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Pyruvate kinase (PK) is a key enzyme that catalyzes the dephosphorylation of

phosphoenolpyruvate (PEP) into pyruvate, and is responsible for the production

of ATP during glycolysis. As another important isozyme of PK, pyruvate kinase

M2 (PKM2) exists in cells with high levels of nucleic acid synthesis, such as

normal proliferating cells (e.g., lymphocytes and intestinal epithelial cells),

embryonic cells, adult stem cells, and tumor cells. With further research,

PKM2, as an important regulator of cellular pathophysiological activity, has

attracted increasing attention in the process of autoimmune response and

inflammatory. In this re]view, we examine the contribution of PKM2 to the

human immune response. Further studies on the immune mechanisms of

PKM2 are expected to provide more new ideas and drug targets for

immunotherapy of inflammatory and autoimmune diseases, guiding drug

development and disease treatment.
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Introduction

Pyruvate kinase (PK) is a key enzyme that catalyzes the dephosphorylation of

phosphoenolpyruvate (PEP) into pyruvate and is responsible for ATP production

during glycolysis. In contrast to mitochondrial respiration, ATP production by PK is

independent of oxygen supply and allows the organs to survive under hypoxic conditions.

According to different metabolic functions of tissues, the expression levels of different

isozymes of pyruvate kinase vary substantially in their kinetics and regulatory

mechanisms, and these isozymes are mainly divided into PKL, PKR, PKM1, and

PKM2 isoforms.

Besides existing in cells with high levels of nucleic acid synthesis, PKM2 is also

expressed in some differentiated tissues, including adipose tissues, lung tissues, the retina,

and islets. The enzymatic activity of PKM2 is regulated by allosteric effects and intracellular

signal transduction. PKM2 functions in a variety of pathways, including aerobic glycolysis,
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intranuclear signal transduction, protein synthesis, and protein

interactions (1). Previous studies on PKM2 in China and other

countries have mainly focused on the effect on the metabolism of

tumor cells (2–5). With further research, as an important

regulator of cellular pathophysiological activity, the role of

PKM2 in the autoimmune response and inflammatory process

is attracting increasing attention (6). In this study, we reviewed the

role of PKM2 in the immune response of the body.
PKM2 participates in metabolic
reprogramming

Although the role of PKM2 in tumors has been studied in

depth, studies have shown that as a key regulator of immune cell

metabolism and function, PKM2 plays a role in the maintenance

of autoimmune homeostasis through regulation of the Warburg

effect. Understanding the complex interactions between cell signal

transduction pathways and metabolic pathways has become an

important focus of research in the cancer field and recently in the

field of inflammation and autoimmune diseases. Inflammatory

reactions and autoimmune responses are energy-intensive

processes. A large number of immune cells in the surrounding

microcirculation are involved in activation and recruitment and in

a drastic transition from quiescence to a highly active metabolic

state. Therefore, metabolic reprogramming to direct nutrients to

effectively produce ATP and synthesize macromolecules is

necessary for proinflammatory mediator production,

cytoskeletal rearrangements, and immune cell proliferation. At

this stage, these highly active immune cells undergo metabolic

transformation from oxidative phosphorylation to aerobic

glycolysis, similar to the Warburg effect found in tumor cells. In

fact, the enzymes originally involved in the regulation of cell

metabolism and their regulatory agents also play a key role in

regulating immune cell function. Therefore, regulation of immune

cell metabolism has become a new target for inflammatory

diseases and autoimmune diseases.

High PKM2 expression promotes the accumulation of

upstream glycolysis metabolites and activates alternative

pathways for anabolism, such as the synthesis of glycerol or

entry into the pentose phosphate pathway to produce NADPH,

inhibition of reactive oxygen species (ROS) production, and

participation in nucleic acid synthesis. The mutual

transformation of PKM2 in activated tetramers and inhibitory

dimers plays a critical role in the adaptation of immune cells to

changing oxygen content and nutrient conditions. In the

cytoplasm, the tetrameric form of PKM2 can interact with

other glycolytic enzymes (such as hexokinase, glyceraldehyde

3-P dehydrogenase, phosphoglycerol transferase, and enolase)

and protein kinase cascade components (such as RAF, MEK,

ERK, and RNA in the glycolytic enzyme complex). The high

affinity of PKM2 in tetramer form with PEP and the close spatial
Frontiers in Immunology 02
conformation with other glycolytic enzymes in the glycolytic

enzyme complex can promote efficient conversion of glucose

into pyruvate and lactate (7).
PKM2 participates in the innate
immune response

PKM2 can increase the expression of the proinflammatory

cytokines interleukin 1b (IL-1b) and tumor necrosis factor-a
(TNFa) by participating in the innate immune response (8).

