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Abstract: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the causative agent of coronavirus disease 2019 (COVID-19), has resulted in >500,000 deaths
worldwide, including >125,000 deaths in the U.S. since its emergence in late December 2019 and June
2020. Neither curative anti-viral drugs nor a protective vaccine is currently available for the treatment
and prevention of COVID-19. Recently, new clinical syndromes associated with coagulopathy and
vasculopathy have emerged as a cause of sudden death and other serious clinical manifestations in
younger patients infected with SARS-CoV-2 infection. Angiotensin converting enzyme 2 (ACE2),
the receptor for SARS-CoV-2 and other coronaviruses, is a transmembrane protein expressed by
lung alveolar epithelial cells, enterocytes, and vascular endothelial cells, whose physiologic role
is to induce the maturation of angiotensin I to generate angiotensin 1-7, a peptide hormone that
controls vasoconstriction and blood pressure. In this review, we provide the general context of
the molecular and cellular mechanisms of SARS-CoV-2 infection with a focus on endothelial cells,
describe the vasculopathy and coagulopathy syndromes in patients with SARS-CoV-2, and outline
current understanding of the underlying mechanistic aspects.
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1. Introduction

A new strain of coronavirus, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2),
was identified in December 2019 and found to cause a severe respiratory illness in humans, called
coronavirus disease 2019 (COVID-19). This disease rapidly spread worldwide and was recognized
as a pandemic by March 2020. Previously, two other coronaviruses, SARS-CoV, identified in 2002,
and Middle East respiratory syndrome MERS-CoV, identified in 2012, were found to cause severe
respiratory diseases, named SARS and MERS, respectively, in endemic areas. No human SARS cases
have been detected since 2004 and human MERS cases have steadily decreased from 2016 to July
2019 [1].

The respiratory diseases SARS, MERS, and COVID-19 have similar manifestations of fever, cough,
and shortness of breath. Pneumonia is a common complication. Severe cases can lead to acute
respiratory distress syndrome, particularly in the elderly with underlying diseases, which include
diabetes, cardiovascular disease, and cancer. Additional, less frequent, manifestations include
gastrointestinal symptoms [2,3]. Although a proportion of people infected with these coronaviruses
has remained asymptomatic, the mortality rate for patients with SARS is approximately 15% and
with MERS is approximately 35%. The case fatality rate for COVID-19 has been variably estimated
between < 1% to 15% and evolving [3–5]. No effective vaccine for SARS-CoV-2 is currently available.

Cells 2020, 9, 1583; doi:10.3390/cells9071583 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
http://dx.doi.org/10.3390/cells9071583
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/7/1583?type=check_update&version=2


Cells 2020, 9, 1583 2 of 30

The antiviral drug remdesivir has received an emergency use authorization for the treatment of
suspected or laboratory-confirmed COVID-19 in patients with severe disease. Other drugs, such as
recombinant ACE2 (APN01) and an anti-viral antibody cocktail (REGN-COV) are currently tested
in clinical trials. The clinical course of SARS and MERS is remarkably similar, apart from an overall
greater severity of pulmonary manifestations in patients with MERS than in patients with SARS [2].
COVID-19, however, appears to include an evolving set of clinical manifestation not previously
reported in SARS and MERS, including stroke and cardiomyopathies associated with coagulopathy
and vasculopathy, which can cause sudden death and other serious morbidities. Here, we provide
the general context of the molecular and cellular mechanisms of SARS-CoV-2 infection, describe
the vasculopathy and coagulopathy syndromes in patients with COVID-19, and outline current
understanding of the underlying mechanistic aspects. It should be appreciated that this is a rapidly
evolving field and that much is unknown about the distinctive epidemiology, clinical manifestations,
and pathogenesis of these COVID-19 associated syndromes.

2. Functions of the Angiotensin-Converting Enzyme 2 (ACE2)

2.1. ACE2, a Regulator of the Renin-Angiotensin System

As discussed in Section 3, ACE2 is the primary cell surface receptor by which SARS-CoV-2
binds and enters cells. A consequence of SARS-CoV-2 infection is that ACE2 function is disrupted
and this disruption contributes to the pathogenesis to COVID-19. To place this aspect of COVID-19
in an appropriate context, we will first review the molecular biology of ACE2. Human ACE2 is a
transmembrane carboxypeptidase comprising a heavily glycosylated N-terminal ectodomain containing
the enzymatic active site, a hydrophobic transmembrane domain, and a short intracellular C-terminal
tail [6,7]. ACE2 belongs to the family of angiotensin-converting enzymes, which are essential regulators
of blood pressure, cardiac function, and fluid balance [6–10]. Angiotensin-converting enzyme (ACE) is
also a member of this gene family [11–13]. ACE2 and ACE have different biochemical functions [14].
ACE2 converts angiotensin I into angiotensin 1-9, a peptide with nine amino acids without known
biological function, which can be further converted by ACE into the shorter angiotensin peptide
1-7, which is a blood vessel dilator [7,15,16]. ACE can also convert angiotensin I into angiotensin
II, a peptide with eight amino acids which is a potent blood vessel constrictor that increases blood
pressure. In addition, ACE2 can directly process angiotensin II into angiotensin peptide 1-7 [15,17].
Thus, whereas ACE produces angiotensin II, which induces vessel constriction and increases blood
pressure, ACE2 is a physiological inhibitor of angiotensin II, and acts to reduce vasoconstriction and
other biological activities induced by angiotensin II, as described in greater detail in Section 2.2.

Most of the activity of ACE2 is modulated via regulation of its expression on the cell surface, where
the extracellular enzyme (called an ectoenzyme) is exposed to circulating vasoactive peptides [18].
ACE2 can also undergo proteolytic shedding to generate a soluble, catalytically active form with no
known physiologic function [15]. Soluble ACE2 is detected at low levels in normal plasma [7,19–21]
and at higher levels in the circulation of patients with hypertension [22], heart failure [23], severe
respiratory syndrome [24], type1 diabetes [25], and other conditions [26,27]. Soluble ACE2 is
also abnormally high in the cerebral spinal fluid of hypertensive patients [28]. Mechanistically,
the shedding of ACE2 is attributed to the enzymatic activity of several members of the “a disintegrin
and metalloprotease” (ADAM) family, particularly ADAM17/TNFα-converting enzyme (TACE),
which is known to cleave several membrane-anchored proteins [28]. The biologically active, cell
membrane-bound ADAM17/TACE also plays critical roles in the release of biologically active cytokines,
such as TNFα and TGFα; chemokines, such as Fractalkine/CXC3CL1; cell adhesion molecules, such as
ICAM-1; and receptors, such as IL-6R and IL15R [29].

Serum ACE2 levels are sex-dependent, with higher levels in males compared to females [25,30,31],
and are potentially influenced by the ACE2 gene location on the X chromosome, sex hormones, and genetic
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factors [20]. In addition, serum ACE2 levels do not directly reflect levels of tissue-bound ACE2; however,
some studies have shown an inverse relationship between circulating and membrane-bound ACE2 [32,33].

ACE2 mRNA is expressed in many human tissues [6,34], but most predominantly in the
small intestine, testis, kidney, adipose tissue, and heart [35]. ACE2 protein has been identified
by immunohistochemistry in the lung, alveolar epithelial cells [36], the heart muscle and coronary
endothelium [7,16,35], the enterocytes of the small intestine at the brush border [36,37], the epithelium
of stomach, duodenum and rectum [38], the kidney tubular epithelium of the proximal tubules and
intrarenal vessels [7,14,36,39] and the basal layer of the epidermis [36]. Importantly, ACE2 protein
has been visualized in the endothelial cells of capillaries, the small and large arteries and veins of
numerous organs and in the arterial smooth muscle cells, which is consistent with low-level ACE2
mRNA detection in many tissues [6,36,40].

2.2. Functions of ACE2 in Endothelial Cells

By indirectly and directly catalyzing the conversion of angiotensin I and angiotensin II to
angiotensin 1-7, ACE2 antagonizes angiotensin II, attenuating the vasoconstrictive, pro-inflammatory,
pro-apoptotic, pro-thrombotic, mitogenic, metabolic and other vascular effects of angiotensin II [41,42].
The pro-inflammatory, hypertensive and other cardiovascular complications of excess angiotensin II
are mediated by activation of the angiotensin II type 1 receptor (AT1R) [42,43]. The vaso-protective
functions of angiotensin 1-7 are mediated by activation of the G protein-coupled receptor Mas,
which functionally operates as an antagonist of angiotensin II [44,45].

