
Multifaceted protein–protein interaction

prediction based on Siamese residual RCNN

Muhao Chen1,*,†, Chelsea J.-T. Ju1,†, Guangyu Zhou1, Xuelu Chen1,

Tianran Zhang2, Kai-Wei Chang1, Carlo Zaniolo1 and Wei Wang1

1Department of Computer Science and 2Department of Bioengineering, University of California, Los Angeles, Los

Angeles, CA 90095, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Abstract

Motivation: Sequence-based protein–protein interaction (PPI) prediction represents a fundamental

computational biology problem. To address this problem, extensive research efforts have been

made to extract predefined features from the sequences. Based on these features, statistical algo-

rithms are learned to classify the PPIs. However, such explicit features are usually costly to extract,

and typically have limited coverage on the PPI information.

Results: We present an end-to-end framework, PIPR (Protein–Protein Interaction Prediction Based

on Siamese Residual RCNN), for PPI predictions using only the protein sequences. PIPR incorpo-

rates a deep residual recurrent convolutional neural network in the Siamese architecture, which

leverages both robust local features and contextualized information, which are significant for cap-

turing the mutual influence of proteins sequences. PIPR relieves the data pre-processing efforts

that are required by other systems, and generalizes well to different application scenarios.

Experimental evaluations show that PIPR outperforms various state-of-the-art systems on the bin-

ary PPI prediction problem. Moreover, it shows a promising performance on more challenging

problems of interaction type prediction and binding affinity estimation, where existing approaches

fall short.

Availability and implementation: The implementation is available at https://github.com/muhao

chen/seq_ppi.git.

Contact: muhaochen@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Detecting protein–protein interactions (PPIs) and characterizing the

interaction types are essential toward understanding cellular bio-

logical processes in normal and disease states. Knowledge from these

studies potentially facilitates therapeutic target identification (Petta

et al., 2016) and novel drug design (Skrabanek et al., 2008). High-

throughput experimental technologies have been rapidly developed

to discover and validate PPIs on a large scale. These technologies in-

clude yeast two-hybrid screens (Fields and Song, 1989), tandem af-

finity purification (Gavin et al., 2002) and mass spectrometric

protein complex identification (Ho et al., 2002). However,

experiment-based methods remain expensive, labor-intensive and

time-consuming. Most importantly, they often suffer from high lev-

els of false-positive predictions (Sun et al., 2017; You et al., 2015).

Evidently, there is an immense need for reliable computational

approaches to identify and characterize PPIs.

The amino acid sequence represents the primary structure of a

protein, which is the simplest type of information either obtained

through direct sequencing or translated from DNA sequences. Many

research efforts address the PPI problem based on predefined fea-

tures extracted from protein sequences, such as ontological features

of amino acids (Jansen et al., 2003), autocovariance (AC) (Guo

et al., 2008), conjoint triads (CT) (Shen et al., 2007) and

composition-transition-distribution (CTD) descriptors (Yang et al.,

2010). These features generally summarize specific aspects of pro-

tein sequences such as physicochemical properties, frequencies of

local patterns and the positional distribution of amino acids. On top

of these features, several statistical learning algorithms (Guo et al.,

2008; Huang et al., 2015; You et al., 2014, 2015) are applied to

VC The Author(s) 2019. Published by Oxford University Press. i305

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i305–i314

doi: 10.1093/bioinformatics/btz328

ISMB/ECCB 2019

https://github.com/muhaochen/seq_ppi.git
https://github.com/muhaochen/seq_ppi.git
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz328#supplementary-data
https://academic.oup.com/

predict PPIs in the form of binary classification. These approaches

provide feasible solutions to the problem. However, the extracted

features used in these approaches only have limited coverage on

interaction information, as they are dedicated to specific facets of

the protein profiles.

To mitigate the inadequacy of statistical learning methods, deep

learning algorithms provide the powerful functionality to process

large-scale data and automatically extract useful features for objective

tasks (LeCun et al., 2015). Recently, deep learning architectures have

produced powerful systems to address several bioinformatics problems

related to single nucleotide sequences, such as genetic variants detec-

tion (Anderson, 2018), DNA function classification (Quang and Xie,

2016), RNA-binding site prediction (Zhang et al., 2016) and chroma-

tin accessibility prediction (Min et al., 2017). These works typically

use convolutional neural networks (CNN) (Anderson, 2018; Zhang

et al., 2016) for automatically selecting local features, or recurrent

neural networks (RNN) (Quang and Xie, 2016) that aim at preserving

the contextualized and long-term ordering information. In contrast,

fewer efforts (discussed in Section 2) have been made to capture the

pairwise interactions of proteins with deep learning, which remains a

non-trivial problem with the following challenges: (i) Characterization

of the proteins requires a model to effectively filter and aggregate their

local features, while preserving significant contextualized and sequen-

tial information of the amino acids; (ii) extending a deep neural archi-

tecture often leads to inefficient learning processes, and suffers from

the notorious vanishing gradient problem (Pascanu et al., 2013); (iii)

an effective mechanism is also needed to apprehend the mutual influ-

ence of protein pairs in PPI prediction. Moreover, it is essential for the

framework to be scalable to large data, and to be generalized to differ-

ent prediction tasks.

In this paper, we introduce PIPR (Protein–Protein Interaction

Prediction Based on Siamese Residual RCNN), a deep learning

framework for PPI prediction using only the sequences of a protein

pair. PIPR employs a Siamese architecture to capture the mutual in-

fluence of a protein sequence pair. The learning architecture is based

on a residual recurrent convolutional neural network (RCNN),

which integrates multiple occurrences of convolution layers and re-

sidual gated recurrent units. To represent each amino acid in this

architecture, PIPR applies an efficient property-aware lexicon

embedding approach to better capture the contextual and physico-

chemical relatedness of amino acids. This comprehensive encoding

architecture provides a multi-granular feature aggregation process

to effectively leverage both sequential and robust local information

of the protein sequences. It is important to note that the scope of

this work focuses only on the primary sequence as it is the funda-

mental information to describe a protein.

Our contributions are 3-fold. First, we construct an end-to-end

framework for PPI prediction that relieves the data pre-processing

efforts for users. PIPR requires only the primary protein sequences

as the input, and is trained to automatically preserve the critical fea-

tures from the sequences. Second, we emphasize and demonstrate

the needs of considering the contextualized and sequential informa-

tion when modeling the PPIs. Third, the architecture of PIPR can be

flexibly used to address different PPI tasks. Besides the binary pre-

diction that is widely attempted in previous works, our framework

extends its use to two additional challenging problems: multi-class

interaction type prediction and binding affinity estimation. We use

five datasets to evaluate the performance of our framework on these

tasks. PIPR outperforms various state-of-the-art approaches on the

binary prediction task, which confirms the effectiveness in terms of

integrating both local features and sequential information. The

promising performance of the other two tasks demonstrates the

wide usability of our approach. Especially on the binding affinity es-

timation of mutated proteins, PIPR is able to respond to the subtle

changes of point mutations and provides the best estimation with

the smallest errors.