Both IL-1b and TNFa are considered important effector

molecules in causing autoimmune diseases and metabolic

diseases. Current evidence indicates that PKM2 expression is

significantly increased in lipopolysaccharide (LPS)-activated

macrophages, mainly in the less active monomer/dimer

conformation and phosphorylation status. At the same time,

LPS induces translocation of PKM2 into the nucleus and forms a

transcription complex with hypoxia-inducible factor (HIF)-1a,
which then directly binds to the IL-1b promoter gene and

activates its transcription, highlighting the important function

of PKM2 in metabolic reprogramming and the regulation of

gene expression in activated macrophages. On the other hand,

DASA-58 and TEPP-46 can convert PKM2 into a tetramer

conformation, effectively inhibiting LPS-induced nuclear

translocation and subsequent expression of IL-1b and a series

of other HIF-1a-dependent genes (8). In addition, evidence

indicates that PKM2 can activate and interact with HIF-1a to

modulate high mobility group box-1 (HMGB1) released by

activated macrophages (9). HMGB1 is a ubiquitous nuclear

protein that can be released by activated macrophages and

used as an effective proinflammatory cytokine (10).

Knockdown or inhibition of PKM2 expression using short

hairpin RNA (shRNA) or shikonin can significantly reduce the

release of HMGB1 in activated macrophages (11). In addition,

stimulation of colon cancer cells using LPS led to increased

production of TNF-a and IL-1b in a PKM2/STAT3-dependent

manner (12, 13). LPS can induce nuclear translocation of PKM2

and bind to the STAT3 promoter to activate and enhance

transcription. Recent studies have also demonstrated the key

role of dimeric PKM2 in the hyperinflammatory behaviors of

macrophages in patients with coronary artery disease (CAD)

(14). The results indicated that nuclear translocation of dimeric

PKM2 led to phosphorylation of STAT3 in LPS-stimulated CAD

macrophages and promoted IL-1b and IL-6 transcription. The

use of ML265 to immobilize PKM2 in a tetrameric conformation

can prevent LPS-induced nuclear translocation and STAT3

phosphorylation (Figure 1).

Therefore, PKM2 appears to be a key regulator of the

expression and secretion of proinflammatory mediators,

showing the possibility of targeted therapy for inflammatory

and infectious diseases using this protein. In addition, PKM2-
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mediated glycolysis promotes the activation of inflammasomes

and the release of IL-1b, IL-18, and HMGB1 by macrophages

through regulation of EIF2AK2 phosphorylation in

macrophages, thus promoting the development of sepsis. In a

mouse model, inhibition of the PKM2-EIF2AK2 pathway

protected mice from lethal endotoxemia and microbial sepsis

(15). At the same time, increased glucose uptake and glycolytic

flux in monocytes and macrophages of patients with

atherosclerotic CAD promote mitochondrial ROS production,

which promotes dimerization and nuclear translocation of

glycolytic PKM2. Nuclear PKM2 acts as a protein kinase to

phosphorylate the kinase STAT3, thereby enhancing the

production of IL-6 and IL-1b to trigger systemic and tissue

inflammation (14).

When activated by toll-like receptor (TLR) ligands or

proinflammatory cytokines, immune cells, including

neutrophils, dendritic cells (DCs), and macrophages, convert

their metabolic pathways from oxidative phosphorylation to

aerobic glycolysis. Krawczyk et al. (16) described this

phenomenon in DCs and showed that TLR stimulation is

essential for the maturation of DCs. Stimulation of DCs by

ligands of TLR4, TLR2, and TLR9 may lead to increases in the

glycolysis rate and glucose consumption, promote the mRNA and

protein expression of glucose transporter 1 (GLUT1), and increase

the production of lactic acid. This metabolic conversion is

achieved through PI3K–HIF 1a-PKM2 cascade regulation (17).

In a mouse model of pneumonia, PKM2 is critical for activation of

LPS-stimulated DCs. The JNK-P300 signaling axis mediates the
Frontiers in Immunology 03
acetylation of PKM2 at K433 to relocate PKM2 to the nucleus,

which induces PKM2 detetramerization associated with reduced

pyruvate kinase activity and simultaneously promotes glycolysis

and lipid synthesis, thereby achieving metabolic reprogramming

suitable for activated DCs. Further experiments confirmed that

inhibition of PKM2 detetramerization significantly inhibited the

expression of IL-12p35 and reduced lung inflammation in

mice (18).
PKM2 and acquired
immune response

The PKM2-mediated Warburg effect not only participates in

activation of innate immune cells, such as macrophage

polarization (19), but also plays an important role in the

acquired immune response. As an indispensable part of the

acquired immune system, infection- or autoimmune-specific T

cell populations are mainly derived from a common precursor—

natural CD4+ T cells. After T cell receptor (TCR) activation, these

natural CD4+ T cells differentiate into multiple lines of T helper

(Th) cells based on extracellular factors and environmental

signals, including Th17 cells and regulatory T cells (Tregs).

