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Precision of quantitative computed tomography
texture analysis using image filtering
A phantom study for scanner variability
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Abstract
Quantitative computed tomography (CT) texture analyses for images with and without filtration are gaining attention to capture the
heterogeneity of tumors. The aim of this study was to investigate how quantitative texture parameters using image filtering vary
among different computed tomography (CT) scanners using a phantom developed for radiomics studies.
A phantom, consisting of 10 different cartridges with various textures, was scanned under 6 different scanning protocols using

four CT scanners from four different vendors. CT texture analyses were performed for both unfiltered images and filtered
images (using a Laplacian of Gaussian spatial band-pass filter) featuring fine, medium, and coarse textures. Forty-five regions
of interest were placed for each cartridge (x) in a specific scan image set (y), and the average of the texture values (T(x,y))
was calculated. The interquartile range (IQR) of T(x,y) among the 6 scans was calculated for a specific cartridge (IQR(x)), while the IQR
of T(x,y) among the 10 cartridges was calculated for a specific scan (IQR(y)), and the median IQR(y) was then calculated for the
6 scans (as the control IQR, IQRc). The median of their quotient (IQR(x)/IQRc) among the 10 cartridges was defined as the variability
index (VI).
The VI was relatively small for the mean in unfiltered images (0.011) and for standard deviation (0.020–0.044) and entropy

(0.040–0.044) in filtered images. Skewness and kurtosis in filtered images featuring medium and coarse textures were relatively
variable across different CT scanners, with VIs of 0.638–0.692 and 0.430–0.437, respectively.
Various quantitative CT texture parameters are robust and variable among different scanners, and the behavior of these

parameters should be taken into consideration.

Abbreviations: 3D = three-dimensional, CT = computed tomography, CTDIvol = a volume computed tomography dose index,
FOV= field of view, IQR= interquartile range, NSCLC= nonsmall cell lung cancer, R(x,y) = robust z score for texture parameters for a
specific cartridge with a specific scan, ROI = region of interest, SD = standard deviation, SSF = spatial scaling factor, T(x,y) = texture
parameters for each cartridge of the phantom in a specific scan, VI = variability index.
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1. Introduction

Cancers are heterogeneous, and several cancer subtypes arise
within a particular organ. Specific cancers are genetically
heterogeneous,[1] and such heterogeneity causes resistance to
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treatment. The use of medical images plays an important role in
the evaluation of cancers. Information such as the size, border,
shape, and texture of the tumor can be evaluated using medical
images. However, many of these features, excluding size, have
previously been evaluated in subjective or qualitative manners
and have not been sufficient to properly capture the heterogeneity
of cancers.[3] Radiomics, the process by which a large amount of
quantitative information is extracted from medical images, has
recently gained attention. This process is expected to offer
discrimination between intratumoral or intertumoral heteroge-
neity and the longitudinal monitoring of tumors.[3–6]

Texture is an important feature of a tumor. Several methods
are now available to analyze a tumor’s texture quantitatively.[5,7]

Alongside the promising aspects of quantitative assessment,
attention should be paid to the issue of scanner variability in
relation to the parameters, including tube voltage, tube current,
pixel resolution, and etc. Although radiologists are accustomed
to differences in image quality across different protocols or
scanners in visual assessment, quantitative texture parameter
values are affected directly by scanner variance.[4] The effect of
this variability on several parameters has already been
investigated for unfiltered computed tomography (CT) images.
According to Mackin et al,[8] some quantitative texture
parameters without filtering are susceptible to differences in
scanning protocols or CT scanners. Thus, the quantification of
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heterogeneity must take into account the potential impact of
variation in CT image acquisition parameters.[9]

