy, are lab based and usually require multiple visits to
the clinic before conclusive diagnosis (12–15), often taking weeks to months before
results are obtained and frequently becoming contaminated, preventing definitive
results (16–19). Smear microscopy is usually the first test administered, but the low
sensitivity often allows infection to be transmitted to others before diagnosis (1, 16, 20).
In the absence of appropriate treatment, the mortality rate for tuberculosis can be as
high as 50%, creating a grim scenario in resource-limited countries (21). Unfortunately,
progress in the development of new diagnostics has been extremely slow (22). Delayed
diagnosis increases morbidity and mortality, prevents control of drug resistance, and
results in inefficient use of monetary resources and manpower (22).

Imaging technologies using radiological and optical probes have recently shown the
potential to instantaneously quantify bacteria and other infectious agents, offering a
viable alternative to culture (23–35). Unfortunately, most approaches for detection and
quantification of bacteria require the use of recombinant strains expressing fluorescent
or bioluminescent reporters (23–27, 30, 35–38), preventing application to patients
because clinical strains do not express these reporters. Use of endogenous enzymes in
pathogens to produce signals for imaging using custom probes shows promise for
detection and quantification of clinical strains (28, 39–41), and their catalytic nature
offers the potential for extremely high sensitivity (42). In the case of tuberculosis, the
constitutively expressed (43, 44), surface localized and secreted (28), robustly catalytic
enzyme BlaC (Rv2068c) (45, 46) is extremely sensitive for detection of M. tuberculosis
using reporter enzyme fluorescence (REF) (28, 40). Although early fluorogenic sub-
strates did not have specificity for BlaC over other �-lactamases, the unique active site
of the BlaC (47) makes synthesis of highly specific substrates feasible. Custom fluoro-
genic substrates that display high specificity for BlaC over other �-lactamases have
been synthesized but have not been well validated in clinical samples (48–50). The
specificity of these substrates combined with the extremely high catalytic rate of BlaC
can allow rapid detection of 1 to 10 M. tuberculosis bacilli within sputum (Fig. 1), even
when numerous other species of bacteria expressing �-lactamase are present (48–50),
suggesting that these specific substrates will perform well in clinical samples. Since the
development of a low-cost, sputum-based triage test is an immediate need for tuber-
culosis control programs (51), it has been suggested that a biomarker assay like the
BlaC-based REF assay using BlaC, designated REFtb, could be employed at the POC and
greatly increase tuberculosis case identification and, thereby, appropriate treatment
(52).

In the current study, we completed development of the REFtb diagnostic system
and report the first diagnostic trial comparing REFtb with the gold standards of culture

FIG 1 Illustration of the reporter enzyme fluorescence (REF) assay used to evaluate clinical specimens.
The M. tuberculosis �-lactamase, BlaC, is surface localized (�90%) and secreted (�10%) when the bacteria
are grown under laboratory conditions in liquid medium (28), making it easily accessible to fluorogenic
substrates for REF. The fluorogenic substrates CDG-1, CDG-OMe, and CDG-3 produce the fluorescent
product Tokyo green after cleavage by BlaC. The catalytic activity of BlaC can be measured by detecting
the presence of fluorescence using a plate reader or similar system that allows excitation at 492 nm and
fluorescence emission at 515 or 535 nm. Although a 515-nm emission was used for all in vitro studies due
to the maximal emission of Tokyo green at this wavelength, 535 nm was chosen for use with clinical
specimens because this wavelength displays a lower autofluorescent background due to components of
clinical sputum samples.
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and smear microscopy. We evaluated conservation of BlaC in tuberculosis complex
bacteria and compared it to �-lactamases present in other bacterial species. We
synthesized the BlaC-specific REF substrate CDG-3 and found that it has high selectivity
for M. tuberculosis BlaC and can quantitatively measure enzyme and bacterial levels in
sputum. These characteristics allowed development of a simple sputum-based diag-
nostic assay for tuberculosis that can now be evaluated in patients (48–50). In the
current study, we optimized conditions for REFtb to diagnose tuberculosis using
sputum and conducted the first blinded trial of REFtb in patients with clinical symptoms
of tuberculosis. We found that, based on the sensitivity and specificity obtained using
BlaC-based REF for diagnosis of tuberculosis, REFtb represents a promising new triage
test for tuberculosis that could be used to improve case identification prior to follow up
by appropriate treatment and confirmation with other diagnostic strategies.