Among helper T cell subsets, PKM2 acts on the Stat family in

proinflammatory T cell subset differentiation. Pkm2 regulates

STAT1/STAT4 to induce Th1 formation and participates in

cellular immunity (20). Pkm2 can then regulate STAT6 and

STAT3 phosphorylation to regulate the differentiation of Th2
FIGURE 1

1) In its dimeric form, PKM2 can translocate to the nucleus to regulate the expression of numerous proteins involved in complex biological and
biochemical processes. 2) LPS induces translocation of PKM2 into the nucleus and forms a transcription complex with HIF-1a, increasing the
expression of the proinflammatory cytokines IL-1b and TNFa PKM2 can activate and interact with HIF-1a to modulate high mobility group box-1
(HMGB1) released by activated macrophages. 3) DASA-58 and TEPP-46 can convert PKM2 into a tetramer conformation, effectively inhibiting
LPS-induced nuclear translocation and subsequent expression of IL-1b and a series of other HIF-1a-dependent genes. 4) Knockdown or
inhibition of PKM2 expression using shikonin can significantly reduce the release of HMGB1 in activated macrophages.
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and Th17 cells, respectively, participating in inflammation related

diseases. Finally, pkm2 can regulate STAT5 with TGF-b Binding,

induces Tregs formation and maintains immune tolerance (21)

(Figure 2). Th17 cells produce IL-17, a proinflammatory cytokine.

Th17 cells not only play important roles in infectious diseases but

also participate in the occurrence and development of various

autoimmune diseases such as rheumatoid arthritis, psoriasis,

autoimmune uveitis, diabetes mellitus, and multiple sclerosis.

Tregs also show anti-inflammatory properties, and insufficient

numbers or functions of Tregs will lead to inflammation or

progression of autoimmune diseases (22).

By observing the metabolic process of proinflammatory M1

macrophages and inflammatory T cells (such as Th17 cells), we

found that the above cells all showed increased levels of PKM2

and HIF-1a transcription (23). Similarly, anti-inflammatory M2

macrophages with a high oxidative phosphorylation rate have a

metabolic status similar to that of Tregs. A reduction in PKM2

expression may inhibit the glycolysis reaction, promote Treg

cells differentiation, and reduce the level of Th17 cell

differentiation (24). Therefore, as an important link in

regulating glycolysis, PKM2 plays an important role in the

immune response of the body.

In addition, evidence indicates that PKM2 may also be

involved in the negative feedback regulation of inhibiting

Forkhead box protein P3 (FOXP3) and Treg cells function

under inflammatory conditions. In the autoimmune

encephalomyelitis model, translocation of PKM2 into the

nucleus indirectly regulates the metabolic reprogramming and
Frontiers in Immunology 04
differentiation of Th17 cells through interaction with PSTAT3

and contributes to disease progression (21). In patients with

chronic inflammation, such as rheumatoid arthritis, the PKM2/

STAT3 signaling pathway participates in the production of IL-17

and fatty acids in CD4+ T cells under a lactate accumulation

environment, thereby causing retention of CD4+ T cells and

promoting disease progression (18).

Consistent with these observations, recent studies have

reported increased expression of PKM2 in many diseases

where autoimmune and inflammatory factors are involved in

pathogenesis (25–27). PKM2 expression in intestinal tissue is

high in patients with Crohn’s disease and is positively correlated

with the disease activity score or serum inflammatory markers.