Recently, studies regarding the texture based on histogram
analyses in images processed with Laplacian of Gaussian filter
have been reported. Some clinical studies have reported the
usefulness of features in filtered images in association with the
differentiation of tumor subtypes,[10–12] survival of patient with
tumors,[13,14] and assessment of the efficacy of treatments on
tumors.[15] Use of Laplacian of Gaussian filter is associated with
image noise reduction and can improve the utility of the
heterogeneity measures.[16] However, through image filtration,
the degree of scanner variability in each texture parameter has not
been investigated until now.
How parameters derived from histogram analyses in images

with and without filtration are affected by different scanners in
standard-of-care scanning protocols is indispensable for near
future radiomics era. And a phantom study would be preferable
for assessing these issues; because patient anatomy would change
between CT scans, and several scans are associated with
increased radiation exposure to patients.
In view of this, we aimed to investigate the degree to which

the results of quantitative texture analysis using image
filtering are affected by differences in CT scanners using a
phantom with various texture features developed for the study of
radiomics.
2. Materials and methods

This study investigated the variability of quantitative texture
analyses among CT scanners using a phantom and did not
require institutional review board approval.
2.1. Phantom

The phantom used in this study was comprised of 10 different
cartridges (See Supplemental Fig. 1, http://links.lww.com/MD/
B708 which shows the positioning process of the phantom in CT
scan) representing wide range of textures found in human tissues.
It was created for the purpose of image texture analysis and was
used in a previous study.[8] The size of each cartridge was 10.1�
10.1�3.2cm3. The 10 cartridges consisted of the following
components: cartridge A, three-dimensional (3D) printed
acrylonitrile butadiene styrene plastic with a fill level of 50%;
cartridge B, 3D printed acrylonitrile butadiene styrene plastic
with a fill level of 40%; cartridge C, 3D printed acrylonitrile
butadiene styrene plastic with a fill level of 30%; cartridge D, 3D
printed acrylonitrile butadiene styrene plastic with a fill level of
20%; cartridge E, a block of natural sycamore wood; cartridge F,
Table 1

Information regarding the cartridges.

Cartridge Materials

A Acrylonitrile butadiene styrene plastic Air-filled holes o
B Acrylonitrile butadiene styrene plastic Air-filled holes o
C Acrylonitrile butadiene styrene plastic Air-filled holes o
D Acrylonitrile butadiene styrene plastic Air-filled holes o
E Sycamore wood
F Rubber Speckled textur
G Natural cork Standard densit
H Polymethyl methacrylate Very little textur
I Dense cork High density
J Solid block of zp 150 power bonded with Colorbond Barely visible te
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compressed and glued rubber particles; cartridge G, natural cork;
cartridge H, solid acrylic; cartridge I, dense cork; and cartridge J,
3D printed solid material made of a plaster-based power held
together by resin (See Supplemental Fig. 2, http://links.lww.com/
MD/B708 which shows the images of cartridges of the phantom).
A 3D printer (MakerBot Replicator 2 3D; MakerBot Industries
LLC, Brooklyn, NY) (for cartridges A–D), a proprietary bonding
agent (Ecoborder, Tampa, FL) (for cartridge F), and Colorbond
(3D Systems, Inc., Rock Hill, SC) (for cartridge J) were used to
create some of these cartridges. Further information regarding the
cartridges is provided in Table 1.
2.2. CT image acquisition

Six CT scans were performed using 4 different CT scanners:
scan T1, Aquilion ONE (Toshiba Medical Systems, Tochigi,
Japan) at hospital A; scan G1, Discovery CT750 HD (GE
Healthcare, Waukesha, WI) at hospital A; scans P1 and P2,
Brilliance 64 (Philips Healthcare, Best, The Netherlands) at
hospital B; and scans S1 and S2, SOMATOMEmotion (Siemens
Healthcare, Forchheim, Germany) at hospital C. The phantom
was placed such that its center was the same as the isocenter of
the CT scanner and the long axis of the phantom perpendicular
to the gantry (See Supplemental Fig. 1, http://links.lww.com/
MD/B708 which shows the positioning process of the phantom
in CT scan). All scans were performed using a helical mode. A
tube voltage of 120 kVpwas used in all scans except for S1 (110
kVp) and S2 (130 kVp), because 120 kVp could not be usedwith
this scanner. A fixed tube current was used, and the effective
tube current (= (tube current)� (gantry rotation time)/(pitch))
was 115–180 mAs for all 6 scans. The tube current may not be
strictly identical across the different hospitals in daily
clinical practice, even if the same scanner is used. To reflect
this, 2 different levels were used with the Brilliance 64 scanner:
scan P1 (120 mAs) and scan P2 (160 mAs). For image
reconstruction, the field of view (FOV)was set to be identical for
all scans (300mm). For the reconstruction algorithm, a filtered
back projection was used for all scans. In addition, kernels for
soft tissue (FC03 for scan T1, standard for scan G1, B for scans
P1 and P2, and B41 s medium + for scans S1 and S2) were used
for all scans. Further information regarding the scanning
parameters and image reconstruction parameters for the 6 scans
are provided in Table 2.
2.3. Image analysis