MATERIALS AND METHODS
Diagnostic process. The sample collection and processing, including the rendering of the diagnostic

assay was carried out in a blinded manner, wherein the personnel responsible for doing the experiments
were not aware of the acid-fast stain (smear) or culture status of the patients providing samples. The
clinical samples were provided by The Houston Methodist Research Institute (Houston, TX) and the
Foundation for Innovative New Diagnostics (FIND, Geneva, Switzerland). Initial sample volume was
variable from 100 �l to 1 ml, with the majority of samples having a �500-�l initial volume. Samples from
Houston were consecutive and taken over 4 months, initially selected as likely true tuberculosis-positive
patient samples. Samples from FIND were selected to have an equal distribution of negative, culture-
positive, and both smear- and culture-positive sample type, with one-third of each type. Samples were
randomized and coded prior to shipping with no personnel involved in testing able to decode the
sample type. The samples were processed for smear and culture at primary care centers, coded, and
frozen in aliquots. These samples were transported over dry ice to Texas A&M where they were stored
at �80°C until use. Clinical samples were thawed at room temperature (RT) before further processing.
The REFtb assay was carried out as reported earlier (49). Briefly, samples were thawed to room
temperature, and an equal volume of transport stabilization solution (TSS) was added. The samples were
incubated in TSS for 1 h before reporter enzyme fluorescence solution (49) containing CDG-3 to give a
final concentration of 1 �M (REFS) was added. Cleaved CDG-3 was read using a 490-nm excitation and
an emission of 515 nm or 535 nm. Optimal specificity and sensitivity were obtained with clinical samples
using 535 nm, and all data presented utilize this emission wavelength. The samples were then read by
a 100-point scan in a 10 by 10 grid pattern using a spectrometer (Mithras LB 940; Berthold Technologies,
Oakridge, TN) immediately and after 10 min incubation at room temperature (25°C). Each set of assays
also evaluated a TSS control comprised of TSS with tuberculosis-negative sputum.

Statistical analysis. We determined the cutoff for clinical samples that yielded optimal sensitivity
and specificity. Two methods were used to determine cutoffs with SAS version 9.4 with the ROC macro
as follows: (i) determination of a threshold for the entire data set that was then used to call samples and
(ii) batch-specific thresholding, where cutoffs were determined for each batch of samples prior to making
calls for that batch. Once we determined the appropriate cutoff for optimal sensitivity and specificity, this
cutoff was used for analysis of all data and compared to standard diagnostic tests. This comparison was
made for smear-positive and culture-positive samples and smear-negative and culture-positive samples.
Sensitivity was calculated for the REFtb assay against both groups of samples, either smear negative and
culture positive or both smear and culture positive. Specificity was calculated against samples that were
both smear and culture negative. Clinical samples were called positive if their fluorescence was higher
than the stated cutoff and negative if their fluorescence was lower. We determine the cutoffs for the kth

sample as T � c_k, where c_k is the fluorescence for the control in the kth sample and T is a multiplier
determined to yield maximum sensitivity and specificity. Sensitivity is defined as the ratio of the true
positives to the total number of positives and is related to the power of a test, whereas specificity is
defined as the ratio of true negatives to the total number of negatives and can be interpreted as one
minus the false discovery rate. The true positives, false positives, true negatives, and false negatives were
determined using standard suspected tuberculosis clinical sample culture and acid-fast stain microscopy
to classify the sputum samples. Where appropriate, a 95% confidence interval is presented for data
obtained. Biological experiments were repeated at least twice in triplicate, and data presented are means
and standard deviations. Significant differences were determined using analysis of variance (ANOVA)
with the Tukey-Kramer post hoc pairwise t test for multiple comparisons and the Student’s t test for
individual pairwise comparisons. P values of less than 0.05 were considered significant.

Bioinformatic analyses. Conservation of the mycobacterial �-lactamase BlaC within the tuberculosis
complex was examined by obtaining protein sequences from NCBI and aligning them using ClustalW
(53). The signature motifs for class A �-lactamases were selected within BlaC based on previous
publications (47, 54). The evolutionary relatedness between BlaC and �-lactamases from other bacterial
species was examined by obtaining sequences from the NCBI protein database (55, 56) and aligning
them using Clustal Omega version 1.2.4 (57). The amino acid sequence of BlaC from 60 to 170, spanning
the active site residues, was selected for comparison with the same region from other �-lactamases. The
aligned sequences were edited to include the amino- and carboxy-terminal sequences. Protein se-
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quences of �-lactamases were aligned and then a phylogenetic tree was constructed (58). A simple
unrooted tree depicting relatedness of �-lactamases was generated.