Loss and gain-of-function experiments have shown that ACE2, through angiotensin 1-7, reduces
endothelial cell production of reactive oxygen species, vascular adhesion molecule-1 (VCAM-1) and
chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2), and attenuates monocyte adhesion
to endothelial cells and endothelial cell maturation into vascular structures [46–48]. Consistent with
these observations, endothelial cells isolated from the aortas of ACE2 knockout mice displayed
increased expression of inflammatory cytokines, including TNFα, IL-6 and MCP-1; adhesion molecules,
including VCAM-1 and JAM-A; and the metalloproteases MMP-2 and MMP9 [49]. Similarly, bone
marrow-derived monocyte/macrophages from ACE2 knockout mice showed increased expression
of VCAM-1 and TNFα compared to controls [49]. In addition, thoracic aortic segments from ACE2
knockout mice displayed reduced relaxation in response acetylcholine [47]. When transduced into
pulmonary microvascular endothelial cells, ACE2, through angiotensin 1-7, has been shown to reduce
LPS-induced endothelial cell death and secretion of the pro-inflammatory TNFα and IL1β cytokines
by inhibiting the JNK and NFκB pathways [50].

Consistent with these results, recombinant human ACE2 protected primary human endothelial
cells from death induced by angiotensin II [51], and stimulation of endogenous ACE2 in human
coronary arterial endothelial cells inhibited NF-kB signaling and reduced TNFα activity [52]. Similarly,
adenoviral transduction of ACE2 or administration of angiotensin 1-7 reduced reactive oxygen species
(ROS) production in endothelial cells and rescued endothelial cell function in diabetic mice [53]. In a
mouse model of bleomycin-induced acute lung injury, systemic treatment with recombinant human
ACE2 reduced pulmonary levels of the pro-inflammatory cytokines IL-6, TNFα and CXCL1/NAP3
(neutrophil-activating protein-3) cytokines, attenuated VEGFA-induced vessel permeability in the
lung, increased pro-survival BCL2 protein levels, and reduced lung cell death, which improved lung
function [54–56]. Thus, ACE2 has a range of anti-hypertensive, anti-inflammatory and antioxidant
effects that oppose those of angiotensin II in the vasculature.

Angiotensin II-induced experimental hypertension is accompanied by increased thrombosis in
large arteries [57], arterioles [58] and other blood vessels [59,60]. Thrombosis is a major complication
of hypertension, which can be explained by several factors, including alterations in platelets,
hypertension-related stress of cell components of the vessel wall, coagulation and fibrinolysis that
promote a pro-thrombotic state [61,62]. Angiotensin II has been implicated as a mediator of thrombosis
associated with hypertension, in part because patients treated with ACE inhibitors and angiotensin II
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receptor blockers have shown a lower incidence of stroke and thrombotic events compared to patients
treated with other anti-hypertensive drugs [63–65]. Additionally, ACE inhibitors and angiotensin
II receptor blockers corrected platelet [62], coagulation [66], and fibrinolytic [67] defects. However,
the mechanisms responsible for the angiotensin II-dependent activation of the coagulation cascade
in large arteries and microvasculature are incompletely understood, having been variously linked
to increased plasminogen activator-1 levels, activation of type1 (AT1), type 2 (AT2), type 4 (AT4)
angiotensin II receptors, and signaling from receptors for endothelin-1 and bradykinin [58].

A direct role of ACE2 in reducing thrombosis is supported by experimental results in mice,
which showed that XNT, a small molecule ACE2 activator [68], reduced platelet attachment to injured
endothelia and the size of thrombi, and delayed complete vessel occlusion in mice [69]. In addition, in a
model of pulmonary hypertension, angiotensin 1-7, the catalytic product of ACE2, reduced thrombus
formation in hypertensive rats [70]. Recombinant human (rh)ACE2 has undergone initial human safety
trials [71], but—to our knowledge—no antithrombotic activity has been reported.

2.3. Non-Vascular Functions of ACE2

Besides its role in the pathophysiology of the vascular system, ACE2 plays a critical role in the
heart, kidneys, and gastrointestinal tract [72–74]. Consistent with the wide distribution of ACE2
protein in the heart, particularly in the coronary vessels and to a lower degree in cardiomyocytes
as well as in coronary vessels, ACE2 has been shown to play a primary role in the generation of
angiotensin 1-7 in isolated rat hearts [75]. ACE2 deficiency resulted is cardiac hypertrophy and defective
cardiac contractility, which were reversed by ablation of ACE [16,76]. In addition, administration of
angiotensin 1-7 in ACE2-deficient mice was shown to be cardioprotective in an experimental model of
heart failure [77].

In the kidneys, which overall express higher levels of ACE2 compared to the heart [35], ACE2 is
present in the proximal tubular epithelium of the nephrons, and in the endothelial and smooth muscle
cells of large interlobular arteries [26,78]. The global depletion of ACE2 in mice resulted in increased
kidney inflammation associated with enhanced TGFβ/SMAD2/3 and NFκB signaling [79], increased
albuminuria and development of glomerulosclerosis [73]. When ACE2 knockout mice were crossed
with diabetic Akita mice, glomerular damage was more advanced than in non-diabetic mice [80].

ACE2 is also broadly expressed on the luminal surface of intestinal enterocytes [36,37], where
ACE2 associates with the neutral amino acid transporter B0AT1 and is required for B0AT1 localization at
this site [81,82]. When challenged with the intestinal irritant dextran sodium sulphate, ACE2-deficient
mice developed increased intestinal epithelial damage associated with infiltration of inflammatory
cells, bleeding, crypt damage, and diarrhea compared to the wild-type control mice [74]. In this setting,
ACE2-deficiency was linked to defective regulation of intestinal amino acids homeostasis [74].

In the hematopoietic system, ACE2-derived angiotensin 1-7 has been shown to improve the survival,
CXCL12-induced migration and proliferation of circulating CD34+ hematopoietic stem/progenitor
cells from diabetic patients [83], which may contribute to vascular regeneration [84]. In addition,
bone marrow-derived macrophages from ACE2 knockout mice showed an increased pro-inflammatory
response to LPS stimulation [49].

3. ACE2 Functions as a Coronavirus Receptor

3.1. ACE2 Is a Receptor for SARS-CoV-2 and other Coronaviruses

ACE2 has been identified as the primary cell surface receptor for SARS-CoV-2 [85–88] (Figure 1).
Previously, ACE2 was identified as the cell surface entry receptor for the coronavirus SARS-CoV
and several SARS-related coronaviruses [89–95]. The spike (S) protein of coronaviruses, including
SARS-CoV-2 [85,87], is a critical determinant of virus binding to ACE2 and virus entry into the target
cell [86,96]. Structurally, the S glycoprotein, a homotrimer protruding from the viral surface, is composed
of two functional subunits: the S1 subunit, which contains the receptor-binding domain and is
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responsible for binding to the cell surface, and the viral membrane-anchored S2 subunit, which contains
the fusion machinery and is responsible for fusion of the viral and cellular membranes [97]. Once bound
to the host cell membrane, intact S is cleaved by host proteases and undergoes extensive irreversible
conformational changes believed to activate the protein for membrane fusion [98]. The cellular
transmembrane protease serine 2 (TMPRSS2), furin and other host proteases cleave the SARS-S
proteins, exposing the S2 site [85,87,99]. SARS-CoV-2 possesses a furin cleavage site at the S1/S2
boundary that is not present in SARS CoV and has been proposed to expand the cell tropism of
SARS-CoV-2 compared to SARS-CoV [98]. An inhibitor of TMPRSS2 can block SARS-CoV-2 entry into
cells [85], as does recombinant human ACE2 [100]. TMPRSS2 is more broadly expressed in human
tissues than ACE2 [88,101,102]. Mouse polyclonal antibodies raised against the SARS-CoV S protein
can also block SARS-CoV-2 cell entry [98].
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Figure 1. Lung and gut epithelia, macrophages, and vascular endothelia are infected by SARS-CoV-2
in COVID-19. Soluble (s) ACE2, inflammatory cytokines, cytokines receptors, chemokinesand other
factors are released by virus binding and cell infection. Vascular pathology in COVID-19 includes
vasculitis, associated with endothelial cell death, increased vascular permeability, recruitment of
inflammatory lymphocytic cells, fibrin deposition and reduction of lumen size; vascular thrombosis;
and vascular embolization.

Structural work has focused on the characterization of the receptor-binding domain of SARS-CoV-2
and its conformation when bound to ACE2. The crystal structure of the receptor-binding domain of
the SARS-CoV-2 S protein in complex with ACE2 indicated a more compact conformation compared to
the SARS-CoV S protein in complex with ACE2. This difference was correlated with divergence from
SARS-CoV in several residues in the SARS-CoV-2 receptor-binding domain that potentially stabilize
the receptor binding domain-ACE2 interface [103,104]. However, affinity measurements have shown
that SARS-CoV-2 and SARS-CoV S proteins engage human ACE2 with similar kinetic rate constants
and only slightly different dissociation constants [98]. Cryo-electron microscopy structures of ACE2-B0
AT1, the full-length human ACE2 co-expressed with the B0 AT1 amino acid transporter (B0 AT1 uses
ACE2 as a chaperone in the gastrointestinal epithelial cells [81]) showed that two S protein trimers
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can simultaneously bind to an ACE2 homodimer, indicating a potential regulatory role of B0 AT1 and
other ACE2-binding proteins in SARS-CoV-2 infection [105].