2 Related works

Sequence-based approaches provide a critical solution to the binary

PPI prediction task. Homology-based methods (Philipp et al., 2016)

rely on BLAST to map a pair of sequences to known interacting pro-

teins. Alternatively, other works address the task with statistical

learning models, including SVM (Guo et al., 2008; You et al.,

2014), kNN (Yang et al., 2010), Random Forest (Wong et al.,

2015), multi-layer perceptron (MLP) (Du et al., 2017) and ensemble

ELM (EELM) (You et al., 2013). These approaches rely on several

feature extraction processes for the protein sequences, such as CT

(Sun et al., 2017; You et al., 2013), AC (Guo et al., 2008; Sun et al.,

2017; You et al., 2013), CTD (Du et al., 2017; Yang et al., 2010),

multi-scale continuous and discontinuous (MCD) descriptors (You

et al., 2013) and local phase quantization (LPQ) (Wong et al.,

2015). These features measure physicochemical properties of the 20

canonical amino acids, and aim at summarizing full sequence infor-

mation relevant to PPIs. More recent works (Sun et al., 2017; Wang

et al., 2017) propose the use of stacked autoencoders (SAE) to refine

these heterogeneous features in low-dimensional spaces, which im-

prove the aforementioned models on the binary prediction task. On

the contrary, fewer efforts have been made toward multi-class pre-

diction to infer the interaction types (Silberberg et al., 2014; Zhu

et al., 2006) and the regression task to estimate binding affinity

(Srinivasulu et al., 2015; Yugandhar and Gromiha, 2014). These

methods have largely relied on their capability of extracting and

selecting better features, while the extracted features are far from

fully exploiting the interaction information.

By nature, the PPI prediction task is comparable to the neural sen-

tence pair modeling tasks in natural language processing (NLP) re-

search, as they both seek to characterize the mutual influence of two

sequences based on their latent features. In NLP, neural sentence pair

models typically focus on capturing the discourse relations of lexicon

sequences, such as textual entailment (Hu et al., 2014; Yin et al.,

2016), paraphrases (He et al., 2015; Yin and Schütze, 2015) and sub-

topic relations (Chen et al., 2018). Many recent efforts adopt a

Siamese encoding architecture, where encoders based on CNN (Hu

et al., 2014; Yin and Schütze, 2015) and RNN (Mueller and

Thyagarajan, 2016) are widely used. A binary classifier is then stacked

to the sequence pair encoder for the detection of a discourse relation.

In contrast to sentences, proteins are profiled in sequences with

more intractable patterns, as well as in a drastically larger range of

lengths. Precisely capturing the PPI requires much more comprehen-

sive learning architectures to distill the latent information from the

entire sequences, and to preserve the long-term ordering informa-

tion. One recent work (Hashemifar et al., 2018), DPPI, uses a deep

CNN-based architecture which focuses on capturing local features

from protein profiles. DPPI represents the first work to deploy deep

learning to PPI prediction, and has achieved the state-of-the-art per-

formance on the binary prediction task. However, it requires exces-

sive efforts for data pre-processing such as constructing protein

profiles by PSI-BLAST (Altschul et al., 1997), and does not incorp-

orate a neural learning architecture that captures the important con-

textualized and sequential features. DNN-PPI (Li et al., 2018)

represents another relevant work of this line, which deploys a differ-

ent learning structure with two separated CNN encoders. However,

i306 M.Chen et al.

DNN-PPI does not incorporate physicochemical properties into

amino acid representations, and does not employ a Siamese learning

architecture to fully characterize pairwise relations of sequences.

3 Materials and methods

We introduce an end-to-end deep learning framework, PIPR, for

sequence-based PPI prediction tasks. The overall learning architec-

ture is illustrated in Figure 1. PIPR employs a Siamese architecture

of residual RCNN encoder to better apprehend and utilize the mu-

tual influence of two sequences. To capture the features of the pro-

tein sequences from scratch, PIPR pre-trains the embeddings of

canonical amino acids to capture their contextual similarity and

physicochemical properties. The latent representation of each pro-

tein in a protein pair is obtained by feeding the corresponding amino

acid embeddings into the sequence encoder. The embeddings of

these two sequences are then combined to form a sequence pair vec-

tor. Finally, this sequence pair vector is fed into an MLP with appro-

priate loss functions, suiting for specific prediction tasks. In this

section, we describe the details of each model component. We begin

with the denotations and problem specifications.

3.1 Preliminary
We use A to denote the vocabulary of 20 canonical amino acids. A

protein is profiled as a sequence of amino acids S ¼ a1; a2; :::; al½ �
such that each ai 2 A. For each amino acid ai, we use bold-faced ai

to denote its embedding representation, which we are going to spe-

cify in Section 3.2.3. We use I to denote the set of protein pairs, and

p ¼ S1; S2ð Þ 2 I denotes a pair of proteins of which our framework

captures the interaction.

We address three challenging PPI prediction tasks based only on

the primary sequence information: (i) Binary prediction seeks to

provide a binary classifier to indicate whether the corresponding

protein pair interacts, which is the simplest and widely considered

problem setting in previous works (Hashemifar et al., 2018;

Skrabanek et al., 2008; Sun et al., 2017). (ii) Interaction type predic-

tion is a multi-class classification problem, which seeks to identify

the interaction type of two proteins. (iii) Binding affinity estimation

aims at producing a regression model to estimate the strength of the

binding interaction.

3.2 RCNN-based protein sequence encoder
We employ a deep Siamese architecture of residual RCNN to cap-

ture latent semantic features of the protein sequence pairs.

3.2.1 Residual RCNN

The RCNN seeks to leverage both the global sequential information

and local features that are significant to the characterization of PPI

from the protein sequences. This deep neural encoder stacks mul-

tiple instances of two computational modules, i.e. convolution

layers with pooling and bidirectional residual gated recurrent units.

The architecture of an RCNN unit is shown on the left of Figure 2.

The convolution layer with pooling. We use X ¼ v1; v2; :::; vl½ � to
denote an input vector sequence that corresponds to the embedded

amino acids or the outputs of a previous neural layer. A convolution

layer applies a weight-sharing kernel Mc 2 R
h�k to generate a k-di-

mension latent vector ht
1ð Þ from a window vt:tþh�1 of the input vector

sequence X:

ht
1ð Þ ¼ Conv vt:tþh�1ð Þ ¼Mcvt:tþh�1 þ bc

for which h is the kernel size, and bc is a bias vector. The convolu-

tion layer applies the kernel as a sliding window to produce a se-

quence of latent vectors H 1ð Þ ¼ h 1ð Þ
1 ; h 1ð Þ

2 ; :::; h 1ð Þ
l�hþ1

h i
, where each

latent vector combines the local features from each h-gram of the in-

put sequence. The n-max-pooling mechanism is applied to every

consecutive n-length subsequence (i.e. non-overlapped n-strides) of

the convolution outputs, which takes the maximum value along

each dimension j by h 2ð Þ
i;j ¼ max h 1ð Þ

i:nþi�1;j

� �
. The purpose of this

mechanism is to discretize the convolution results, and preserve the

most significant features within each n-stride (Chen et al., 2018;

Hashemifar et al., 2018; Kim, 2014). By definition, this mechanism

divides the size of processed features by n. The outputs from the

Residual
RCNN

Shared
parameters

Element-wise multiplication

Residual
RCNN

MQSPYPMTQVSNVDDGSLLK... MLERIQQLVNAVNDPRSDVAT...

Interaction
prediction

Binding affinity
estimation

Interaction type
prediction

MSE

Binary cross-entropy Categorical cross-entropy

Multi-Layer
Perceptron

Prediction
Tasks

Sequence Pair Vector

Protein Sequences

Residual
RCNN

Sequence Embedding
Vectors

Pre-trained Embeddings

Fig. 1. The overall learning architecture of our framework

PIPR i307

max-pooling are fed into the bidirectional gated recurrent units in

our RCNN encoder.