Bacterial strains and growth conditions. Mycobacterium tuberculosis subsp. bovis bacillus Calmette-
Guérin (BCG) carries BlaC and produces similar levels of BlaC as other M. tuberculosis strains (28). BCG was
cultured as described previously (40) in 7H9 broth (Difco, Detroit, MI) supplemented with 0.5% glycerol,
10% oleic acid dextrose complex without catalase (OADC), and 0.05% Tween 80. Bacterial cultures were
incubated at 37°C in the presence of 5% CO2 until an optical density at 600 nm of 0.5. The bacterial
culture was centrifuged and washed with 7H9 liquid medium without any supplements and resuspended
in this same medium prior to use.

Fluorogenic probes. The fluorogenic probes CDG-1, CDG-OMe, and CDG-3 were synthesized and
validated as described previously (48, 49). Probes were stored at �80°C in dimethyl sulfoxide (DMSO)
until use.

Purification of BlaC and other �-lactamases. Expression and purification of BlaC and TEM-1 were
carried out as described previously (47, 49). Expression and purification of AmpC, P99, KPC-2, and
CTX-M-15 �-lactamases were carried out and provided by AstraZeneca (Waltham, MA). Activity of purified
enzymes was validated and quantified by nitrocefin assays as described previously (59). Briefly, 0.2 nM
of each enzyme in 2-(N-morpholino)ethanesulfonic acid (MES), pH 6.0, was incubated with 200 �M
nitrocefin at room temperature (25°C) to estimate active enzyme units. All activity assays were carried out
in 100 �l final volume. Activity of all enzymes used was determined the same day or within a few days
of use. No loss of enzyme activity has been observed under standard storage conditions (47).

�-Lactamase activity assays. Equal units, as determined by nitrocefin activity, of each �-lactamase
were used to compare the specificity of CDG-3 with CDG-1 and CDG-OMe. Two �-lactamases, TEM-1
(class A �-lactamase) and AmpC (class B �-lactamase) were examined using various concentrations of
enzyme up to 500 nM. All enzyme assays were conducted at room temperature (25°C). Briefly, 0.1 �M
fluorogenic substrate was incubated with different concentrations of �-lactamase for various periods of
time in the dark. Enzyme and substrate dilutions were prepared in MES buffer (pH 6.0), and the assay was
carried out in 96-well plates using an EnVision plate reader (PerkinElmer, Waltham, MA). Emission spectra
upon excitation at 490 nm were collected and compared with and without BlaC. Standard nitrocefin
assays (59) with various concentrations of BlaC were first carried out to standardize enzyme concentra-
tions, and then dilutions were made and activity was determined in sputum, sputum with 200 mM MES
buffer, pH 6.0, plus 2% dithiothreitol (DTT), designated TSS, and MES buffer using each of the fluorogenic
substrates.

Detection of BlaC in sputum. Tuberculosis-negative human sputum was obtained from Robert
Fader at Baylor Scott & White (Temple, TX). Sputum samples were stored at �80°C, thawed at room
temperature (25°C), and mixed with an equal volume of TSS. �-Lactamases diluted in MES buffer were
added (final concentrations of 100 to 500 nM) and incubated for 1 h. After 1 h of incubation, fluorogenic
substrates in REF solution (49) were added to each sample (final concentration of 1 �M). The subsequent
change in fluorescence of the solution was monitored spectrophotometrically with excitation at 490 nm
and emission at 515 nm. All of the assays, unless noted otherwise, were carried out in 96-well plates in
triplicate.

Detection of bacteria in sputum. BCG was used as a control for the ability to detect M. tuberculosis
in sputum as described previously (49). After estimating bacterial numbers by optical density at 600 nm,
�107 CFU of BCG were centrifuged, the supernatant removed and resuspended in the same medium.
Dilutions were made, and �100 CFU were added to pooled tuberculosis-negative human sputum.
Samples were diluted 1:1 in TSS and incubated for 1 h at room temperature (25°C). Substrate concen-
trations varied from 0.01 �M to 10 �M in 200 mM MES, and samples were read immediately after adding
the substrate and every 20 min for 3 h at room temperature in 24-well plates using a Mithras LB 940 plate
reader (Berthold Technologies, Oakridge, Tennessee) at 490 nm excitation and 515 nm emission.
Tuberculosis-negative sputum without BCG was included as a negative control in all experiments.