Since ACE2 is a critical determinant of SARS-CoV-2 infection and disease, genetic studies have
looked for ACE2 variants with the potential to reduce the association of between ACE2 and the
S-proteins of SARS-CoV [96] and SARS-CoV-2 [106]. A systematic analysis of the 32 coding region
variants of ACE2 that could potentially affect the amino acid sequence of ACE2 showed no mutations
affecting the residues of human ACE2 that are important for binding the S protein in coronaviruses,
thus making it unlikely that ACE2 genetic mutants exist that confer resistance to S-protein binding [106].
However, analysis of the distribution of 15 unique expression quantitative trait loci (eQTLs) from the
Genotype Tissue Expression (GTEx) database showed frequency differences among Chinese, East Asian
and European populations, suggesting that genotypes of ACE2 gene polymorphism may be associated
with different expression levels of ACE2 [106].

3.2. ACE2 Internalization and Shedding by Coronaviruses

Entry of SARS-CoV-2 and SARS-CoV into cells is associated with ACE2 internalization alongside
viral particles and reduction of cell surface ACE2. Since the enzymatic activity of ACE2 resides
in the N-terminal extracellular domain where it is exposed to circulating vasoactive peptides,
ACE2 internalization is coupled with a shift in the balance of cell-associated vasoactive mediators
toward increased angiotensin II, triggering vasoconstriction, inflammation and a pro-coagulant status.
Once internalized, ACE2 can undergo angiotensin II-mediated ubiquitination and degradation [107].
Besides promoting ACE2 internalization, SARS-CoV promotes the enzymatic shedding of the ACE2
ectodomain [24,108], resulting both in the generation of a soluble form of ACE2 and an overall
reduction of ACE2 content in the infected cells. Recombinant SARS-CoV S protein displayed the same
ACE2-internalyzing and pro-shedding activity as the intact virus [108]. Importantly, ACE2 shedding
has been documented in vivo at sites of SARS-CoV infection in the human airways [24]. By contrast,
the S protein of HNL63 (NL63), a coronavirus that causes the common cold and also utilizes ACE2 as a
receptor, caused neither ACE2 shedding nor production of TNFα, differences attributed to sequence
divergence between their S proteins, which share only 21% identity [108,109]. As the S proteins of
SARS-CoV-2 and SARS-CoV S share 76% amino acid identity overall and display a similar receptor
binding module [104], it is likely that SARS-CoV-2 also induces ACE2 shedding (Figure 1).

The purified SARS-CoV spike protein can activate cellular TNFα-converting enzyme (TACE)/ADAM17
when it binds to cell surface ACE2; this prompts ACE2 shedding from the cell surface and release of a soluble
form of the ACE2 ectodomain [108]. ACE2 shedding induced by TACE/ADAM17 is accompanied by the
release of the biologically active pro-inflammatory cytokine TNFα [108] along with other pro-inflammatory
cytokines, chemokines, and receptors [29] (Figure 1). Besides TACE/ADAM17, endotoxin and other
stimuli can also induce ACE2 shedding [24]. Active TACE/ADAM17 facilitates SARS-CoV infection [108],
but soluble ACE2 is dispensable for replication of SARS-CoV and NL63 [109].

Soluble ACE2 is detected at low levels in the circulation of healthy individuals [21,73] but at
significantly higher levels in patients with cardiac disease [110] or with type 1 diabetes and vascular
complications [25]. To our knowledge, no published information currently exists on soluble ACE2 levels
in the circulation of patients infected with SARS-CoV or SARS CoV-2, although levels would be expected
to be elevated based on ACE2 shedding induced by these coronaviruses. However, a study in twelve
patients with COVID-19 reported significantly increased plasma levels of angiotensin II, which appeared
to directly correlate with circulating SARS-CoV-2 RNA levels and degree of hypoxia [111].

Although no known physiologic function has been attributed to soluble ACE2 [15], experimental
SARS-CoV infection was partially inhibited by a fusion protein of the ACE2 ectodomain [112].
Consistent with this, rhACE2 has been found to dose-dependently inhibit SARS-CoV-2 infection of
target cells, when used at microgram/mL concentrations [100], providing a rational basis for considering
soluble ACE2 treatment to interfere with SARS-CoV-2 infection [113]. This approach is now under
investigation [114,115].
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4. SARS-CoV-2 Infection of Endothelial Cells and Vascular Pathology

4.1. SARS-CoV-2 Infection of Endothelial Cells

SARS-CoV-2 can infect primary endothelial cells in culture. Using human endothelial cells
derived from pluripotent stem cells and cultured as three-dimensional vascular organoids [116],
Monteil et al. showed that SARS-CoV-2 could infect and replicate in the engineered vessels, and that
rhACE2 added to culture inhibited this infection [100]. There is also some evidence that SARS-CoV-2
can infect endothelial cells in patients with severe cases of COVID-19 [117]. Electron microscopy
detected coronavirus-like particles within capillary endothelial cells of the kidney glomerulus [117],
but identification of SARS-CoV-2 particles by electron microscopy may be challenging [118]. These data
suggested that the endothelium could be a secondary target of SARS-CoV-2 infection in humans and
that the ubiquitous distribution of ACE2+ blood vessels may underlie the multi-organ pathology of
COVID-19 [119]. A question is how SARS-CoV-2 ends up infecting endothelial cells.

Epidemiologic evidence indicates that the virus is transmitted among close contacts mostly
through the respiratory route, presumably directly through infected droplet secretions or indirectly
via fomites [119–121] (Figure 2). Indeed, bronchoalveolar-lavage samples from COVID-19 patients,
the source of the original SARS-CoV-2 isolates and most subsequent isolates, infected primary cultures
of human airway epithelial cell cultures [122]. The presence of SARS-CoV-2 RNA in nasopharyngeal
or oropharyngeal swabs is currently used as an approved diagnostic tool to document infection.
Sputum is also frequently positive for viral RNA [123]. SARS-CoV-2 detection appears to be more
frequent than in patients with SARS and MERS [2,124]. The presence of SARS-CoV-2 in the lung of
patients with COVID-19 has been documented by immunostaining [125], detection of viral RNA [123],
and electron microscopy [126].Cells 2020, 9, 1583 8 of 31 
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Figure 2. SARS-CoV-2 infects humans through the respiratory track by infecting and replicating in
the epithelial cells that line the upper and lower respiratory track. In the lungs, the virus can cause
COVID-19 pneumonia. SARS-CoV-2 can infect the intestinal epithelium in the small and large intestine;
it is unclear whether this occurs through the oral route or dissemination from the respiratory track.
SARS-CoV-2 can also infects myocardial cells. Hypercoagulation, vascular thrombosis and embolization
are common in severe COVID-19 leading to pulmonary, brain and skin embolization. Kawasaki-like
disease is linked epidemiologically to COVID-19.
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Another potential source of transmissible SARS-CoV-2 is fecal material [127] since SARS-CoV-2
RNA was detected in a proportion of anal swabs (4/16, 25%) [128] and stool specimens of COVID-19
patients (44/143, 29%) [123] (Figure 2). This is consistent with immunohistochemical detection of the
viral nucleocapsid antigen in the epithelium of the stomach, duodenum, and rectum of a COVID-19
patient where ACE2 protein was also detected [38]. However, to our knowledge the presence of
infectious virus in stools has not been documented. Transmissible SARS-CoV-2 could also derive
from tear and conjunctival secretions, as viral RNA was detected in these samples from one of
30 COVID-19 patients with conjunctivitis [129]. Other studies have confirmed detection of viral RNA
in the conjunctival sac [130] and ocular discharge [131]. Urine appears an unlikely potential source
of transmission, since viral RNA was detected rarely in urine [123,132–134], but a case of infectious
SARS-CoV-2 from urine has been documented [132].

There is evidence for SARS-CoV-2 dissemination to the circulation since viral RNA was detected in
6/41(15%) plasma specimens from patients with severe COVID-19 disease [3] (Figure 2). Other studies
have reported lower (3/307, 1%) [123] or higher (11/50, 23%) [135], (6/16 %, 38%) [128], (6/10, 50%) [136]
or (12/12, 100%) [111] frequencies of viral RNA detection in plasma of patients with COVID-19,
likely reflecting differences in technique, sampling, and variations in disease severity.