The residual gated recurrent units. The gated recurrent unit

model (GRU) represents an alternative to the long-short-term mem-

ory (LSTM) network (Cho et al., 2014), which consecutively charac-

terizes the sequential information without using separated memory

cells (Dhingra et al., 2017). Each unit consists of two types of gates

to track the state of the sequence, i.e. the reset gate rt and the update

gate zt. Given the embedding vt of an incoming item (either a pre-

trained amino acid embedding, or an output of the previous layer),

GRU updates the hidden state h 3ð Þ
t of the sequence as a linear com-

bination of the previous state h 3ð Þ
t�1 and the candidate state ~h

3ð Þ
t of a

new item vt, which is calculated as below.

h 3ð Þ
t ¼ GRU vtð Þ ¼ zt � ~h

3ð Þ
t þ 1� ztð Þ � h 3ð Þ

t�1

zt ¼ r Mzvt þNzh
3ð Þ

t�1 þ bz

� �

~h
3ð Þ

t ¼ tanh Msvt þ rt � Nsh
3ð Þ

t�1

� �
þ bs

� �

rt ¼ r Mrvt þNrh
3ð Þ

t�1 þ br

� �
:

Notation � thereof denotes the element-wise multiplication. The

update gate zt balances the information of the previous sequence

and the new item, where capitalized M� and N� denote different

weight matrices, b� denote bias vectors and r is the sigmoid func-

tion. The candidate state ~h
3ð Þ

t is calculated similarly to those in a

traditional recurrent unit, and the reset gate rt controls how much

information of the past sequence contributes to ~h
3ð Þ

t . Note that GRU

generally performs comparably to LSTM in sequence encoding

tasks, but is less complex and requires much fewer computational

resources for training.

A bidirectional GRU layer characterizes the sequential informa-

tion in two directions. It contains the forward encoding process

GRU
�����!

that reads the input vector sequence X ¼ v1; v2; :::; vl½ � from v1

to vl, and a backward encoding process GRU
 �����

that reads in the op-

posite direction. The encoding results of both processes are con-

catenated for each input item vt, i.e. h 4ð Þ
t ¼ BiGRU vtð Þ ¼

½GRU
�����!

vtð Þ;GRU
 �����

vtð Þ�.
The residual mechanism passes on an identity mapping of the

GRU inputs to its output side through a residual shortcut (He et al.,

2016). By adding the forwarded input values to the outputs, the corre-

sponding neural layer is only required to capture the difference be-

tween the input and output values. This mechanism aims at improving

the learning process of non-linear neural layers by increasing the sensi-

tivity of the optimization gradients (He et al., 2016; Kim et al., 2016),

as well as preventing the model from the vanishing gradient problem.

It has been widely deployed in deep learning architectures for various

tasks of image recognition (He et al., 2016), document classification

(Conneau et al., 2017) and speech recognition (Zhang et al., 2017). In

our deep RCNN, the bidirectional GRU is incorporated with the re-

sidual mechanism, and will pass on the following outputs to its subse-

quent neural network layer:

h 5ð Þ
t ¼ ResGRU vtð Þ ¼ GRU

�����!
vtð Þ þ vt;GRU

 �����
vtð Þ þ vt

h i
:

In our development, we have found that the residual mechanism

is able to drastically simplify the training process, and largely

decreases the epochs of parameter updates for the model to

converge.

3.2.2 Protein sequence encoding

Figure 2 shows the entire structure of our RCNN encoder. The

RCNN encoder ERCNN Sð Þ alternately stacks multiple occurrences of

the above two intermediary neural network components. A convolu-

tion layer serves as the first encoding layer to extract local features

from the input sequence. On top of that, a residual GRU layer takes

in the preserved local features, whose outputs are passed to another

convolution layer. Repeating of these two components in the net-

work structure conducts an automatic multi-granular feature aggre-

gation process on the protein sequence, while preserving the

sequential and contextualized information on each granularity of

the selected features. The last residual GRU layer is followed by an-

other convolution layer for a final round of local feature selection to

produce the last hidden states H0 ¼ h01; h
0
2; :::; h

0
jH0 j

h i
. Note that the

dimensionality of the last hidden states does not need to equal that

of the previous hidden states. A high-level sequence embedding of

the entire protein sequence is obtained from the global average-

pooling (Lin et al., 2013) of H0, i.e. ERCNN Sð Þ ¼ 1
jH0 j
PjH0 j

i¼1 h0i.

3.2.3 Pre-trained amino acid embeddings

To support inputting the non-numerical sequence information, we

provide a useful embedding method to represent each amino acid

GRU

GRU

GRU

GRU

GRU

GRU

Max Pool Max Pool Max Pool Max Pool...

...

GRU

GRU

...

... ...

Bidirectional
GRU

with residual
shortcuts

Convolution
Layer

Pooling

Output

Input

RCNN Unit

Convolution Layer

Global Average Pooling

RCNN Unit

Pre-trained Embeddings

Sequence Embedding Vector

RCNN Unit

...

Fig. 2. The structure of our residual RCNN encoder is shown on the right, and the RCNN unit is shown on the left. Each RCNN unit contains a convolution-pooling

layer followed a bidirectional residual GRU

i308 M.Chen et al.

a 2 A as a semi-latent vector a. Each embedding vector is a concat-

enation of two sub-embeddings, i.e. a ¼ ac; aph½ �.
The first part ac measures the co-occurrence similarity of the

amino acids, which is obtained by pre-training the Skip-Gram model

(Mikolov et al., 2013) on protein sequences. The learning objective

of Skip-Gram is to minimize the following negative log likelihood

loss.

JSG ¼ �
1

Sj j
X
at2S

X
�C< j<C

log p ac;tþjjac;t

� �
;

ac;t thereof is the first-part embedding of the t-th amino acid at 2 S;

ac;tþj is that of a neighboring amino acid, and C is the size of half

context. (The context of Skip-Gram means a subsequence of a given

protein sequence S, such that the subsequence is of 2Cþ 1 length.)

The probability p is defined as the following softmax:

p ac;tþjjac;t

� �
¼

exp ac;tþj � ac;tð Þ
Pn
k¼1

exp a0c;k � ac;t

� � ;

where n is the negative sampling size, and a0c;k is a negative sample

that does not co-occur with ac;t in the same context.

The second part aph represents the similarity of electrostaticity

and hydrophobicity among amino acids. The 20 amino acids can be

clustered into 7 classes based on their dipoles and volumes of the

side chains to reflect this property. Thus, aph is a one-hot encoding

based on the classification defined by Shen et al. (2007).

3.3 Learning architecture and learning objectives
Our framework characterizes the interactions in the following two

stages.

3.3.1 Siamese architecture

Given a pair of proteins p ¼ S1; S2ð Þ 2 I, the same RCNN encoder

is used to obtain the sequence embeddings ERCNN S1ð Þ and

ERCNN S2ð Þ of both proteins. Both sequence embeddings are com-

bined using element-wise multiplication, i.e. ERCNN S1ð Þ�
ERCNN S2ð Þ. This is a commonly used operation to infer the

relation of sequence embeddings (Hashemifar et al., 2018; Jiang

et al., 2018; Rocktäschel et al., 2016; Tai et al., 2015). Note that

some works use the concatenation of sequence embeddings (Sun

et al., 2017; Yin and Schütze, 2015) instead of multiplication, which

we find to be less effective in modeling the symmetric relations of

proteins.