RESULTS
M. tuberculosis BlaC is an unusual �-lactamase. The BlaC �-lactamase produced

by M. tuberculosis is a biomarker for the presence of viable bacteria during infections in
humans and animals (28, 40, 49, 50). This enzyme is secreted through a twin-arginine
translocation (Tat) pathway (60, 61), resulting in BlaC being primarily cell associated and
membrane localized (28). �-Lactamase activity in M. tuberculosis strains is almost
exclusively due to BlaC, since mutations in the blaC gene lead to production of
negligible �-lactamase activity by the resulting strains (28, 61). Based on examination
of microarray data in the Gene Expression Omnibus (GEO) at the National Center for
Biotechnology Information (NCBI) and ArrayExpress at the European Bioinformatics
Institute (EBI) databases, blaC expression is constitutive and not influenced by growth
conditions. During infections, there are no significant differences between the first 24
h postinfection (62), under aerobic conditions (63), or during an oxidative stress
response (64). Comparison of BlaC with tuberculosis complex members, those myco-
bacteria that cause tuberculosis, finds conservation throughout the protein (Fig. 2A).
BlaC is a class A �-lactamase since it carries the three motifs characteristic of this
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enzyme class (47, 54). Class A �-lactamases from other bacteria have little similarity to
BlaC outside of these motifs (Fig. 2B). Interestingly, the glycine near motif I and the
three glycines near motif II are not present in other �-lactamases, and they map to the
binding pocket in the crystal structure (47, 48). These unusual glycines within the BlaC
active site are what make the M. tuberculosis �-lactamase unique. BlaC is not found in
other mycobacterial species or any bacterial species commonly found in the human
oropharynx (65) (Fig. 2C). Overall, these observations suggest BlaC is specific to
tuberculosis complex members, even within mycobacterial species.

CDG-3 is a highly specific and sensitive fluorogenic probe for M. tuberculosis.
We designed three fluorogenic substrates that can sensitively detect BlaC, CDG-1,
CDG-OMe, and CDG-3 (48–50). The specificity of these substrates is important because
of the need for high specificity in patient samples where many other �-lactamases are
likely present (48). Although specificity of CDG-OMe compared to TEM-1 (class A)

FIG 2 Characteristics of M. tuberculosis BlaC that make it broadly applicable as a biomarker to detect infection. (A) Amino acid sequence alignment of the M.
tuberculosis BlaC with the �-lactamases present in tuberculosis complex bacteria showing that the protein sequence is completely conserved in all bacteria that
can cause tuberculosis in humans and Mycobacterium tuberculosis subsp. bovis bacillus Calmette-Guérin (BCG). Motifs I, II, and III that are present in class A
�-lactamases are marked by green, red, and blue boxes, respectively, on the alignment (47, 54). (B) Amino acid sequence alignment with a diverse set of other
�-lactamases. Boxed amino acids within this alignment indicate unique glycine residues found in the amino acid sequence for BlaC. (C) Phylogenetic tree
illustrating the evolutionary distances between M. tuberculosis BlaC and other selected �-lactamases. The scale bar denotes the distance equivalent to 0.8
generations for the phylogenetic tree.
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�-lactamase has been examined (48), these substrates have not been directly compared
for temporal kinetics to each other or with other �-lactamases. When we compared all
three substrates directly, we found that the cephalosporin-based fluorogenic substrate
CDG-1 is cleaved more readily by TEM-1 (class A) than by BlaC and AmpC (class C)
�-lactamases (Fig. 3A). CDG-OMe, with a methoxy substitution at the 7-amino position,
is cleaved more readily by BlaC than TEM-1 and AmpC (Fig. 3B). Selectivity of CDG-OMe
for BlaC over TEM-1 is much better than that over AmpC (Table 1). CDG-3, with both a
methoxy substitution at the 7-amino position and a cyclopropyl substitution at the 2
position, displays greater selectivity for BlaC than CDG-OMe (Fig. 3C). We found that
CDG-3 displays high specificity for BlaC over other �-lactamases, even KPC-2, which is
thought to be very versatile (66, 67). Based on these data, we examined the use of
CDG-3 to detect M. tuberculosis infection.