The CT images were analyzed by a radiologist (K.Y., with 6 years
of imaging experience) using quantitative texture analysis
Further information

f 0.9mm, fabricated using a three-dimensional printer
f 1.0mm, fabricated using a three-dimensional printer
f 1.4mm, fabricated using a three-dimensional printer
f 6.0mm, fabricated using a three-dimensional printer

e, made from shredded tires using a proprietary bonding agent, density of 0.93 g/cm3

y
e, density of 1.1 g/cm3

xture, highest average density of 1.5 g/cm3
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Table 2

Scanning and reconstruction parameters for each scan.

Scan Scanner
Tube

voltage, kVp
Effective tube
current, mAs

Rotation
time, s

Detector
configuration Pitch

CTDIvol,
mGy

Slice
thickness, mm

Kernel for
reconstruction

T1 Aquilion ONE 120 180 0.5 0.5 mm�80 0.8125 10.3 3 FC03
G1 Discovery CT750 HD 120 131 0.5 0.625 mm�64 1.375 10.1 2.5 Standard
P1 Brilliance 64 120 120 0.5 0.625 mm�64 0.891 15.3 2.5 B
P2 Brilliance 64 120 160 0.5 0.625 mm�64 0.891 20.4 2.5 B
S1 SOMATOM Emotion 110 118 0.6 0.6 mm�16 0.5 9.5 3 B41s medium +
S2 SOMATOM Emotion 130 115 0.6 0.6 mm�16 0.5 14.4 3 B41s medium +

CTDIvol= volume computed tomography dose index, effective tube current = (tube current)� (gantry rotation time)/(pitch).
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software (TexRAD; TexRAD Ltd., part of Feedback Plc.,
Cambridge, UK). Texture analyses using this software comprised
two stages. First, images were processed using Laplacian of
Gaussian spatial band-pass filters with different spatial scaling
factors (SSFs). In this study, unfiltered images (we describe such
images as having an SSF of 0mm hereafter) and filtered
images with SSFs of 2, 4, and 6mm were included for analysis.
Texture parameters in filtered images with SSFs of 2mm, 4mm,
and 6mm indicate fine, medium, and coarse textures, respective-
ly. Second, histogram analyses were performed for both
unfiltered and filtered images. In these analyses, the parameters
of the mean, standard deviation (SD) (width of the histogram),
entropy (indicator of irregularity), skewness (asymmetry of the
histogram), and kurtosis (pointiness of the histogram) were
measured. [9] Hereafter, we describe these parameters in images
with or without filtering by adding the SSF values after the name
of the parameter (e.g., the mean in unfiltered images as mean0
and entropy in filtered images with SSF of 4mm as entropy4).We
placed nine square regions of interest (ROIs) with a size of
approximately 2�2cm2 per single image slice. ROIs were
established for five image slices per cartridge. Thus, 45ROIswere
placed for each cartridge. To ensure that the size and location of
the ROIs were identical across different slices and scans, the copy
and paste function was used.Measurements of the 45 ROIs were
averaged to obtain texture parameters (T(x,y)) for each cartridge
(x) of the phantom in a specific scan (y). For ease of understanding
Figure 1. Boxplots for entropy2. (A) For each cartridge of the phantom, interquartil
scans are described as a box, a thick line, and a whisker, respectively. (B) For eac
entropy2 among 10 phantoms are described as a box, a thick line, and a whisker, r
to calculate variability index. IQR = interquartile range.
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the following statistics, an example of data is shown in Fig. 1. To
evaluate scanner variability, the interquartile range (IQR) of T(x,
y) among the 6 scans (IQR(x)) was calculated for each cartridge
of the phantom. IQR(x) is highly dependent on the value of T(x,
y). Therefore,we used the variability of T(x,y) across the different
cartridges as a control to establish the index for evaluation of
scanner variability across the different types of parameters. For
each scan, the IQR of T(x,y) among the 10 different cartridges
(IQR(y)) was calculated, and themedian value of IQR(y) for the 6
scans (using this IQRas a control, IQRc)was then calculated. The
scanner variability index for a cartridge of the phantom (VI(x))
was defined by dividing IQR(x) by IQRc. The median VI(x) was
calculated among the 10 cartridges and was defined as the
variability index (VI) for a specific parameter.
A robust z score (R(x,y)) for T(x,y) for a specific cartridge with