Hematological spread of infectious SARS-CoV-2 to different tissues is supported by detection of
high viral RNA titers in the liver, kidney, or heart, but not in the pharynx or saphenous vein, from 5/12
patients who had died from COVID-19 [136]. Also, SARS-CoV-2 was detected by immunohistochemistry
in tissue-resident ACE+CD169+ macrophages of all (6/6) autopsy-derived spleens and lymph nodes
of patients who had succumbed of COVID-19, but not controls [137]. Additionally, coronavirus-like
particles were visualized by electron microscopy in pneumocytes of a patient who had succumbed of
COVID-19 [126].

The full extent of organ distribution of SARS-CoV-2 is still unclear. However, a comprehensive
analysis of SARS-CoV in tissues from patients who had died of SARS, showed that viral RNA could be
detected in most tissues at variable levels, with few possible exceptions [138,139].

4.2. Vascular Pathology in Patients Infected with SARS-CoV-2

In addition to laboratory evidence that SARS-CoV-2 infects endothelial cells and that loss of
endothelial ACE2 as a consequence of coronavirus infection confers a pro-inflammatory, pro-coagulant,
and pro-apoptotic phenotype to endothelial cells, there is now emerging evidence of vascular pathology
in most patients with severe COVID-19 (Figure 1). An autopsy series showed the presence of deep
venous thrombosis involving the lower extremities bilaterally in 56% (7/12) of cases, associated with
massive pulmonary embolism in four of these cases, which was listed as the cause of death [136].
Deep venous thrombosis at the extremities was accompanied by evidence of recent thrombosis in
the prostatic venous plexus in 6/7 cases [136]. Post-mortem histopathologic analysis of lung tissue
from 38 COVID-19 patients documented the presence of platelet-fibrin thrombi in lung arterioles of
most (33/38) cases, congested capillaries (33/38) proximal to hemorrhagic alveoli often containing
CD61+ megakaryocytes, and dense capillary foci presumably resulting from vessel intussusceptive
sprouting (18/38) [126]. Similar histopathological observations came from post-mortem studies of
lungs from 12 COVID-19 cases, describing the regular presence of microthrombi in small arteries,
capillary congestion and areas of increased capillary density [136]. A comprehensive post-mortem
analysis of multiple tissues (in 3 COVID-19 cases) described congestion and endotheliitis of small
vessels with accumulation of mononuclear/lymphocytic cells around the capillary endothelium in
the heart, small bowel, kidney, liver and lung; in one case, caspase 3-immunostaining revealed the
presence of apoptotic bodies in endothelial cells lining the inner wall of inflamed blood vessels [117,126].
Another autopsy series on 67 COVID-19 cases described the presence of vascular microthrombi in
multiple organs, particularly in the lungs (in 23/25 cases) where it was associated with capillary
sprouting and capillary inflammation, and in the brain (in 6/20 cases) where it was associated
with evidence of patchy acute infarcts [140]. As expected from vascular pathology that includes



Cells 2020, 9, 1583 9 of 30

inflammation, congestion, thrombosis, hemorrhage and endothelial cell death, the surrounding hypoxic
tissues had evidence of interstitial edema, damage, destruction, inflammation, fibrosis and vascular
regeneration [117,126].

4.3. Cytokines and Coagulation Profile in COVID-19

A retrospective study of 21 patients identified significant elevations of plasma IL-6, IL-10, TNFα
and IL-2 receptor in severe (n = 11) compared to moderate (n = 10) cases of COVID-19, whereas
IL-1β and IL-8 levels were not significantly different [141]. Expanding on these observations, another
study found that severely affected COVID-19 patients (n = 13) admitted to the intensive care unit
(ICU) not only had higher plasma levels of IL-10 and TNFα compared to less severely ill patients
not admitted to the ICU (n = 28) but also increased levels of IP-10, IL-2, IL-7, G-CSF, MCP1 and
MIP1A [3]. These and other studies have concluded that the core pro-inflammatory cytokines TNFα,
IL-1β, IL-6, G-CSF, GM-CSF as well as the chemokines MCP-1, IP-10 and MIP1α are elevated in patients
with COVID-19, with higher levels in those patients who are critically ill compared with those with
less serious illness [142]. When released rapidly, particularly from activated macrophages and in
abnormally large amounts, IL-6, TNFα and other pro-inflammatory cytokines can cause severe clinical
manifestations of high fevers, headache, low blood pressure, night sweats and multi-organ dysfunction
referred to as “cytokine release syndrome”. This syndrome is present in severe cases of COVID-19 and
is associated with a poor prognosis [141,143]; it was also found to be a principal cause of morbidity
in patients infected with SARS-CoV and MERS-CoV [144]. Not unique to coronavirus infections,
“cytokine release syndrome” is observed in other conditions, including patients with Castleman’s
disease during flares [145] and in patients receiving chimeric antigen receptor (CAR) T cells [146].

Patients with COVID-19 typically display hemostatic abnormalities consistent with the presence
of a severe coagulopathy that predisposes to thrombotic events and is directly correlated with disease
severity [147–149]. In a cohort of 183 patients with COVID-19, the 21 patients who died (11.5%) differed
from those who did not in having increased levels of D-dimer (a fibrin protein fragment; ~3.5-fold)
and other fibrin degradation products (~1.9-fold) [147]. In a group of 22 consecutive COVID-19
patients admitted to the ICU, increased fibrinogen and D-dimer plasma levels, shorter clotting time and
other coagulation abnormalities were significantly more frequent compared to healthy controls [149].
Consistent with the presence of a coagulopathy, deep vein thrombosis appears more frequently
than expected in hospitalized COVID-19 patients, even with anti-coagulant prophylaxis [149,150].
Vascular platelet-fibrin clots are a common finding in COVID-19 autopsies [136]. Also, among patients
who died with COVID-19, 71% met the International Society on Thrombosis and Haemostasis criteria
for disseminated intravascular coagulation (DIC), compared to only 0.6% of the survivors [151].

IL-6, often abnormally elevated in the circulation of patients with severe COVID-19, is a
pro-inflammatory cytokine produced by activated monocytes, macrophages, endothelial cells and
other cells that has pleiotropic effects and plays a critical role in hemostasis [152–154]. Acting on
hepatocytes, IL-6 promotes the synthesis of coagulation factors such as fibrinogen, tissue factor and
factor VIII [153,155,156]; acting on the bone marrow, IL-6 stimulates megakaryocyte differentiation
into platelets [157,158]; and acting on endothelial cells, IL-6 induces vascular permeability and other
effects by stimulating VEGF secretion [159–161]. Unlike Kaposi’s sarcoma-associated herpesvirus
encoded viral IL-6 [162] and p19 [163], which can directly activate gp130 signaling, cellular IL-6
requires binding to the IL-6R to stimulate gp130-Jak-STAT signaling [164]. Since soluble IL-6R is
abnormally elevated in the plasma of COVID-19 patients, presumably secondary to cleavage from the
cells surface by TACE/ADAM17 upon SARS-CoV-2 infection and the inflammatory response associated
with COVID-19 [29], IL-6 can activate most cells, including endothelial cells, which do not express
endogenous IL-6R but can be activated by the complex of soluble IL-6R and IL-6 [164,165].

An association between IL-6 and increased risk of vascular thrombosis and thromboembolism
(Figure 2) is supported by experimental results and observational studies [166,167]. In COVID-19,
adding to the blood clotting risk from increased IL-6, SARS-CoV-2 can infect, replicate and induce
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endothelial cell death, compromising the continuity of the luminal vascular surface; a perturbed
endothelium can actively participate in pro-coagulant reactions [168]. Also, as a consequence of
SARS-CoV-2 receptor binding and entry into any cells, cell surface ACE2 is reduced in association with
increased angiotensin II, which confers a pro-inflammatory, pro-coagulant and pro-apoptotic phenotype
to endothelial cells [50]. Thus, the mechanisms that sustain hemostatic abnormalities in COVID-19 are
complex. Not surprisingly, management has been debated. An international collaborative of clinicians
and investigators has recently reviewed general guidelines for the prevention and management of
thrombotic events in patients with COVID-19 [151].

5. Vascular Manifestations of COVID-19

This section describes key epidemiological, clinical and laboratory characteristics of COVID-19
with an emphasis on relationships between these characteristics and the underlying physiopathology.
Clinical and pathological manifestations of vascular involvement in SARS-CoV-2 are summarized in
Table 1.

Table 1. Clinical and pathological vascular manifestations in SARS-CoV-2 infection.