3.3.2 Learning objectives

An MLP with leaky ReLU (Maas et al., 2013) is applied to the previ-

ous sequence pair representation, whose output ŝp is either a vector

or a scalar, depending on whether the model solves a classification

or a regression task for the protein pair p. The entire learning archi-

tecture is trained to optimize the following two types of losses

according to different PPI prediction problems.

i. Cross-entropy loss is optimized for the two classification prob-

lems, i.e. binary prediction and interaction type prediction. In

this case, the MLP output ŝp is a vector, whose dimensionality

equals the number of classes m. ŝp is normalized by a softmax

function, where the i-th dimension si
p ¼ exp ŝ i

pð ÞP
j
exp ŝ j

pð Þ corresponds

to the confidence score for the i-th class. The learning objective

is to minimize the following cross-entropy loss, where cp is a

one-hot indicator for the class label of protein pair p.

L 1ð Þ ¼ � 1

Ij j
X
p2I

Xm
i¼1

ci
plog sp

i :

ii. Mean squared loss is optimized for the binding affinity estima-

tion task. In this case, ŝp is a scalar output that is normalized by

a sigmoid function sp ¼ 1
1þexp ŝ pð Þ, which is trained to approach

the normalized ground truth score cp 2 0;1½ � by minimizing the

following objective function:

L 2ð Þ ¼ 1

jIj
X
p2I

sp � cpj j2:

4 Experiments

We present the experimental evaluation of the proposed framework

on three PPI prediction tasks, i.e. binary prediction, multi-class

interaction type prediction and binding affinity estimation. The

experiments are conducted on the following datasets.

4.1 Datasets
Guo’s datasets. Guo et al. (2008) generate several datasets from dif-

ferent species for the binary prediction of PPIs. Each dataset con-

tains a balanced number of positive and negative samples. Among

these resources, the Yeast dataset is a widely used benchmark by

most state-of-the-art methods (Hashemifar et al., 2018; Wong et al.,

2015; You et al., 2013, 2014). There are 2497 proteins forming

11 188 cases of PPIs, with half of them representing the positive

cases, and the other half the negative cases. The positive cases are

selected from the database of interacting proteins DIP_20070219

(Salwinski et al., 2004), where proteins with fewer than 50 amino

acids or �40% sequence identity are excluded. We use the full pro-

tein sequences in our model, which are obtained from the UniProt

(Consortium et al., 2018). The negative cases are generated by ran-

domly pairing the proteins without evidence of interaction, and fil-

tered by their sub-cellular locations. In other words, non-interactive

pairs residing in the same location are excluded.

In addition, we combine the data for Caenorhabditis elegans,

Escherichia coli and Drosophila melanogaster as the multi-species

dataset. We use the cluster analysis of the CD-HIT (Li and Godzik,

2006) program to generate non-redundant subsets. Proteins with

fewer than 50 amino acids or high sequence identify (40, 25, 10 or

1%) are removed.

STRING datasets. The STRING database (Szklarczyk et al.,

2016) annotates PPIs with their types. There are seven types of inter-

actions: activation, binding, catalysis, expression, inhibition, post-

translational modification (ptmod) and reaction. We download all

interaction pairs for Homo sapiens from database version 10.5

(Szklarczyk et al., 2016), along with their full protein sequences.

Among the corresponding proteins, we randomly select 3000 pro-

teins and 8000 proteins that share <40% of sequence identity to

generate two subsets. In this process, we randomly sample instances

of different interaction types to ensure a balanced class distribution.

Eventually, the two generated datasets, denoted by SHS27k and

SHS148k, contain 26 945 cases and 148 051 cases of interactions re-

spectively. We use these two datasets for the PPI type prediction

task.

SKEMPI dataset. We obtain the protein binding affinity data

from SKEMPI (the structural database of kinetics and energetics of

mutant protein interactions) (Moal and Fernández-Recio, 2012) for

the affinity estimation task. It contains 3047 binding affinity

changes upon mutation of protein sub-units within a protein

PIPR i309

complex. The binding affinity is measured by equilibrium dissoci-

ation constant (Kd), reflecting the strength of biomolecular interac-

tions. The smaller Kd value means the higher binding affinity. Each

protein complex contains single or multiple amino acid substitu-

tions. The sequence of the protein complex is retrieved from the pro-

tein data bank (PDB) (Berman et al., 2000). We manually replace

the mutated amino acids. For duplicate entries, we take the average

Kd. The final dataset results in the binding affinity of 2792 mutant

protein complexes, along with 158 wild-types.

4.2 Binary PPI prediction
Binary PPI prediction is the primary task targeted by a handful of

previous works (Hashemifar et al., 2018; Shen et al., 2007; Sun

et al., 2017; Yang et al., 2010; You et al., 2015). The objective of

these works is to identify whether a given pair of proteins interacts

or not based on their sequences. We evaluate PIPR based on Guo’s

datasets. The Yeast benchmark dataset thereof is used to compare

PIPR with various baseline approaches, and the multi-species data-

set is to demonstrate PIPR’s capability of predicting interactions for

proteins of different species that share very low sequence identity

with those in training.

The baseline approaches include SVM-AC (Guo et al., 2008),

kNN-CTD (Yang et al., 2010), EELM-PCA (You et al., 2013),

SVM-MCD (You et al., 2014), MLP (Du et al., 2017), Random

Forest LPQ (RF-LPQ) (Wong et al., 2015), SAE (Sun et al., 2017),

DNN-PPI (Li et al., 2018) and DPPI (Hashemifar et al., 2018). In

addition, we report the results of a Siamese Residual GRU (SRGRU)

architecture, which is a simplification of PIPR, where we discard all

intermediary convolution layers and keep only the bidirectional re-

sidual GRU. The purpose of SRGRU is to show the significance of

the contextualized and sequential information of protein profiles in

characterizing PPIs. We also report the results of Siamese CNN

(SCNN) by removing the residual GRU in PIPR. This degenerates

our framework to a similar architecture to DPPI, but differs in that

SCNN directly conducts an end-to-end training on raw sequences

instead of requiring the protein profiles constructed by PSI-BLAST.

We use AMSGrad (Reddi et al., 2018) to optimize the cross-

entropy loss, for which we set the learning rate a to 0.001, the expo-

nential decay rates b1 and b2 to 0.9 and 0.999, and batch size to 256

on both datasets. The number of occurrences for the RCNN units

(i.e. one convolution-pooling layer followed by one bidirectional re-

sidual GRU layer) is set to five, where we adopt three-max-pooling

and the convolution kernel of size three. We set the hidden state size

to be 50, and the RCNN output size to be 100. We set this configur-

ation to ensure the RCNN to compress the selected features in a rea-

sonably small vector sequence, before the features are aggregated by

the last global average-pooling. We zero-pad short sequences to the

longest sequence length in the dataset. This is a widely adopted tech-

nique for sequence modeling in NLP (Chen et al., 2018; He et al.,

2015; Hu et al., 2014; Yin et al., 2016; Zhou et al., 2017) as well as

in bioinformatics (Min et al., 2017; Müller et al., 2018; Pan and

Shen, 2018) for efficient training. Note that the configuration of

embedding pre-training is discussed in Section 4.5, and the model

configuration study of different hyperparameter values is provided

in the Supplementary Material. All model variants are trained until

converge at each fold of the cross-validation (CV).

Evaluation protocol. Following the settings in previous works

(Hashemifar et al., 2018; Shen et al., 2007; Sun et al., 2017; You

et al., 2014, 2015), we conduct 5-fold CV on the Yeast dataset.