In addition, elevated PKM2 levels were found in stool samples

from patients with active Crohn’s disease, suggesting that this

protein may be a useful noninvasive marker of inflammatory

bowel disease (11). In addition, proteomic analysis showed that

PKM2 is one of 33 overexpressed proteins found in synovial

tissues of patients with rheumatoid arthritis (28). The latest

research shows that in the Freund’s adjuvant (CFA)-induced

rat model of inflammatory pain, PKM2 is also involved in the

glycolysis process in astrocytes and participates in the formation

of chronic inflammatory pain (29). PKM2 has also been shown

to have higher expression in patients with severe coronavirus

disease 2019 (COVID-19), suggesting that increased PKM2 is

involved in the metabolic reprogramming process of patients

with severe COVID-19, thus participating in the immune

response induced by COVID-19 (30). Tetramerization of
FIGURE 2

Among helper T cell subsets, PKM2 acts on the Stat family in proinflammatory T cell subset differentiation. 1) PKM2 regulates STAT1/STAT4 to
induce Th1 cells formation and participates in cellular immunity. 2) PKM2 can then regulate STAT3 phosphorylation to regulate the differentiation of
Th17 cells, participating in inflammation related diseases. 3) PKM2 can regulate STAT5 with TGF- b Binding, induces Tregs formation and maintains
immune tolerance.
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PKM2 in nasal epithelial cells has also been shown to induce

downstream inflammatory signals by partially activating STAT3

and inducing IL-1b production in a mouse model to participate

in the pathogenesis of airway hyperresponsiveness (31). In a

mouse model of renal fibrosis, PKM2 was demonstrated to be

overexpressed in activated fibroblasts to further induce renal

interstitial fibrosis, participate in the metabolic reprogramming

of fibroblasts, increase the level of glucose metabolism, and

promote the progression of renal fibrosis (32). PKM2 is also

associated with the pathogenesis of pulmonary arterial

hypertension (PAH). Pulmonary vessels and circulating

progenitor cells isolated from patients showed down regulation

of microRNA-124 (miR-124), resulting in abnormal metabolism

and proliferation of PAH epithelial cells through PTPB1 and

PKM1/PKM2, which affects the normal metabolism of

pulmonary epithelial cells and promotes the formation of

pulmonary hypertension (33).
Interaction between PKM2
and proteins

PK has roles in many aspects of the immune response.

Neutrophils lacking PK activity lose their intracellular killing

effect, and affected patients are prone to frequent staphylococcal

infection, indicating that PK gene deficiency will affect the body’s

innate immune response and anti-infective capacity (34). The

latest research shows that PKM2 is regulated by interacting with

suppressor of cytokine signalling-3 (SOCS3), thereby interfering

with the antigen presentation ability of DCs (35). Glucose is a

continuous driving force that ensures maintenance of the

normal function of immune cells. During interactions with

antigen-presenting cells, T cells not only increase glucose

uptake but also accelerate the rate of glycolysis. The abnormal

glycolysis caused by PK deficiency can weaken the normal

function of immune cells and interfere with the ability of cells

to eliminate intracellular pathogens. PKM2 can also stimulate

the maturation of DCs and convert their metabolic pathways

from oxidative phosphorylation to aerobic glycolysis (16).

Another piece of evidence that PKM2 participates in the

immune response is that PKM2 can interact with IgE receptors in

cells, thereby inhibiting its activity (36). A follow-up study suggested

that this interaction may lead to degranulation of mast cells

involved in allergic reactions (37). Recently, mast cell

degranulation has been reported to be involved in the inhibition

of PKM2 activity mediated by Fcg receptor b, thereby exhibiting

mutual inhibition between PKM2 activity and mast cell

degranulation (36, 38). Another study suggested that

overexpression of PKM2 and annexin I proteins is conducive to

the formation of granules of TNFa and other mediators in mast

cells in allergic diseases. Therefore, PKM2 plays an important role

in the body’s immune response to allergens (39). PKM2 also
Frontiers in Immunology 05
interacts with homocysteine (Hcy). Overactivation of PKM2 in B

cells by Hcy induces metabolic reprogramming of B cells, enhances

the glycolytic activity of B cells, promotes B cell proliferation and

antibody secretion, and accelerates the development of

atherosclerosis caused by hyperhomocysteinemia (40).

In addition, some pathogen proteins enhance their

pathogenicity by interacting with PKM2, such as the

staphylococcal protein Opa, human papillomavirus (HPV),

and hepatitis C virus (HCV) (41–44). PKM1 is considered an

antigenic substance in Tourette syndrome and can be a target of

the autoimmune response after staphylococcal infection (45). In

the BALB/c mouse model, the presentation of PKM1/M2

peptide by DCs induces allergic myositis (46). Studies on

Bloom syndrome have shown that intracellularly released

dimeric PKM2 can become an antigenic substance and induce

a series of autoimmune responses (47). The proteins secreted by

TaPin1 parasites can stabilize host PKM2 proteins, thereby

affecting HIF-1a activity and thus affecting glucose

metabolism and cell differentiation in the host (48).