System Finding

Pulmonary

embolism
microthrombi

parenchymal infarcts
intussusceptive neovascularization

Gastrointestinal
bowel ischemia/infarction

thrombosis of portal/sinusoidal vessels occasional arterial thrombi
hepatic hemorrhages/necrosis

Central nervous system
stroke, transient ischemic attack

subcortical bleeds
microthrombi, ischemic infarcts

Cardiovascular
cardiomyopathy

venous thromboembolism

Skin erythema pernio-like lesions, i.e., “pseudo chilblains”

5.1. Demographics of COVID-19 Patients

In a meta-analysis combining the results of 147 studies on 20,662 Chinese patients [169], the mean
patient age was 49 years and 53% of patients were male. Of the 8,028 patients for whom data
was reported, 39% had one or more comorbidities, including hypertension (21%), diabetes (12%),
cardiovascular disease (9%) and cerebrovascular diseases (6%). In a study of 4,103 COVID-19 patients in
a single academic health system in NYC [170], the median age was 52 years and 51% were male; 15% had
diabetes, 27% obesity and 30% cardiovascular disease. In the same study, comorbidities were found to
be a powerful predictor of COVID-19-associated hospitalization. In a report from the Italian Institute
of Health [171] 68% of 3032 decedents with COVID-19 had hypertension, 30% diabetes, 28% ischemic
heart disease and 11% obesity; only 4% had no comorbidities. Hypertension, diabetes and obesity are
often associated with ACE2/Angiotensin 2 deregulation. SARS-CoV-2 infection further aggravates this
ACE2/Angiotensin 2 imbalance, which could suggest a specific role for these pre-existing conditions as
risk factors for COVID-19 morbidity and mortality.

5.2. Pulmonary Disease

In the large meta-analysis from China discussed above, the most common clinical manifestations
of COVID-19 were fever and cough, followed by fatigue, sputum production and shortness of
breath [169]. The most common imaging and laboratory findings included abnormal chest CT scans
(71 % ground-glass opacity and 30% consolidation), lymphopenia (48%), increased lactate dehydrogenase
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(42%), D-Dimer elevation (43%), and indicators of inflammation, including C-reactive protein and
erythrocyte sedimentation rate. The most frequent complication was acute respiratory distress syndrome
(ARDS) in 25% of cases. In a much smaller series of 24 patients with confirmed COVID-19 admitted
to the ICU in the Seattle area [172], the most common symptoms were cough and shortness of breath;
50% of the patients had fever on admission. The mean age was 64 years, 63% were men; 58% had
diabetes mellitus and 21% had chronic kidney disease. Chest radiography revealed bilateral pulmonary
opacities in all patients tested (23/23). Moderate-to-severe ARDS was observed in 75% of these patients.

The median time to development of ARDS ranged between 8 to 12 days from onset of symptoms,
with some COVID-19 patients progressing rapidly to ARDS [173]. A systematic search for pulmonary
emboli in 26 COVID-19 patients on mechanical ventilation showed that they were detected in 23%
(6/26) of patients, and venous thromboembolism (VTE) was detected in 69% (18/26) [174]. A lower
incidence of VTE (25%) was reported in severe COVID-19 patients in another study [175].

Results of 12 consecutive complete autopsies of patients with COVID-19 concluded that massive
pulmonary embolism was the cause of death in 4/12 cases and that VTE was present in 7/12 (58%)
patients [136]. Another report on 11 randomly selected COVID-19 autopsies described macroscopic
pulmonary thrombi in all cases with associated pulmonary infarcts in 9/11 autopsies [176]. Histologic
evaluation noted the presence of multiple thrombi in small and mid-sized pulmonary arteries with
evidence of parenchymal lung infarcts [176]. Similarly, thrombi/platelet aggregates were visualized
microscopically in capillaries, arterioles and medium sized arteries of most COVID-19 lungs (21/23) [140].
These studies highlight the importance of thromboembolism in the pulmonary manifestations of
COVID-19, either through embolization in the presence of VTE or through thrombotic events occurring
in the pulmonary arterial circulation.

Vascular thrombosis in the lung is not a unique to COVID-19 patients, as it is also observed in
patients who have been intubated for acute respiratory syndrome attributable to sepsis, toxic inhalation
and other causes [177]. However, a post-mortem study comparing the lungs of 7 patients deceased
from COVID-19 with the lungs of 7 patients deceased with ARDS attributable to influenza A and 10
uninfected control lungs [169] showed electron microscopy evidence that endothelial cells in COVID-19
lungs were infected with SARS-CoV-2 and displayed disrupted cell surface membranes and other signs
of injury. The pulmonary capillary vessels of COVID-19 tissues contained microthrombi and evidence
of intravascular (intussusceptive) neovascularization, which were more frequent than observed in the
influenza cases. It is therefore likely that pulmonary vascular injury and thrombosis reflect a specific
physiopathology of COVID-19.

5.3. Gastrointestinal Disease

Several studies have described the presence of abdominal symptoms, such as nausea, vomiting
and diarrhea in a variable proportion (5–50%) of patients who also had respiratory symptoms of
COVID-19 [178]. In a multicenter study of 318 patients with confirmed COVID-19 [179], 61% of
patients reported at least one gastrointestinal symptom on presentation, most commonly anorexia
(35%), diarrhea (34%) and nausea (26%). The patients with gastrointestinal symptoms tended to
be overweight or obese and had other comorbid conditions. Gastrointestinal symptoms were the
predominant complaint at presentation in 20% of patients and the only presenting symptoms of
COVID-19 in 14%.

Since SARS-CoV-2 can infect the epithelial cells on the luminal side of the small intestine and the
virus has been detected in stools and rectal swabs, gastrointestinal symptoms are potentially attributable
to viral infection and replication in the intestine. It is currently unclear whether SARS-CoV-2 can be
transmitted in rare instances via the fecal-oral route and can survive the low pH of the stomach and the
detergent effects of the bile salts in the small intestine [180]. The virus could alternatively spread to the
gut from the respiratory track through blood dissemination, but this is currently unconfirmed. Surgical
resection specimens from four patients with COVID-19 with severe abdominal symptoms showed
macroscopic evidence of bowel infarction or ischemia [181]. Histology of the specimens not only
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confirmed the presence of ischemic enteritis and patchy bowel necrosis but also showed the presence
of thrombi and perivascular inflammation in the submucosal arterioles. The vascular pathology was
considered causative of the bowel ischemia [181], raising the broader possibility that gastrointestinal
symptoms in COVID-19 may have a vascular pathogenesis.

Liver involvement is also a potential contributor to COVID-19 pathogenesis. Histopathology of
post-mortem wedge liver biopsies obtained in 48 COVID-19 cases showed evidence of intrahepatic
vascular abnormalities in all patients, including partial or complete luminal thrombosis of portal and
sinusoidal vessels, associated with portal vessel dilation, fibrosis and focal hepatic tissue hemorrhage
and necrosis [182]. The presence of thrombi involving the portal venules was observed in 15/22
autopsies, occasionally associated with thrombi in some hepatic arteries and arterioles [140].

5.4. Neurological Disease

Oxley et al. reported on a small case series of five 33 to 50-year-old patients who presented with
ischemic stroke during a two-week period (from March 23 to April 7, 2020) in a single center in New
York City, and who were subsequently diagnosed with SARS-CoV-2 infection [182]. Although three of
these patients had pre-existing risk factors for stroke, this incidence of stroke represented a seven-fold
increase over previous comparable periods [182]. In a subsequent prospective series over the following
month involving a group of New York City Hospitals [183], the age range of ten SARS-CoV-2-infected
patients presenting with stroke had broadened to include patients 27 to 75 years old. Although none of
these patients had pre-existing cerebrocardiovascular conditions, 8/10 had diabetes with or without
hypertension and/or other predisposing comorbidities.

In a retrospective single-center study in Brescia, Italy, among neurological patients admitted in
March, those diagnosed with COVID-19 (56 patients) were significantly more likely to have been
admitted for stroke and transient ischemic attack (TIA) than those without the diagnosis of COVID-19
(117 patients), perhaps in part because the COVID-19 patients were older [184]. It is important to note,
however, that a large study encompassing diverse areas of the United States reported a significant
overall decrease in stroke admissions in March 2020 compared to 2018 and 2019 that had been preceded
by a more modest increase in February. This decrease was potentially attributable to decreased
admissions for mild strokes [185]. In addition, a retrospective analysis on 214 patients hospitalized
with COVID-19 in Wuhan found that acute cerebrovascular disease was present in one of 126 patients
with non-severe COVID-19 and in five of 88 patients with severe COVID-19 [186]. A post-mortem
imaging study involving 19 patients who had died of COVID-19 disease showed subcortical bleeds
in 2/19 cases and edematous changes in the cortex/subcortical regions in 1/19 cases. The presence of
bleeds in these severe cases of COVID-19 suggested the occurrence of vascular pathology in these
patients [187]. Furthermore, histological examination of 20 brains from COVID-19 autopsies revealed
the presence of anoxic brain injury in two patients with the clinical diagnosis of stroke. In addition,
6/20 cases showed widespread microthrombi associated with evidence of patchy ischemic infarcts [140].
Diffuse microthrombi in the brain may underlie cognitive problems, headaches, and other symptoms
in patients with COVID-19 even after the apparent resolution of the disease [140].