Under the k-fold CV setting, the data are equally divided into k non-

overlapping subsets, and each subset has a chance to train and to

test the model so as to ensure an unbiased evaluation. We aggregate

fix metrics on the test cases of each fold, i.e. the overall accuracy,

precision, sensitivity, specificity, F1 and Matthews correlation coef-

ficient (MCC) on positive cases. All these metrics are preferred to be

higher to indicate better performance. Based on the reported accur-

acy over 5-folds, we also conduct two-tailed Welch’s t-tests (Welch,

1947) to evaluate the significance of the improvement on different

pairs of approaches. The P-values are adjusted by the Benjamini–

Hochberg procedure (Benjamini and Hochberg, 1995) to control the

false discovery rate for multiple hypothesis testing.

Results. As shown in Table 1, the CNN-based architecture,

DPPI, demonstrates state-of-the-art performance over other base-

lines that employ statistical learning algorithms or densely con-

nected MLP (We are unable to obtain the source codes of two deep-

learning methods, SAE and DNN-PPI. We implement these two

models following the descriptions in their papers. Our implementa-

tions are verified by achieving comparable performance on the Pan’s

dataset (Pan et al., 2010) as reported in the papers. However, these

two implementations can only achieve 67.17 and 76.61% in overall

accuracy respectively on the Yeast dataset.). This shows the super-

iority of deep-learning-based techniques in encapsulating various

types of information of a protein pair, such as amino acid compos-

ition and their co-occurrences, and automatically extracting the ro-

bust ones for the learning objectives. That said, DPPI requires an

extensive effort in data pre-processing, specifically in constructing

the protein profile for each sequence. On average, each PSI-BLAST

search of a protein against the NCBI non-redundant protein data-

base (184 243 125 sequences) requires around 90 min of computa-

tion on our server. Even with eight cores, each search finishes in

15 min. We estimate that processing 2497 sequences of the Yeast

dataset from scratch can take about 26 days. It is worth mentioning

that PIPR only requires 8 s to pre-train the amino acid embedding,

and 2.5 min to train on the Yeast dataset (Table 7). We implement

SCNN to evaluate the performance of a simplified CNN architec-

ture, which produces comparable results as DPPI. These two frame-

works show that CNN can already leverage the significant features

from primary protein sequences.

In addition, the SRGRU architecture has offered comparable

performance to SCNN. This indicates that preserving the sequential

and contextualized features of the protein sequences is as crucial as

incorporating the local features. By integrating both significant local

features and sequential information, PIPR outperforms DPPI by

2.54% in accuracy, 4.93% in sensitivity and 2.68% in F1-score.

Next, we evaluate whether the improved accuracy of PIPR is statis-

tically significant. Table 2 reports the P-values of SRGRU, SCNN

and PIPR compared to other baseline approaches, where the statis-

tically significant comparisons (P-values <0.01) are highlighted in

red. Since the SD of DPPI is unavailable, we are not able to include

DPPI in this analysis. The evaluation shows that PIPR performs

statistically significantly better than all other approaches, including

SCNN and SRGRU. On the other hand, SCNN is not statistically

significantly better than SRGRU. Thus, the residual RCNN is very

promising for modeling binary PPIs.

We also report the 5-fold CV performance of PIPR on variants

of the multi-species dataset, where proteins are excluded based on

different thresholds of sequence identity. The results in Table 3

show that PIPR performs consistently well under lenient and strin-

gent criteria of sequence identity between training and testing. More

importantly, PIPR is able to train and test on multiple species, and

is robust against extremely low sequence identity of <1%.

i310 M.Chen et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz328#supplementary-data

4.3 Interaction type prediction
The objective of this task is to predict the interaction type of two inter-

acting proteins. We evaluate this task based on SHS27k and SHS148k

datasets. To the best of our knowledge, much fewer efforts attempt for

the multi-class PPI prediction in contrast to the binary prediction. Zhu

et al. (2006) train a two-stage SVM classifier to distinguish obligate,

non-obligate and crystal packing interactions; Silberberg et al. (2014)

use logistic regression to predict several types of enzymatic actions.

However, none of their implementations is publicly available.

Different from the categories of interaction types used above, we aim

at predicting the interaction types annotated by the STRING database.

We train several statistical learning algorithms on the widely

employed AC and CTD features for protein characterization as our

baselines. These algorithms include SVM, Random Forest, AdaBoost

[SAMME.R algorithm (Zhu et al., 2009)], kNN classifier and logistic

regression. For deep-learning-based approaches, we deploy the SCNN

architecture where an output MLP with categorical cross-entropy loss is

incorporated, as well as a similar SRGRU architecture into comparison.

Results of two naı̈ve baselines of random guessing and zero rule (i.e.

simply predicting the majority class) are also reported for reference.

Evaluation protocol. All approaches are evaluated on the two

datasets by 10-fold CV, using the same partition scheme for a more

unbiased evaluation (James et al., 2013; McLachlan et al., 2005).

We carry forward the model configurations from the last experiment

to evaluate the performance of the frameworks under controlled

variables. For baseline models, we examine three different ways of

combining the feature vectors of the two input proteins, i.e. element-

wise multiplication, the Manhattan difference [i.e. the absolute dif-

ferences of corresponding features (Mueller and Thyagarajan,

2016)] and concatenation. The Manhattan difference consistently

obtains better performance, considering the small values of the input

features and the asymmetry of the captured protein relations.

Results. The prediction accuracy and fold changes over the zero

rule baseline are reported in Table 4. Note that since the multi-class

prediction task is much more challenging than the binary prediction

task, it is expected to observe lower accuracy and longer training time

(Table 7) than that reported in the previous experiment. Among all

the baselines using explicit features, the CTD-based models perform

better than the AC-based ones. CTD descriptors seek to cover both

continuous and discontinuous interaction information (Yang et al.,

2010), which potentially better discriminate among PPI types.

The best baseline using Random Forest thereof achieves satisfac-

tory results by more than doubling the accuracy of zero rule on the

smaller SHS27k dataset. However, on the larger SHS148k dataset,

the accuracy of these explicit-feature-based models is notably

impaired. We hypothesize that such predefined explicit features are

not representative enough to distinguish the PPI types. On the other

hand, the deep-learning-based approaches do not need to explicitly

utilize these features, and perform consistently well in both settings.

The raw sequence information is sufficient for these approaches to

drastically outperform the Random Forest by at least 5.30% in accur-

acy on SHS27k and 17.40% in accuracy on SHS148k. SCNN thereof

outperforms SRGRU by 4.48 and 1.24% in accuracy on SHS27k and

SHS148k, respectively. This implies that the local interacting features

are relatively more deterministic than contextualized and sequential

features on this task. The results by the residual RCNN-based

Table 1. Evaluation of binary PPI prediction on the Yeast dataset based on 5-fold cross-validation. We report the mean and SD for the test

sets

Methods Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) MCC (%)