Detection of BlaC enzyme in clinical material. The primary clinical material used
for diagnosis of tuberculosis is sputum used for acid-fast staining and culture (1, 22, 52,
68). We assessed the ability of the fluorogenic substrates to detect purified BlaC spiked
into tuberculosis-negative human sputum. CDG-1, CDG-OMe, and CDG-3 allow sensi-
tive detection of BlaC, and the signal correlates well with concentration of enzyme (Fig.
4A). Interestingly, human sputum interferes with detection of BlaC (Fig. 4B). We found
that stabilization of pH with MES buffer and inclusion of DTT, designated TSS, allows
quantitative detection of BlaC in sputum (Fig. 4C). In the case of sputum with TSS,

FIG 3 Fluorescence (excitation, 490 nm; emission, 515 nm) obtained using different fluorogenic probes
for reporter enzyme fluorescence (REF) with the TEM-1, AmpC, and BlaC �-lactamases. Fluorescence after
3 h coincubation of 1 �M CDG-1 (A), CDG-OMe (B), and CDG-3 (C) with between 0.1 and 500 nM each
�-lactamase at room temperature in MES buffer, pH 6.0. Data points shown represent the average
fluorescence from samples done in triplicate, and error bars represent the standard deviations for these
data. P values are shown above data points and are derived from comparison of data for BlaC with that
of TEM-1 by ANOVA. Structure for the probe used is shown to the right of their graph for activity with
the �-lactamases.
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CDG-1 and CDG-3 generated a greater signal from BlaC than CDG-OMe. We found that
there was a very strong correlation (r2 � 0.99966; P � 0.016) between BlaC concentra-
tion in sputum and fluorescence (Fig. 5). The correlation of fluorescence with the
concentration of BlaC is similar in sputum and MES buffer (r2 � 0.99792; P � 0.041). The

TABLE 1 Specificity of substrates for �-lactamases

�-lactamase CDG-OMe activity (%)a CDG-3 activity (%)b

BlaCc 100 � 9.29 100 � 2.00
TEM-1d 5.74 � 0.55 3.44 � 0.08
AmpCd 26.7 � 2.66 6.82 � 0.28
KPC-2d 53.3 � 3.28 17.9 � 1.07
CTX-M-15e 5.91 � 0.53 2.79 � 0.39
P99d 7.22 � 0.75 2.15 � 0.13
aActivity was calculated as the percentage of fluorescence (excitation, 490 nm; emission, 515 nm) after
coincubation of 0.2 nM of each �-lactamase with 1 �M CDG-OMe for 40 min at room temperature (25°C).

bActivity was calculated in exactly the same manner as for CDG-OMe, except that 1 �M CDG-3 was used
instead of CDG-OMe.

cP � 0.0001 for BlaC compared to all other �-lactamases for both CDG-OMe and CDG-3.
dP � 0.01 for CDG-3 compared to CDG-OMe for this �-lactamase.
eP � 0.05 for CDG-3 compared to CDG-OMe for this �-lactamase.

FIG 4 Detection of different concentrations of BlaC (0.1 to 500 nM) with fluorogenic probes CDG-1,
CDG-OMe, and CDG-3 at 1 �M in MES buffer, pH 6.0 (A); sputum alone (B); and sputum with transport
stabilization solution (TSS) (C) at room temperature (25°C) for 3 h. Data points shown represent the
average fluorescence from samples done in triplicate, and error bars represent the standard deviations
for these data. P values are shown above data points and are derived from comparison of data for CDG-3
with that of CDG-OMe by ANOVA.
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reaction of BlaC with CDG-3 occurs rapidly in sputum, generating a nearly maximal
fluorescent signal within the first 20 min (Fig. 5C). We found that, similar to cleavage of
CDG-3 by BlaC in buffer alone (49), CDG-3 in sputum with TSS gives a 238- and 192-fold
increase in fluorescence at 515 and 535 nm emission, respectively (Fig. 5D). We were
interested in using 535 nm, even though similar data would be obtained in vitro at both
wavelengths, since examination of clinical material by ourselves and other investigators
suggests that collecting emission at longer wavelengths helps to reduce interference
from hemoglobin that may sometimes be present in sputum (40, 49, 69). These data
suggest that CDG-3 can be used to accurately detect M. tuberculosis BlaC in sputum,
making it an excellent candidate for development of an REF diagnostic assay for
tuberculosis.

REF assays can detect 100 CFU of M. tuberculosis in sputum. Culture can detect
approximately 10 to 100 CFU of M. tuberculosis in sputum (70), making it important to
optimize REF near this threshold. We have previously shown that tuberculosis-negative
human sputum has large numbers of �-lactamase-producing bacteria (48, 49), making
it necessary to validate the performance of any detection strategy directly in human
sputum rather than laboratory medium. We were particularly interested in using assays
at ambient temperatures, since a diagnostic strategy that does not require temperature
control would be advantageous for low resource settings where tuberculosis diagnosis
is most needed (52). REF assays detect 100 CFU of BCG, which expresses similar levels
of BlaC to those of other M. tuberculosis strains (28, 40, 49, 50), spiked into human
sputum within 20 min (Fig. 6). Interestingly, low concentrations of CDG-3 (0.01 �M)
display improved signal to noise ratios, allowing use of very little substrate for assays.
We selected 1 �M as the concentration for use in REFtb assays to ensure sufficient