Overall, the current results are not sufficient to support an association between SARS-CoV-2
infection and stroke. Additional autopsy evidence will be instrumental to investigate possible causal
relationship between SARS-CoV-2 infection and cerebrovascular pathology in COVID-19 patients,
regardless of neurologic presentation.

5.5. Myocardial Disease

Several observational studies have reported a significant reduction in the number of hospital
admissions for acute myocardial infarctions during the COVID-19 pandemic [188–191]. However,
cardiovascular disease is prevalent in patients with COVID-19; 7% of all patients and 22 % of severe
cases experienced myocardial injury [192]. Cases of cardiomyopathy have been reported in patients
with COVID-19 [143,193–195], raising the possibility that myocarditis-related cardiac events may be
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increased in COVID-19 [143,196,197]. Consistent with cardiomyopathy, COVID-19 autopsy reports
revealed the presence of a few mononuclear cell infiltrates in the myocardium, presumably recruited
from the circulation through inflamed capillaries, but no obvious histological changes in the heart
tissue [198]. In 3/25 cases, thrombi were detected in small epicardial vessels [140]. Cardiac biomarker
studies, particularly elevated troponin levels, have suggested a high prevalence of cardiac injury
in hospitalized COVID-19 patients [192,199,200]. In one study, atrial arrhythmias were commonly
detected in patients with severe COVID-19 [201].

Due to the paucity of data, the incidence and pathogenesis of cardiomyopathy in COVID-19,
particularly acute myocarditis, is currently unclear. However, cardiomyocytes are potential targets
of SARS-CoV-2 infection as they express ACE2. Also, genetic and pharmacological studies in
mice have shown that ACE2 regulates cardiac structure and function [202]; decreased ACE2 in
SARS-CoV-2-infected cardiomyocytes could disrupt these activities, particularly impairing cardiac
remodeling and increasing oxidative stress in cardiomyocytes [73]. In addition, genetic variants of
ACE2 have been linked to left ventricular hypertrophy [73,203], raising the possibility that ACE2 may
contribute to cardiovascular disease in COVID-19 beyond its role as a receptor for SARS-CoV-2.

5.6. Cutaneous Disease

In a prospective study involving 375 patients with confirmed or suspected COVID-19 during the
peak of the epidemic in Spain, various skin manifestations were observed [204]. The most distinctive
form, in 19% of patients, consisted of erythema-edema with some vesicles located on the extremities,
reminiscent of chilblains. These manifestations affected the younger patients, appeared later in the
course of mild forms of COVID-19 or in asymptomatic cases, and lasted about 10 days. Reports of
“pseudo-chilblains” have also emerged from other studies of COVID-19 patients [205,206]. In one such
case, the histology was similar to other chilblains of unknown cause, with edema of the papillary dermis
and perivascular/peri-eccrine lymphocytic infiltrates but no evidence of endothelial cell damage [207].
The most common manifestation (47%) consisted of non-distinctive maculopapular lesions, which
have many causes. A relatively rare manifestation (6%) in older and more severe COVID-19 patients
consisted of livedoid/necrotic lesions that were reminiscent of occlusive vascular disease [204].

5.7. Kawasaki-Like Syndrome/Multisystem Inflammatory Syndrome in Children (MIS-C)

Kawasaki disease (KD) is a rare inflammatory disease of medium size arteries throughout the
body that affects children usually under 5 years old, particularly children of Asian or Pacific Islander
descent. The cause or causes of KD are unknown. The symptoms include fever, red yes, skin rash,
swollen lymph nodes, abdominal pain, vomiting and diarrhea. Although most children recover
without sequelae, KD is a leading cause of acquired heart disease in children as it may be complicated
by inflammation of the coronary arteries and the heart muscle. SARS-CoV-2 infection can present with
a syndrome resembling KD. This manifestation came to light when 10 cases of KD-like disease were
diagnosed between March and April 2020 at the peak of the COVID-19 epidemic in Bergamo, Italy.
The number of cases represented a significant increase compared with 19 cases of KD diagnosed in
the previous five years at the same center [208]. SARS-CoV-2 serology (IgG or IgM antibodies) was
positive in 8/10 patients; in 2/8 serology-confirmed cases, viral RNA was also detected in nasal swabs.
The recent 10-case group differed from the 19-case historical group in mean patient age (7.5 versus
3 years, respectively), cardiac involvement (6/10 versus 2/19), the presence of “Kawasaki disease shock
syndrome” (5/10 versus 0/19), and evidence of “macrophage activation syndrome” (5/10 versus 0/19).
Confirming these results, a second study reported on 17 children (median age 7.5 years) admitted
with a syndrome resembling KD in Paris during an 11 days period, which represented a significant
increase over the previous year [209]. Fourteen of the patients had serological evidence of SARS-CoV-2
infection and seven also had viral RNA in nasopharyngeal swabs. Eleven/17 patients presented with
“Kawasaki disease shock syndrome” requiring intensive care support, and 12/17 had myocarditis.
All children recovered. At the onset, all had gastrointestinal symptoms and high levels of inflammatory
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markers. Given the apparent increase in the number of cases of KD-like syndrome in New York City
and in the United Kingdom, advisories have been issued by the US Centers for Diseases Control and
Prevention and the Royal College of Paediatrics and Child Health. The condition has been then named
Multisystem Inflammatory Syndrome in Children (MIS-C).

6. Insights into Factors that Precipitate Vascular Pathology in COVID-19

Autopsies of patients who have succumbed from COVID-19 provide strong evidence that the
vasculature in compromised in severe forms of the disease, as discussed in Section 4.2. Most commonly
in the lungs but also in other sites distant from the lungs, including the small bowel, brain, kidney, heart,
liver and skin, the vessels display a combination of thrombosis, hemorrhage, edema, inflammation,
endothelial cell death and intussusceptive vascular sprouting. This pathology of COVID-19 affects
arterial and venous blood vessels of various sizes and capillary beds but appears not to similarly
involve all tissues. The reason for this selectivity is unknown but may relate to the transcriptomic
diversity of endothelial cells in different organs and tissues [210]. It is possible that endothelial cells
differ in their expression of critical determinants of SARS-CoV-2 infectivity, such as ACE2 and TMPRSS2
(Sections 3.1 and 3.2), and other factors, such as responsiveness to inflammatory cytokines and ability
to regulate the coagulation cascade (Section 4.3).

An analysis of vascular pathology in COVID-19 must consider that SARS-CoV-2 can infect and
replicate in endothelial cells, as discussed in Section 4.1. Both endothelial cell infection and death have
been documented in tissues of COVID-19 patients. An important and unresolved question is how
frequently SARS-CoV-2 infects endothelial cells in patients and to which extent endothelial cell infection
is responsible for the vascular pathology. Related to the direct contribution of viral infection, we do not
know how SARS-CoV-2 reaches endothelial cells. Vascular pathology of COVID-19 is most prominent
in the lungs (Section 5.2), which is not unexpected since in COVID-19 the respiratory epithelium is the
site of primary SARS-CoV-2 replication with secondary destruction of the pulmonary parenchyma.
The proximity between the infected respiratory epithelium releasing the virus and endothelial cells
may favor local transmission. A similar situation may be operative in the small intestine (Section 5.3).
However, hematogenous dissemination of the virus (discussed in Section 4.1) is more likely to explain
the presumed presence of viral particles in the endothelial cells distant from the lungs, such as the
renal glomerulus. Viral RNA is detected in the plasma of a sizeable proportion of patients and in many
tissues, but we do not know whether infectious SARS-CoV-2 particles are present in the circulation.
Consistent with this, the blood supply has been considered safe during the COVID-19 pandemic.

Despite these limitations, it should be noted that viral infection of endothelial cells could drive
many aspects of the vascular pathology in COVID-19. First, SARS-CoV-2 can cause endothelial cell
death through lytic replication, as discussed in Section 4.1. Second, to infect cells, SARS-CoV-2 binds to
the cell surface ACE2 receptors, and in so doing compromises the vaso-protective functions of ACE2,
an enzyme that attenuates the vasoconstrictive, pro-inflammatory, pro-apoptotic, pro-thrombotic
and mitogenic effects of angiotensin II, as discussed in Section 4.2. The complex series of events
surrounding viral infection is expected to locally activate components of the innate immunity network
and compromise the integrity of the endothelial monolayer exposing the thrombogenic basement
membrane; this in turn can result in the activation of the coagulation cascade (Section 4.3). Thus,
by infecting endothelial cells SARS-CoV-2 would be expected to drive the characteristic vascular
pathology of COVID-19.