SVM-AC 87.35 6 1.38 87.82 6 4.84 87.30 6 5.23 87.41 6 6.33 87.34 6 1.33 75.09 6 2.51

kNN-CTD 86.15 6 1.17 90.24 6 1.34 81.03 6 1.74 NA 85.39 6 1.51 NA

EELM-PCA 86.99 6 0.29 87.59 6 0.32 86.15 6 0.43 NA 86.86 6 0.37 77.36 6 0.44

SVM-MCD 91.36 6 0.4 91.94 6 0.69 90.67 6 0.77 NA 91.3 6 0.73 84.21 6 0.66

MLP 94.43 6 0.3 96.65 6 0.59 92.06 6 0.36 NA 94.3 6 0.45 88.97 6 0.62

RF-LPQ 93.92 6 0.36 96.45 6 0.45 91.10 6 0.31 NA 93.7 6 0.37 88.56 6 0.63

SAE 67.17 6 0.62 66.90 6 1.42 68.06 6 2.50 66.30 6 2.27 67.44 6 1.08 34.39 6 1.25

DNN-PPI 76.61 6 0.51 75.1 6 0.66 79.63 6 1.34 73.59 6 1.28 77.29 6 0.66 53.32 6 1.05

DPPI 94.55 96.68 92.24 NA 94.41 NA

SRGRU 93.77 6 0.84 94.60 6 0.64 92.85 6 1.58 94.69 6 0.81 93.71 6 0.85 87.56 6 1.67

SCNN 95.03 6 0.47 95.51 6 0.77 94.51 6 1.27 95.55 6 0.77 95.00 6 0.50 90.08 6 0.93

PIPR 97.09 6 0.24 97.00 6 0.65 97.17 6 0.44 97.00 6 0.67 97.09 6 0.23 94.17 6 0.48

Each boldfaced number indicates the best of the corresponding metric.

NA, not available from the original paper.

Table 2. Statistical assessment (t-test; two-tailed) on the accuracy

of binary PPI prediction

P-value SRGRU SCNN PIPR

SVM-AC 9.69E-05 1.22E-04 9.69E-05

kNN-CTD 1.03E-05 2.23E-05 2.84E-05

EELM-PCA 2.33E-05 3.94E-08 2.43E-10

SVM-MCD 1.67E-03 2.60E-06 1.35E-07

MLP 1.71E-01 5.29E-02 1.12E-06

RF-LPQ 7.28E-01 4.10E-03 1.75E-06

SAE 4.27E-10 1.78E-10 4.19E-09

DNN-PPI 1.62E-08 2.27E-10 2.70E-09

SRGRU NA 2.87E-02 6.60E-04

SCNN 2.87E-02 NA 1.80E-04

Note: The statistically significant differences are highlighted in red.

NA, not available.

Table 3. Evaluation of binary PPI prediction on variants of multi-

species (C. elegans, D. melanogaster and E. coli) dataset

Seq.

identity

of

proteins

Pos.

pairs

Neg.

pairs

Accuracy

(%)

F1-score

(%)

Any 11 529 32 959 32 959 98.19 98.17

<0.40 9739 25 916 22 012 98.29 98.28

<0.25 7790 19 458 15 827 97.91 98.08

<0.10 5769 12 641 9819 97.54 97.79

<0.01 5171 10 747 8065 97.51 97.80

PIPR i311

framework are very promising, as it outperforms SCNN by 4.02%

and 6.62% in accuracy on SHS27k and SHS148k, respectively. It also

remarkably outperforms the best explicit-feature-based baselines on

the two datasets by 13.80 and 25.26% in accuracy, and more than

3.5 of fold changes over the zero rule on both datasets.

4.4 Binding affinity estimation
Lastly, we evaluate PIPR for binding affinity estimation using the

SKEMPI dataset. We employ the mean squared loss variant of PIPR

to address this regression task. Since the lengths of protein sequences

in SKEMPI are much shorter than those in the other datasets, we ac-

cordingly reduce the occurrences of RCNN units to three, while

other configurations remain unchanged. For baselines, we compare

against several regression models based on the AC and CTD fea-

tures, which include Bayesian Ridge regressor (BR), SVM, AdaBoost

with decision tree regressors and Random Forest regressor. The cor-

responding features for two sequences are again combined via the

Manhattan difference. We also modify SCNN and SRGRU to their

mean squared loss variants, in which we reduce the layers in the

same way of RCNN.

Evaluation protocol. We aggregate three metrics through 10-fold

CV, i.e. mean squared error (MSE), mean absolute error (MAE) and

Pearson’s correlation coefficient (Corr). These are three commonly

reported metrics for regression tasks, for which lower MSE and

MAE as well as higher Corr indicate better performance. In the CV

process, we normalize the affinity values of the SKEMPI dataset to

0;1½ � via min–max re-scaling. (This is due to that we use sigmoid

function to smooth the output of the regressor. Note that this pro-

cess does not affect correlation, while MSE, MAE and the original

affinity scores can be easily re-scaled back.).

Results. Table 5 reports the results for this experiment. It is note-

worthy that, one single change of amino acid can lead to a drastic ef-

fect on binding affinity. While such subtle changes are difficult to be

reflected by the explicit features, the deep-learning-based methods

can competently capture such changes from the raw sequences. Our

RCNN-based framework again offers the best performance among

the deep-learning-based approaches, and significantly outperforms

the best baseline (CTD-based Random Forest) by offering a 0.233

increase in Corr, as well as remarkably lower MSE and MAE.

Figure 3 demonstrates an example of the effect of changing an

amino acid in a protein complex. Tyrosine at position 61 of

Chymotrypsin inhibitor 2 (Chain I) is substituted with Alanine,

causing the neighboring region of Subtilisin BPN’ precursor (Chain

E) to relax. The binding affinity (kd) changes from 2.24E-12 to

2.70E-10, which is validly captured by PIPR. While our experiment

is conducted on a relatively small dataset, we seek to extend our

PIPR framework to a more generalized solution for binding affinity

estimation, once a larger and more heterogeneous corpus is

available.

4.5 Amino acid embeddings
We further investigate the settings of amino acid embeddings in this

subsection. Each amino acid is represented by a vector of numerical

values that describe its relative physicochemical properties. The first

part of the embedding vector ac, which measures the co-occurrence

similarity of the amino acids in protein sequences, is empirically set

as a five-dimensional vector. ac is obtained by pre-training the Skip-

Gram model on all 8000 sequences from our largest STRING data-

set, SHS148k, using a context window size of seven and a negative

sampling size of five. The second part contains a seven-dimensional

vector, aph, which describes the categorization of electrostaticity and

hydrophobicity for the amino acid. We examine the performance of

using each part individually, as well as the performance of combin-

ing them as used in our framework. In addition, we include a naı̈ve

one-hot vector representation, which does not consider the related-

ness of amino acids and treats each of them independently. Table 6

shows that, once we remove either of the two parts of the proposed

embedding, the performance of the model slightly drops.

Meanwhile, the proposed pre-trained embeddings lead to noticeably

better performance of the model than adopting the naı̈ve one-hot

encodings of the canonical amino acids. This pre-training process

completes in 8 s on a commodity workstation as shown in Table 7.

This is a one-time effort that can be reused on different tasks and

datasets.

4.6 Run-time analysis
All of the experiments are conducted on one NVIDIA GeForce GTX

1080 Ti GPU. We report the training time for each experiment, as

well as for the amino acid embedding in Table 7. For each experi-

ment, we calculate the average training time over either 5-fold

(Yeast dataset) or 10-fold (others) CV. In both binary and multi-

class predictions, the training time increases along with the increased

number of training cases. The regression estimation generally

Table 4. Accuracy (%) and fold changes over zero rule for PPI interaction type prediction on two STRING datasets based on 10-fold cross-

validation

Features N/A AC CTD Embedded raw seqs

Methods Rand Zero rule SVM RF AdaBoost kNN Logistic SVM RF AdaBoost kNN Logistic SCNN SRGRU PIPR

SHS27k 14.28 16.70 33.17 44.82 28.67 35.44 25.47 35.56 45.76 31.81 35.56 30.57 55.54 51.06 59.56

(fold�) — 1.00� 1.99� 2.68� 1.72� 2.12� 1.52� 2.13� 2.74� 1.90� 2.13� 1.83� 3.33� 3.06� 3.57�
SHS148k 14.28 16.21 28.17 36.01 27.87 33.81 24.96 31.37 36.65 29.67 33.13 26.96 55.29 54.05 61.91

(fold�) — 1.00� 1.74� 2.22� 1.72� 2.09� 1.54� 1.94� 2.26� 1.83� 2.04� 1.66� 3.41� 3.33� 3.82�

Each boldfaced number indicates the best of the corresponding metric.