FIG 5 Reporter enzyme fluorescence probes behave similarly in buffer and sputum containing transport
stabilization solution (TSS). Correlation of activity (change in fluorescence per minute, excitation, 490 nm;
emission, 515 nm) from 1 �M CDG-3 incubated with different concentrations of BlaC in sputum con-
taining TSS (A) and MES buffer, pH 6.0, (B) for 40 min at room temperature (25°C). Linear correlation value
(R2) is shown on both graphs. (C) Change in fluorescence for 1 �M CDG-3 in the presence of 0.2 nM BlaC
in sputum over time at room temperature (25°C). Change in fluorescence (ΔF) is calculated as the
fluorescent signal at each time point minus the signal immediately after adding the substrate. All
experiments were carried out in duplicate, and the averages and standard deviations reported. (D)
Fluorescence emission spectrum of CDG-3 before and after treatment with 0.2 nM BlaC for 40 min in
sputum at room temperature (25°C) with excitation at 490 nm.
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substrate is available in the complex environment present in clinical material where
substrate may not always be readily accessible to the enzyme in solution. The sensitivity
of these assays supports the feasibility of REF as a diagnostic assay for detection of
tuberculosis infection using clinical material and suggests that its sensitivity may be
similar to or better than that of culture.

Evaluation of REFtb for diagnosis of tuberculosis in patients. We obtained 160
sputum samples from suspected tuberculosis patients, coded and blinded to evaluate
the performance of REFtb as a diagnostic test for tuberculosis. Sputum samples were
obtained from a geographically diverse population, from 16 countries, including the
United States. (Fig. 7A). When we used a cutoff value threshold for the highest
frequency of correct predictions of tuberculosis diagnosis, the REFtb assay yielded an
overall sensitivity of 89% for smear- and culture-positive samples and 88% for smear-
negative and culture-positive samples (Table 2), with a specificity of 82%. We analyzed
REFtb diagnosis against smear and culture combined and applied receiver operating
characteristic (ROC) curve analyses. ROC for all samples gives an area under the curve
of 76.27% (Fig. 7B), demonstrating significant (P � 0.0002) correct predictive ability for
REFtb diagnosis. The study population was 37.5% female, and no significant differences
were observed for REFtb with respect to gender. REFtb performed similarly for all age

FIG 6 Detection of M. tuberculosis subsp. bovis bacillus Calmette-Guérin (BCG) in sputum using reporter
enzyme fluorescence (REF) assays with the fluorogenic substrate CDG-3. CDG-3 at 10 �M (A), 5 �M (B),
and 0.01 �M (C) was coincubated in sputum with transport stabilization solution (TSS) that contained 100
CFU of BCG. Every 20 min for 180 min at room temperature (25°C), the change in fluorescence (ΔF) was
measured and calculated as the fluorescent signal (excitation, 490 nm; emission, 515 nm) at each time
point minus the signal immediately after adding the substrate. P values shown on each line are derived
from ANOVA comparison of data for sputum with 100 CFU BCG and sputum alone.
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groups for sensitivity (Table 2). However, specificity was slightly higher for patients
�35 years old and �65 years old than for patients 36 to 65 years old (Table 2; P � 0.05).
Clinical samples were assayed in 10 different batches of 7 to 20 samples each over 4
months. We found that there was variability in the signal obtained between batches for
all samples in a batch. Thus, we explored the possibility that batch-specific analysis
using the tuberculosis-negative sputum internal control in each batch for determining
the cutoff threshold would be the best strategy for analysis of our data. When
batch-specific analyses using the internal control from each batch are used, we obtain
a sensitivity of 88.1% (95% CI � 77.1 to 95.1) and a specificity of 86.1% (95% CI � 77.8
to 92.2). The positive predictive value is 79% (P � 0.0001), and the negative predictive
value is 93% (P � 0.0001). These data demonstrate that REFtb can diagnose tubercu-

FIG 7 Country of origin and performance for clinical samples evaluated in the current study using the
reporter enzyme fluorescence (REF) diagnostic assay. (A) Pie chart showing the percentage of total
suspected tuberculosis cases analyzed using REF to identify tuberculosis (REFtb) from each country.
Unknown indicates that no data are available for country of origin for those samples. The majority of
samples were obtained from Vietnam (102, 64%), with Mexico (12, 8%) second and Bhutan third (9, 6%).
(B) Receiver operating characteristic (ROC) curve analyzing all 160 samples for specificity and sensitivity
of REFtb diagnosis against smear and culture diagnosis. The ROC curve was generated by plotting the
sensitivity versus 1 � specificity using different cutoff points, giving an area under the curve of 76.27%
(P � 0.0002).