PKM2 plays an important role in the proliferation,

angiogenesis, and metabolic reprogramming induced by

human cytomegalovirus (HCMV)-encoded chemokine

receptor US28. PKM2 activates the HIF-1a/PKM2 feedforward

loop and maintains HIF-1a protein stability in fibroblast and

glioblastoma cells through activation of various proliferative and

angiogenic signaling pathways (40). In addition, PKM2 can also

modify the peptides produced in the cell apoptosis process. If

these substances are not effectively removed, they are released

from cells and are taken up, processed, and presented to T or B

cells by DCs as immunogens. PKM2 also acts on some viral RNA

polymerases. The C-terminal region of PKM2 proteins interacts

with the C-terminus of viral protein subunits to enhance viral

pathogenicity; on the other hand, PKM2 catalyzes the transfer of

phosphate groups from PEP to ADP. This process produces one

molecule of pyruvate and one molecule of ATP, providing raw

materials and energy for virus proliferation, enhancing viral

replication, and further activating DC function (49). At the same

time, phosphorylation of viral protein tyrosine residues causes

allosteric transformation of PKM2 and further enhances glucose

metabolism. PKM2 activity can be regulated by phosphotyrosine

growth signal transduction in cells. The interaction between

PKM2 and phosphotyrosine-containing proteins and peptides

results in the release of bound fructose-1,6-bisphosphate (FBP)

from PKM2, which enhances PKM2 expression through a

feedback mechanism (50, 51).

Endothelial nitric oxide synthase (eNOS) interacts with S-

nitroso PKM2, thereby reducing PKM2 activity. Inhibition of

PKM2 can increase substrate flux through the pentose

phosphate pathway to produce reducing equivalents (NADPH

and GSH) and prevent oxidative stress, which delays the

development of cardiovascular disease (52). PKM2 is an

essential enzyme in S-adenosylmethionine synthesis in

endothelial cells (ECs). DNA methylation is insufficient in the
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absence of PKM2, which causes suppression of endogenous

retrovirus elements (ERV) and activation of antiviral innate

immune signals, leading to an inflammatory response (53).

Therefore, PKM2 is closely associated with cellular immunity.
Summary

Over the past few years, metabolism and immunology have

become two different fields of investigation. However,

metabolism and immunology are believed to have extensive

interactions in many aspects. The concept of metabolic

reprogramming as an important driving mechanism of

immune responses mainly focuses on how the metabolic state

of immune cells directly affects their activities and functions. In

recent years, PKM2 has not only emerged as a key regulator of

metabolic reprogramming but also been found to be involved in

regulating the transcription of key genes in immune cells. PKM2

expression levels and enzyme activities can be regulated at

multiple levels, including the transcription level and

posttranslational modification level, and can change

conformational stability through allosteric regulation (11, 54).

PKM2 has also been confirmed to be a target of treatments

for certain inflammatory conditions. PKM2 has been shown to

be involved in relieving synovial inflammation in destabilization

of the medial meniscus (DMM) mouse models and air pouch

models and in relieving pain gait patterns in DMMmice through

low-intensity pulsed ultrasound (LIPUS). LIPUS achieves this

effect by inhibiting the production of mature IL-1b in vitro and

in vivo, upregulating the macrophage autophagy level, and

accelerating the formation of the SQSTM1 (sequestosome 1)-

PKM (pyruvate kinase, muscle) complex in macrophages treated

with lipopolysaccharide (LPS)-adenosine triphosphate (ATP)

(55). PKM2 participates in the occurrence and development of

pulmonary arterial hypertension in extrapulmonary fibroblasts.

Inhibition of PKM2 can reverse the glycolysis status of the

hypertensive pulmonary arterial wall (PH-Fib), reduce its cell

proliferation, and decrease the expression of IL-1b in

macrophages, thus delaying the progression of pulmonary

hypertension (56). In vitro, activation of PKM2 increases

glucose metabolic flux by partially increasing glycolytic flux

and PGC-1a mRNA in cultured podocytes, thereby inhibiting

the production of toxic glucose metabolites, inducing

mitochondrial production, and restoring mitochondrial

functions to prevent diabetic nephropathy (DN) (57).

Dimerization of PKM2 can promote the dopamine D2
Frontiers in Immunology 06
receptor (DRD2) in astrocytes to promote dopamine

biosynthesis through GSH synthesis regulated by PKM2-

mediated Nrf2 transactivation, thus providing a potential

target for Parkinson’s disease (58). Further studies on the

immune mechanism of PKM2 are expected to provide more

new ideas and targets of drug action for immunotherapy for

clinical inflammatory diseases and autoimmune diseases and

guide drug development and disease treatment.
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