Mutation on Chain I
 Y61 -> A

Fig. 3. Mutation effects on structure and binding affinity. The blue entity is

Subtilisin BPN’ precursor (Chain E), and the red entity is Chymotrypsin inhibi-

tor (Chain I). The mutation is highlighted in yellow. The wild-type (1TM1) and

mutant (1TO1) complexes are retrieved from PDB

i312 M.Chen et al.

requires more iterations per training case to converge than classifica-

tion tasks. Thus, with much fewer cases, the training time on

SKEMPI for affinity estimation is more than that on the Yeast data-

set for binary prediction.

5 Conclusion

In this paper, we propose a novel end-to-end framework for PPI pre-

diction based on the amino acid sequences. Our proposed frame-

work, PIPR, employs a residual RCNN, which provides an

automatic multi-granular feature selection mechanism to capture

both local significant features and sequential features from the pri-

mary protein sequences. By incorporating the RCNN in a Siamese-

based learning architecture, the framework captures effectively the

mutual influence of protein pairs, and generalizes well to address

different PPI prediction tasks without the need for predefined fea-

tures. Extensive experimental evaluations on five datasets show

promising performance of our framework on three challenging PPI

prediction tasks. This also leads to significant amelioration over

various baselines. Experiments on datasets of different sizes also

demonstrate satisfactory scalability of the framework. For future

work, one important direction is to apply the PIPR framework to

other sequence-based inference tasks in bioinformatics, such as mod-

eling RNA and protein interactions. We also seek to incorporate at-

tention mechanisms (Vaswani et al., 2017) to help pinpoint

interaction sites on protein sequences, and apply PIPR to predict

confidence of interactions in the form of ordinal regression. Since

PIPR has alleviated any costly domain-invariant feature engineering

process, how to extend PIPR with transfer learning based domain

adaptation for different species is another meaningful direction.

Acknowledgements

We thank all of the reviewers for their valuable comments and suggestions.

Funding

This work was partially supported by the National Institutes of Health

[R01GM115833, U54 GM114833]; and the National Science Foundation

[DBI-1565137, DGE-1829071].

Conflict of Interest: none declared.

References

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Anderson,C. (2018) Google’s AI tool deepvariant promises significantly fewer

genome errors. Clinical OMICs, 5, 33–33.

Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B

(Methodol.), 57, 289–300.

Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28,

235–242.

Chen,M. et al. (2018) Neural article pair modeling for Wikipedia sub-article

matching. In: ECML-PKDD, pp. 3–19. Springer, Cham.

Cho,K. et al. (2014) Learning phrase representations using RNN

Encoder–Decoder for statistical machine translation. In: Proceedings of con-

ference on empirical methods in natural language processing, pp.

1724–1734. ACL, Doha, Qatar.

Conneau,A. et al. (2017) Very deep convolutional networks for text classifica-

tion. In Proceedings of the European Chapter of the Association for

Computational Linguistics, ACL, pp. 1107–1116.

Consortium,U. et al. (2018) UniProt: the universal protein knowledgebase.

Nucleic Acids Res., 46, 2699.

Dhingra,B. et al. (2017) Gated-attention readers for text comprehension. In

Proceedings of ACL, ACL, Vancouver, Canada, pp. 1832–1846.

Du,X. et al. (2017) DeepPPI: boosting prediction of protein–protein interac-

tions with deep neural networks. J. Chem. Inf. Model., 57, 1499–1510.

Fields,S. and Song,O-K. (1989) A novel genetic system to detect protein–pro-

tein interactions. Nature, 340, 245–246.

Gavin,A.-C. et al. (2002) Functional organization of the yeast proteome by

systematic analysis of protein complexes. Nature, 415, 141–147.

Guo,Y. et al. (2008) Using support vector machine combined with auto covari-

ance to predict protein–protein interactions from protein sequences. Nucleic

Acids Res., 36, 3025–3030.

Hashemifar,S. et al. (2018) Predicting protein–protein interactions through

sequence-based deep learning. Bioinformatics, 34, i802–i810.

He,H. et al. (2015) Multi-perspective sentence similarity modeling with con-

volutional neural networks. In: Proceedings of the Conference on Empirical

Methods in Natural Language Processing, pp. 1576–1586. ACL, Lisbon,

Portugal.

Table 6. Comparison of amino acid representations based on bin-

ary prediction

½ac; aph� ac only aph only One-hot

Dimension 12 5 7 20

Accuracy 97.09 96.67 96.03 96.11

Precision 97.00 96.35 95.91 96.34

F1-score 97.09 96.51 96.08 96.10

Table 7. Run-time of training embeddings and different prediction

tasks

Task Embeddings Binary Multi-class Multi-class Regression

Dataset SHS148k Yeast SHS27k SHS148k SKEMPI

Sample size 8000 11 188 26 945 148 051 2 950

Training time 8 s 2.5 min 15.8 min 138.3 min 12.5 min

Table 5. Results for binding affinity prediction on the SKEMPI dataset

Features AC CTD Embedded raw seqs

Methods BR SVM RF AdaBoost BR SVM RF AdaBoost SCNN SRGRU PIPR

MSE (�10�2) 1.70 2.20 1.77 1.98 1.86 1.84 1.49 1.84 0.87 0.95 0.63

MAE (�10�2) 9.56 11.81 9.81 11.15 10.20 11.04 9.06 10.69 6.49 7.08 5.48

Corr 0.564 0.353 0.546 0.451 0.501 0.501 0.640 0.508 0.831 0.812 0.873

Note: Each measurement is an average of the test sets over 10-fold cross-validation.

Each boldfaced number indicates the best of the corresponding metric.

PIPR i313

He,K. et al. (2016) Deep residual learning for image recognition. In: CVPR,

pp. 770–778.

Ho,Y. et al. (2002) Systematic identification of protein complexes in

Saccharomyces cerevisiae by mass spectrometry. Nature, 415, 180–183.

Hu,B. et al. (2014) Convolutional neural network architectures for matching

natural language sentences. In: Ghahramani,Z. et al. (eds) Advances in Neural

Information Processing Systems 27. Curran Associates, Inc., pp. 2042–2050.

Huang,Y.-A. et al. (2015) Using weighted sparse representation model com-

bined with discrete cosine transformation to predict protein–protein interac-

tions from protein sequence. BioMed Res. Int., 2015, 902198.

James,G. et al. (2013) An Introduction to Statistical Learning. Vol. 112.

Springer, New York.

Jansen,R. et al. (2003) A Bayesian networks approach for predicting protein–-

protein interactions from genomic data. Science, 302, 449–453.

Jiang,J.-Y. et al. (2018) Learning to disentangle interleaved conversational

threads with a Siamese hierarchical network and similarity ranking. In:

Proceedings of the 2018 Conference of the North {A}merican Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pp. 1812–1822. ACL, New Orleans, Louisiana.