Sule et al. Journal of Clinical Microbiology

December 2019 Volume 57 Issue 12 e01462-19 jcm.asm.org 10

https://jcm.asm.org


losis with high sensitivity, and batch-to-batch variability can be corrected through
batch-specific analysis using tuberculosis-negative sputum controls.

DISCUSSION

We report evaluation of BlaC as a biomarker that is conserved within the tubercu-
losis complex for rapid diagnosis. The unique characteristics of the BlaC active site,
constitutive expression, and conservation in the tuberculosis complex make it an
excellent biomarker (48–50). The REFtb assay requires no processing and can be
accomplished in 10 min. We show that the CDG-3 probe represents a substantial
improvement over other probes in that it is stable and shows negligible cross-reactivity
with other bacteria. Very small amounts of CDG-3 can be used in these assays, making
REFtb a very inexpensive test, expected to cost less than a dollar per sample. Afford-
ability and simplicity make REFtb a promising option for POC use that would allow
more TB cases to be identified. Examination of 160 clinical specimens from suspected
tuberculosis-infected patients yielded a high sensitivity and specificity of 88.1% and
86.1%, respectively, obtained from ROC analyses with high statistical significance
(P � 0.0002) and correct predictive value. These observations suggest REFtb is more
sensitive than smear microscopy, which has a sensitivity of 20 to 80% (4). The negative
predictive value of REFtb is 93% (P � 0.0001), suggesting that few cases are missed and
emphasizing its potential for use as a rapid triage test. These values for specificity and
sensitivity are directly in line with recommendations from the WHO for a biomarker-
based triage test to identify suspected TB patients (71). We are particularly excited by
the observation that REFtb can detect the majority of smear-negative cases that would
be missed in diagnosis prior to obtaining culture results, since about 17% of tubercu-
losis transmission is thought to occur from these patients (72). Implementation of REFtb

TABLE 2 Sensitivity and specificity of the reporter enzyme fluorescence diagnostic assay

Group (no. of samples)a % Female (no.)b S�, C� (no.)c S�, C� (no.)d Specificity (no.)e

Age range
15–25 (11) 18.1 (2) 0 (1) 0 (0) 100 (10)
26–35 (33) 51.5 (17) 57.1 (7) 87.5 (8) 89 (18)
36–45 (38) 31.6 (12) 100 (11) 80 (5) 68 (22)f

46–55 (26) 19.2 (5) 100 (6) 66.6 (3) 76 (17)g

56–65 (37) 40.5 (15) 100 (7) 100 (6) 75 (24)h

�65 (15) 60.0 (9) 100 (3) 100 (2) 100 (10)

Sex
Male (100) 0.0 (100) 92 (25) 93.3 (15) 82 (60)
Female (60) 100 (60) 80 (10) 77.7 (9) 81 (41)

Total no. (160) 37.5 (60) 89 (35) 87.5 (24) 82 (101)
aClinical samples were divided into groups by age and sex to evaluate whether any of these differences
impact the performance of the tuberculosis reporter enzyme fluorescent (REFtb) diagnostic assay. The total
number of samples (n) in each group is shown in parentheses.

bThe percentage of female patients within the group. The number of samples in this group that were from
female patients is shown in parentheses.

cSensitivity of the REFtb assay versus smear-positive (S	) and culture-positive (C	) samples calculated as the
number of positives by REFtb divided by the number of positives by both smear and culture times 100 to
make a percentage. The number (no.) of samples in this group that were smear positive and culture
positive is shown in parentheses.

dSensitivity of the REFtb assay versus smear-negative (S�) and culture-positive samples calculated as the
number of positives by REFtb divided by the number of positives by culture only times 100 to make a
percentage. The number of samples in this group that were smear negative and culture positive is shown
in parentheses.

eSpecificity of the REFtb assay-negative samples versus samples negative by both smear and culture
calculated as the number of negatives by REFtb divided by the number of negatives by both smear and
culture times 100 to make a percentage. The number of samples in this group that were both smear and
culture negative is shown in parentheses. P values calculated using Boschloo’s exact test compared to the
specificity of the �65 age group.

fP � 0.02.
gP � 0.06.
hP � 0.05.
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at the POC has the potential to facilitate early diagnosis of tuberculosis, potentially
reducing diagnostic costs by 34 to 43% in the developing world (73).