The systemic increase of pro-inflammatory cytokines in many patients with severe COVID-19
is likely another major contributor to the vascular pathology in COVID-19 (Section 4.3).
Monocyte/macrophage-lineage cells, a major cell source of many pro-inflammatory cytokines,
are numerically increased and phenotypically activated in many tissues of patients with severe
COVID-19 [140]. GM-CSF, often abnormally elevated in plasma of severe COVID-19 patients, likely
is a main contributor to this pathology, as GM-CSF promotes hematopoietic stem/progenitor cell
differentiation into monocytes in the bone marrow, their release into the circulation and their activation.
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Among other abnormally elevated cytokines in COVID-19, IL-6 stands out for its vascular pathogenic
potential (Section 4.3). Acting on hepatocytes, IL-6 promotes the synthesis of fibrinogen, tissue factor
and Factor VII. It also stimulates platelet production in the bone marrow. In addition, by promoting
VEGF-A secretion from various cell types, IL-6 induces vascular hyper-permeability and sprouting
angiogenesis. Thus, IL-6 can promote a pro-coagulant and pro-thrombotic vascular pathology, raising
the possibility that an abnormally high level of IL-6 may contribute to the vascular phenotype in severe
COVID-19. Yet, there are other diseases in which IL-6 is similarly elevated. In Castleman disease,
IL-6 is elevated in conjunction with TNFα, IL-1β and IL-10 as in severe COVID-19; however, vascular
manifestations are unusual in this condition [145]. Also, in patients receiving treatment with CAR-T
cells who develop a cytokine release syndrome, DIC is observed, if infrequently, but vasculitis and
other manifestations of vessel inflammation are not reported [211].

Despite current uncertainties regarding the relative contribution of SARS-CoV-2 infection and
inflammatory cytokines to the development of vascular pathology in COVID-19, pre-existing vascular
dysfunction attributable to hypertension-induced mechanical insults, metabolic-related stress and
predisposition to thrombosis would be expected to magnify the vascular pathology in COVID-19.
Consistent with this, epidemiological data indicate that old age, hypertension, diabetes mellitus and
obesity increase the risk for severe COVID-19 associated with vascular manifestations (Section 5.1).

Immune dysfunction is not known to play a role in typical COVID-19, except for the severe
lymphopenia in severe cases of COVID-19, which may relate to tissue recruitment of lymphocyte
and redistribution away from blood, and perhaps a low or delayed type I interferon response [212].
However, a potential role of immune dysfunction is suggested in the context of MIS-C observed in
children with evidence of prior COVID-19 infection. Although poorly understood, the inflammatory
manifestations and distinctive topology of the affected vessels raise the question of whether the
endothelial cells that reside in vascular beds affected by Kawasaki disease are distinctly programmed
to respond to systemic inflammation and to locally propagate auto-immune responses.

7. Approaches to the Prevention and Management of Vascular Manifestations in COVID-19

The key contribution of vascular pathology to the severity of COVID-19, particularly in patients
with defined pre-existing conditions, prompts the question whether vascular-targeted therapies could
be useful to reduce morbidity and mortality of COVID-19. A number of clinical studies are now
underway to test approaches (Table 1) to address the vascular component of the disease. These include
anti-coagulant drugs to prevent thrombotic and thromboembolic disease; anti-inflammatory agents,
such as steroids, interferon α2b, inhibitors of the JAK1/JAK2 kinases and of the Bruton tyrosine
kinase; IL-6 or IL-6R inhibitors to neutralize IL-6 activity; anti-angiogenic agents targeting VEGF and
angiopoietin 2; and renin-angiotensin-aldosterone system (RAAS) inhibitors. Some of these agents
have already entered clinical practice, such as pharmacologic prophylaxis of venous thromboembolism
for all hospitalized patients [151,213] and others have shown promise, especially steroids. Most of
the others are actively being investigated in controlled trials. It is important to appreciate that many
patients with pre-existing conditions receive a variety of drugs to control hypertension, coagulopathies
and other pathologies. Concern has emerged that ACE inhibitors and angiotensin-receptor blockers
(ARBs), which are commonly used to control hypertension, could increase the risk for SARS-CoV-2
infection because in some studies these drugs increased the expression of ACE2, the entry receptor
for SARS-CoV-2, in the heart and kidney [214]. However, other studies have shown that treatment
with ARBs may mitigate angiotensin II-mediated lung injury by blocking the AT1 receptors [215].
Similarly, the optimal management of COVID-19 patients with pre-existing thrombotic disease receiving
anti-thrombotic drugs remains to be defined [151]. Results from ongoing investigations will hopefully
resolve some of these controversies.

With the goal of developing effective strategies to prevent the occurrence of vascular disease or
treat it once it has developed, in our view it would be very important to identify patients at high risk for
serious vascular complications early in the course of their disease. We already know that risk factors
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for vascular complications include pre-existing vascular morbidities, evidence of high-level systemic
inflammation, and perhaps a high viral load (Section 5.1). Reducing the viral load and consequently
reduce the potential for endothelial cell infection could be of paramount importance. REGN-COV2,
a two-antibody cocktail to the SARS-CoV-2 spike protein, which is required for cell infection, has entered
clinical trials after having shown promising pre-clinical results in mice (NCT04315298). Immune serum
from patients who have recovered from COVID-19 generally blocks SARS-CoV-2 infection of target
cells and based on this property is currently FDA-approved for compassionate use in patients with
severe COVID-19. However, the effectiveness of immune serum is currently unclear and is under
investigation (NCT04321421). Recombinant human ACE2, the cell entry receptor of SARS-CoV-2,
has been shown to competitively neutralize SARS-CoV-2 infection of cells, including endothelial cells
in vitro. Currently, recombinant human ACE2 is being tested in initial trials (Table 2). In addition,
the antiviral drug, remdesivir, which has received Emergency Use Authorization for the treatment of
hospitalized patients with suspected or laboratory-confirmed, severe COVID-19 could also be beneficial
to reduce replication and release of infectious particles (NCT04292730).

Table 2. Investigational treatments with potential impact on vascular manifestations of COVID-19.

Class Drug/device Trial Registration Reference

Preprint PMID

Anticoagulants enoxaparin

NCT04406389
NCT04359277
NCT04427098
NCT04366960
NCT04377997
NCT04409834
NCT04400799
NCT04345848
NCT04401293
NCT04408235
NCT04373707

https://doi.org/10.1101/2020.03.28.20046144
https://doi.org/10.1101/2020.04.28.20082552
https://doi.org/10.1101/2020.05.30.20117929

32556875
32542212
32220112
32476080

argatroban NCT04406389 https://doi.org/10.1101/2020.05.30.20117929 32516429

Anti-inflammatory corticosteroids

NCT04359511
NCT04329650
NCT04360876
NCT04273321
NCT04355247
NCT04273321
NCT04344288
NCT04348305
NCT04331054
NCT04416399
NCT04374071
NCT04355637
NCT04357860

https://doi.org/10.1101/2020.04.07.20056390
https://doi.org/10.1101/2020.03.06.20032342
https://doi.org/10.1101/2020.04.21.20066258
https://doi.org/10.1101/2020.06.15.20131607
https://doi.org/10.1101/2020.05.11.20097709
https://doi.org/10.1101/2020.06.17.20133579
https://doi.org/10.1101/2020.05.08.20094755
https://doi.org/10.1101/2020.04.17.20069773
https://doi.org/10.1101/2020.04.17.20064469
https://doi.org/10.1101/2020.05.22.20110544

32546811
32496422
32514354
32430057
32441786

Interferons Interferon α2b NCT04379518 https://doi.org/10.1101/2020.04.06.20042580 32483527

TNF-α inhibitors infliximab NCT04425538 https://doi.org/10.1101/2020.05.21.20108696
https://doi.org/10.1101/2020.04.30.20086090

32554621
32452979

IL-1 inhibitors anakinra

NCT04362943
NCT04330638
NCT04366232
NCT04412291
NCT04362111
NCT04364009
NCT04339712
NCT04357366
NCT04324021
NCT02735707
NCT04341584

https://doi.org/10.1101/2020.06.16.20126714
https://doi.org/10.1101/2020.04.30.20086090

32501454
32438450
32437934
32437739
32422376
32411313
32376597

https://doi.org/10.1101/2020.03.28.20046144
https://doi.org/10.1101/2020.04.28.20082552
https://doi.org/10.1101/2020.05.30.20117929
https://doi.org/10.1101/2020.05.30.20117929
https://doi.org/10.1101/2020.04.07.20056390
https://doi.org/10.1101/2020.03.06.20032342
https://doi.org/10.1101/2020.04.21.20066258
https://doi.org/10.1101/2020.06.15.20131607
https://doi.org/10.1101/2020.05.11.20097709
https://doi.org/10.1101/2020.06.17.20133579
https://doi.org/10.1101/2020.05.08.20094755
https://doi.org/10.1101/2020.04.17.20069773
https://doi.org/10.1101/2020.04.17.20064469
https://doi.org/10.1101/2020.05.22.20110544
https://doi.org/10.1101/2020.04.06.20042580
https://doi.org/10.1101/2020.05.21.20108696
https://doi.org/10.1101/2020.04.30.20086090
https://doi.org/10.1101/2020.06.16.20126714
https://doi.org/10.1101/2020.04.30.20086090
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Table 2. Cont.