Kim,J. et al. (2016) Accurate image super-resolution using very deep convolu-

tional networks. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1646–1654.

Kim,Y. (2014) Convolutional neural networks for sentence classification. In:

Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pp. 1746–1751. ACL, Doha, Qatar.

LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436–444.

Li,H. et al. (2018) Deep neural network based predictions of protein interac-

tions using primary sequences. Molecules, 23, 1923.

Li,W. and Godzik,A. (2006) CD-HIT: a fast program for clustering and com-

paring large sets of protein or nucleotide sequences. Bioinformatics, 22,

1658–1659.

Lin,M. et al. (2013) Network in network. In: International Conference on

Learning Representation, Scottsdale, Arizona.

Maas,A.L. et al. (2013) Rectifier nonlinearities improve neural network acous-

tic models. In: ICML Workshop on Deep Learning for Audio, Speech and

Language Processing, Vol. 30, p. 3.

McLachlan,G. et al. (2005) Analyzing Microarray Gene Expression Data.

Vol. 422. John Wiley & Sons, Hoboken, New Jersey.

Mikolov,T. et al. (2013) Distributed representations of words and phrases and

their compositionality. In: Burges,C.J.C. (eds) Advances in Neural

Information Processing Systems. Curran Associates, Inc., pp. 3111–3119.

Min,X. et al. (2017) Chromatin accessibility prediction via convolutional long

short-term memory networks with k-mer embedding. Bioinformatics, 33,

i92–i101.

Moal,I.H. and Fernández-Recio,J. (2012) SKEMPI: a structural kinetic and en-

ergetic database of mutant protein interactions and its use in empirical mod-

els. Bioinformatics, 28, 2600–2607.

Mueller,J. and Thyagarajan,A. (2016) Siamese recurrent architectures for

learning sentence similarity. In: Thirtieth AAAI Conference on Artificial

Intelligence, Vol. 16, pp. 2786–2792. AAAI Press, Menlo Park, CA.

Müller,A.T. et al. (2018) Recurrent neural network model for constructive

peptide design. J. Chem. Inf. Model., 58, 472–479.

Pan,X. and Shen,H.-B. (2018) Predicting RNA–protein binding sites and

motifs through combining local and global deep convolutional neural net-

works. Bioinformatics, 34, 3427–3436.

Pan,X.-Y. et al. (2010) Large-scale prediction of human protein–protein inter-

actions from amino acid sequence based on latent topic features.

J. Proteome Res., 9, 4992–5001.

Pascanu,R. et al. (2013) On the difficulty of training recurrent neural net-

works. In: Proceedings of the 30th International Conference on Machine

Learning, Atlanta, GA, USA, pp. 1310–1318.

Petta,I. et al. (2016) Modulation of protein–protein interactions for the devel-

opment of novel therapeutics. Mol. Ther., 24, 707–718.

Philipp,O. et al. (2016) Path2PPI: an R package to predict protein–protein

interaction networks for a set of proteins. Bioinformatics, 32, 1427–1429.

Quang,D. and Xie,X. (2016) DanQ: a hybrid convolutional and recurrent

deep neural network for quantifying the function of DNA sequences.

Nucleic Acids Res., 44, e107.

Reddi,S.J. et al. (2018) On the convergence of Adam and Beyond. In:

International Conference on Learning Representations, pp. 1–23.

OpenReview, Amherst, MA.

Rocktäschel,T. et al. (2016) Reasoning about entailment with neural atten-

tion. In: International Conference on Learning Representations (ICLR), pp.

1–9. OpenReview, Amherst, MA.

Salwinski,L. et al. (2004) The database of interacting proteins: 2004 update.

Nucleic Acids Res., 32, D449–D451.

Shen,J. et al. (2007) Predicting protein–protein interactions based only on

sequences information. Proc. Natl. Acad. Sci. USA, 104, 4337–4341.

Silberberg,Y. et al. (2014) A method for predicting protein-protein interaction

types. PLoS One, 9, e90904.

Skrabanek,L. et al. (2008) Computational prediction of protein–protein inter-

actions. Mol. Biotechnol., 38, 1–17.

Srinivasulu,Y.S. et al. (2015) Characterizing informative sequence descriptors

and predicting binding affinities of heterodimeric protein complexes. BMC

Bioinformatics, 16, S14.

Sun,T. et al. (2017) Sequence-based prediction of protein–protein interaction

using a deep-learning algorithm. BMC Bioinformatics, 18, 277.

Szklarczyk,D. et al. (2016) The string database in 2017: quality-controlled

protein–protein association networks, made broadly accessible. Nucleic

Acids Res., 45, D362–D368.

Tai,K.S. et al. (2015) Improved semantic representations from tree-structured

long short-term memory networks. In: Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics. ACL, Beijing,

China, pp. 1556–1566.

Vaswani,A. et al. (2017) Attention is all you need. In: Guyon,I. et al. (eds)

Advances in Neural Information Processing Systems. Curran Associates,

Inc., pp. 5998–6008.

Wang,Y.-B. et al. (2017) Predicting protein–protein interactions from protein

sequences by a stacked sparse autoencoder deep neural network. Mol.

Biosyst., 13, 1336–1344.

Welch,B.L. (1947) The generalization of Student’s problem when several dif-

ferent population variances are involved. Biometrika, 34, 28–35.

Wong,L. et al. (2015) Detection of protein–protein interactions from amino

acid sequences using a rotation forest model with a novel PR-LPQ descrip-

tor. In: Advanced Intelligent Computing Theories and Applications.

Springer, Cham, pp. 713–720.

Yang,L. et al. (2010) Prediction of protein–protein interactions from protein

sequence using local descriptors. Protein Pept. Lett., 17, 1085–1090.

Yin,W. and Schütze,H. (2015) Convolutional neural network for paraphrase

identification. In: Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pp. 901–911. ACL, Denver, Colorado.

Yin,W. et al. (2016) ABCNN: attention-based convolutional neural network

for modeling sentence pairs. TACL, 4, 259–272.

You,Z.-H. et al. (2013) Prediction of protein–protein interactions from amino

acid sequences with ensemble extreme learning machines and principal com-

ponent analysis. BMC Bioinformatics, 14, S10.

You,Z.-H. et al. (2014) Prediction of protein–protein interactions from amino

acid sequences using a novel multi-scale continuous and discontinuous fea-

ture set. BMC Bioinformatics, 15, S9.

You,Z.-H. et al. (2015) Predicting protein–protein interactions from primary

protein sequences using a novel multi-scale local feature representation

scheme and the Random Forest. PLoS One, 10, e0125811.

Yugandhar,K. and Gromiha,M.M. (2014) Protein–protein binding affinity

prediction from amino acid sequence. Bioinformatics, 30, 3583–3589.

Zhang,S. et al. (2016) A deep learning framework for modeling structural fea-

tures of RNA-binding protein targets. Nucleic Acids Res., 44, e32.

Zhang,Y. et al. (2017) Very deep convolutional networks for end-to-end

speech recognition. In: 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 4845–4849.

Zhou,T. et al. (2017) Attention-based natural language person retrieval. In:

The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, pp. 27–34.

Zhu,H. et al. (2006) NOXclass: prediction of protein–protein interaction

types. BMC Bioinformatics, 7, 27.

Zhu,J. et al. (2009) Multi-class AdaBoost. Stat. Interface, 2, 349–360.

i314 M.Chen et al.

	l
	l
	l
	btz328-T1
	btz328-TF1
	btz328-T2
	btz328-T4
	btz328-TF2
	btz328-T5