REFtb fills a unique biological niche in diagnostic assays since it is a catalytic
enzyme-based assay. Since BlaC is secreted by the Tat pathway that requires ATP (60),
REFtb is amenable to evaluating therapeutic outcomes and phenotypic drug suscep-
tibility tests (DST). Existing diagnostic strategies and most others in development are
based on different biological mechanisms (52), either nucleotides (GeneXpert), cell wall
staining characteristics (smear microscopy), bacterial replication (culture), the host
response (QuantiFeron-TB), or antibody-based recognition of molecules produced by
M. tuberculosis. These differences in the biological mechanisms make it likely that REFtb
will serve as a diagnostic strategy that is complementary to others. While data obtained
in this initial evaluation of REFtb for diagnosis of tuberculosis in clinical samples are
promising, it is still early in development. A larger number of clinical samples from
diverse regions should be examined to confirm the REFtb sensitivity and specificity,
though this study produced high significance values (P � 0.0002). Optimally, batch
variability should be eliminated to simplify analysis and prevent the need for inclusion
of control samples. Batch variation is likely from preparation of the reagents, which
currently are prepared fresh as liquids. Liquid reagents are not optimal for POC assays
in limited resource settings. Stable lyophilized reagents are in development for REFtb
that are expected to perform consistently from batch to batch, allow stable shipping at
ambient temperatures, and eliminate solution preparation, facilitating use as a POC
diagnostic assay.

Although the specificity of REFtb is very reasonable, particularly for a triage test in
early development, some false-positives were obtained as defined by being negative by
both smear and culture. There were no significant differences in the sensitivity between
the age groups examined in this study, but there are small differences in specificity
from the 36- to 65-year-old group that point toward a factor that can increase false
positives. One possibility is that since REFtb is very sensitive, able to detect 1 to 10
bacteria in sputum (48–50), it is possible that some “false positives” are actually “true
positives” that are missed by other tests and only identified by REFtb. Currently, we
cannot differentiate true positives from true false positives, though follow up would
allow us to differentiate them. With the sensitivity of smear microscopy at 20 to 80% (4)
and most likely 50 to 60% (18, 74) and a single culture providing a sensitivity of �80%
(15, 18), true positives can be missed by existing diagnostic strategies. We will conduct
follow up in future studies that should allow us to differentiate true positives from false
positives, but in the meantime, we are investigating other reasons.

Another possible explanation for false positives is that an unknown �-lactamase has
a similar active site to BlaC or at least a similar ability to cleave CDG-3. We are
investigating this hypothesis and, once a cross-reactive �-lactamase(s) is identified,
incorporation of a specific inhibitor from the multitude of �-lactamase inhibitors
available (75) and/or a specific antimicrobial that kills the cross-reacting bacterial
species could possibly be used to eliminate these false positives and further improve
REFtb specificity. Interestingly, the sensitivity of REFtb compared to both smear-positive
and smear-negative tuberculosis samples is similar. This is most likely due to our
choosing the most sensitive conditions possible for REFtb assays, where we read the
samples after cleavage of the fluorogenic substrate plateaus, rather than while it is
increasing linearly and remains quantitative. We previously observed this phenomenon
with REF assays in vivo, where early time points allow quantitative determination of M.
tuberculosis, but at later time points a similarly high signal is observed regardless of
bacterial numbers present (28). Similarly, use of earlier time points in REFtb assays
would likely allow quantitative measurement of bacterial numbers in sputum but
would also most likely decrease sensitivity. Since we envision this test as a rapid triage
test for tuberculosis, quantitation is less important than sensitivity, so we plan to retain
the current assay conditions and focus on ensuring maximal sensitivity. Although false
negatives are not common, we plan to investigate potential reasons that these occur
to further improve the REFtb assay. One possible reason that samples that are positive
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by culture could become negative is improper storage and/or transport. This issue can
be overcome by ensuring careful handling or by simply conducting the REFtb assays at
the POC where bacterial viability is maintained. Since REFtb assays measure viable
bacteria, we expect REFtb to perform even better on fresh samples than on samples
that have been stored and shipped, even though the promising results from the current
study were obtained using shipped samples. We envision REFtb as a triage test to be
employed at the POC when a patient first visits a clinic. Management after identification
may ultimately involve treatment or careful monitoring in parallel with additional
testing, but with a negative predictive value of 93%, REFtb could be used to focus
resources on those patients most likely to have tuberculosis.
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