Class Drug/device Trial Registration Reference

Preprint PMID

IL-6 inhibitors

tocilizumab

NCT04322773
NCT04345445
NCT04381936
NCT04409262

https://doi.org/10.1101/2020.05.01.20078360
https://doi.org/10.1101/2020.06.13.20130088
https://doi.org/10.1101/2020.05.29.20117358
https://doi.org/10.1101/2020.06.06.20122341
https://doi.org/10.1101/2020.06.08.20125245
https://doi.org/10.1101/2020.05.14.20099234
https://doi.org/10.1101/2020.06.05.20113738
https://doi.org/10.1101/2020.05.07.20094599

32557206
32553536
32515499
32482597

siltuximab NCT04329650 https://doi.org/10.1101/2020.04.01.20048561

olokizumab NCT04380519

sarilumab

NCT04315298
NCT04386239
NCT04357808
NCT04341870
NCT04357860
NCT04359901
NCT04327388
NCT04324073

https://doi.org/10.1101/2020.05.14.20094144 32472703

JAK1/JAK2
inhibitors

ruxolitinib NCT04366232
NCT04374149 - 32555296

32470486

baricitinib

NCT04321993
NCT04399798
NCT04340232
NCT04401579
NCT04362943
NCT04421027
NCT04373044
NCT04390464
NCT04393051
NCT04358614
NCT04320277
NCT04399798
NCT03852537

- 32333918

Bruton tyrosine
kinase Inhibitors

acalabrutinib NCT04346199 - 32503877

ibrutinib NCT04375397 - 32302379

RAAS* drugs

recombinant
human ACE2

NCT04287686
NCT04335136 - -

angiotensin II NCT04408326 - -

ACE inhibitors NCT04345406
NCT04322786

https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856

32511678
32511473
32501480

angiotensin II
receptor blockers

(ARBs)

NCT04337190
NCT04340557
NCT04408326

https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856

32511678
32511473
32501480

-

angiotensin
peptide 1–7

NCT04375124
NCT04332666

https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856

32511678
32511473
32501480

-
-

https://doi.org/10.1101/2020.05.01.20078360
https://doi.org/10.1101/2020.06.13.20130088
https://doi.org/10.1101/2020.05.29.20117358
https://doi.org/10.1101/2020.06.06.20122341
https://doi.org/10.1101/2020.06.08.20125245
https://doi.org/10.1101/2020.05.14.20099234
https://doi.org/10.1101/2020.06.05.20113738
https://doi.org/10.1101/2020.05.07.20094599
https://doi.org/10.1101/2020.04.01.20048561
https://doi.org/10.1101/2020.05.14.20094144
https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856
https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856
https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856
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Table 2. Cont.

Class Drug/device Trial Registration Reference

Preprint PMID

Angiogenesis
inhibitors

bevacizumab
NCT04305106
NCT04344782
NCT04275414

https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856

32511678
32511473
32501480

-

LY3127804 NCT04342897 -
-

-
-

Cytokine
removal

CytoSorb
NCT04344080
NCT04391920
NCT04324528

Plasma exchange NCT04374149
NCT04374539 - 32510799

32453903

* RAAS: renin-angiotensin-aldosterone system.

When present at abnormally high levels, IL-6 in conjunction with soluble IL-6R compromises
endothelial cells and the vasculature in experimental conditions (Section 4.3), and IL-6 peak levels
mark disease severity in COVID-19. Drugs that inhibit IL-6, IL-6R and JAK signaling (activated by IL-6
family members) are FDA-approved for the treatment of rheumatoid arthritis and other inflammatory
conditions and are currently being evaluated in patients with COVID-19 (Table 2). There are complexities
with the targeting of IL-6 in COVID-19. IL-6 is a multifunctional cytokine, which activates many cell
types by distinct mechanisms and with different outcomes. A key factor is whether the IL-6R is soluble
or cell-associated; and if cell-associated, whether the IL-6R is positioned in cis or trans relative to
the transmembrane gp130 signaling mediator (Section 4.3). Endothelial cells usually do not express
IL-6R but can respond to IL-6 when IL-6 is bound to either soluble IL-6R or to IL-6R present on the
cell surface of another cell. This biochemical complexity is mirrored by the functional complexity and
conflicting biological activities of IL-6 [216]. Besides its well-known role as a pro-inflammatory cytokine,
IL-6 has been shown to have an anti-inflammatory role in myeloid cells by priming expression of
IL-4RA and thereby changing their pro-inflammatory phenotype to an “alternative”, anti-inflammatory
phenotype [217]. IL-6 also has an insulin-sensitizing and anti-inflammatory effect in response to
physical exercise [218]. Because of these complexities, an indication for the use of drugs that neutralize
IL-6 activity in COVID-19 will depend upon the results from controlled trials.

Appreciation of the central role of vascular pathology in COVID-19 prompts consideration of
drugs that more specifically target the endothelium. IL-6 induces VEGF-A production, which promotes
vascular hyper-permeability and vascular sprouting that are manifestations of the vasculopathy in
COVID-19 (Section 4.3). VEGFA and VEGFR-neutralizing drugs are approved for use as anti-angiogenic
agent in certain cancers and age-related macular degeneration. Clinical trials are underway to evaluate
anti-VEGF drugs in COVID-19 (Table 2). The undesirable, if rare, adverse effects of VEGF/VEGFR
targeting, which include hypertension and thromboembolic events, will need to be part of risk-benefit
assessment in patients with COVID-19 who are predisposed to thrombotic events. Besides VEGF-A,
another essential vascular regulator, angiopoietin 2, is currently being considered as a therapeutic target
in COVID-19 (Table 2). The rationale for this approach is that circulating levels of angiopoietin-2 (ANG2)
are abnormally elevated in severe COVID-19 patients [219]. This is consistent with the observation
that inflammatory signals induce the rapid release of ANG2 from endothelial cells, particularly in the
presence of TNFα, and that ANG2 inhibitors can reduce vessel inflammation [220].

Although currently speculative, identification of patients at high risk for developing vascular
complications of COVID-19, early intervention to reduce viral load, and incorporation of vascular-specific
drugs outline a rational approach to the prevention and treatment of vascular pathology in severe
COVID-19 to be validated in controlled studies.

https://doi.org/10.1101/2020.04.28.20078071
https://doi.org/10.1101/2020.04.07.20056788
https://doi.org/10.1101/2020.06.11.20125849
https://doi.org/10.1101/2020.04.23.20076661
https://doi.org/10.1101/2020.03.31.20038935
https://doi.org/10.1101/2020.04.24.20077875
https://doi.org/10.1101/2020.05.19.20106856
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8. Concluding Remarks

In the span of just a few months, much has been learned about SARS-CoV-2, how it infects cells,
and how it is so efficiently transmitted from person-to-person. Much less is clear about the spectrum
of COVID-19 disease and the underlying mechanisms of the clinical manifestations attributable to
SARS-CoV-2 infection, ranging from asymptomatic infection, disease localized to the upper respiratory
tract, systemic disease, and fatal illness. One of the unifying links in many manifestations of SARS-CoV-2
infection is the systemic pro-inflammatory and pro-coagulant phenotype, associated with vascular
thrombosis in arteries, veins, and capillaries and blood vessels inflammation. Pulmonary embolism,
intestinal ischemia, vasculitis are serious manifestations of COVID-19 that are now coming increasingly
into focus. This review represents an effort to explore the mechanistic aspects underlying vascular
pathology in COVID-19. We highlight the essential contribution of SARS-CoV-2, which can infect
and replicate in endothelial cells, in addition to other cells, and the predicted role of ACE2, the cell
surface receptor of SARS-CoV-2, in creating an imbalance where increased angiotensin II promotes
vasoconstriction and vascular inflammation. Systemic inflammation in COVID-19 patients is a
participant effector that magnifies vascular pathology, as it includes the pro-coagulant mediators IL-6
plus IL-6R, which induce the vascular-permeability effector VEGFA.
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