a specific scan was calculated as follows [17–19]:

R(x,y) = (T(x,y) – T(x))/(0.7413� IQR(x)),

where T(x) represents the median T(x,y) among the 6 scans for
a specific cartridge. The IQR(x) multiplied by 0.7413 provides a
normalized IQR for T(x,y) among the 6 scans for a specific
cartridge. The number of 0.7413 is derived from the fact that the
50% of the data (from the 25th percentile to the 75th percentile)
exist within the range of

Mean±0.6745�SD
e ranges (IQR(x)), median, and maximum/minimum values of entropy2 among 6
h scan, interquartile ranges (IQR(y)), median, and maximum/minimum values of
espectively. Median value of IQR(y) for the 6 scans (IQRc) was used as a control
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Table 3

Median of the texture parameters among all scans for each phantom cartridge.

Cartridges of the phantom
A B C D E F G H I J

Mean
0 �625 �685 �750 �825 �504 �68 �508 115 �680 508
2 �0.18 �0.02 0.14 0.23 �1.97 �1.70 0.09 �0.91 0.48 �3.34
4 �0.98 �0.43 0.15 0.53 �6.21 �5.55 �1.38 �3.57 0.31 �13.2
6 �2.22 �1.18 0.14 0.79 �11.3 �10.2 �3.56 �8.12 �0.34 �29.4

SD
0 53.4 80.1 103.7 119.1 22.1 95.4 44.6 5.1 31.6 26.2
2 11.4 7.5 32.7 244.1 29.8 260.4 142.0 9.4 96.7 41.2
4 5.5 4.0 4.0 3.7 49.5 145.2 90.0 4.4 69.4 27.4
6 4.7 3.2 3.7 2.9 61.8 92.8 63.6 3.5 49.9 35.9

Entropy
0 5.15 5.50 5.72 5.74 4.15 5.71 5.09 3.04 4.76 4.58
2 3.81 3.38 4.81 6.28 4.56 6.39 6.02 3.62 5.73 5.02
4 3.06 2.73 2.72 2.66 4.83 6.02 5.67 2.83 5.45 4.57
6 2.83 2.47 2.62 2.38 4.95 5.67 5.34 2.53 5.13 4.75

Skewness
0 �0.47 �0.58 �0.37 0.19 0.01 �0.42 0.05 0.01 0.24 0.18
2 �0.07 0.01 �0.14 �0.62 0.18 �0.18 0.08 0.01 0.07 0.07
4 �0.09 0.02 0.03 0.06 0.27 0.00 �0.06 �0.02 0.03 0.06
6 �0.13 �0.15 �0.27 �0.12 0.02 �0.04 �0.03 �0.02 0.02 �0.05

Kurtosis
0 �0.63 �0.63 �1.05 �1.26 �0.25 0.53 0.07 �0.01 0.74 �0.21
2 �0.09 0.17 �0.67 �0.62 0.16 0.34 0.05 �0.05 0.17 �0.50
4 �0.32 �0.05 �0.22 �0.15 �0.58 �0.01 �0.15 �0.14 �0.19 �0.41
6 �0.40 �0.24 0.09 �0.17 �0.08 �0.30 �0.43 �0.40 �0.38 �0.62

SD= standard deviation.
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for a data set which follows normalized distribution.
Therefore, the following formula hold true for such data set:

IQR = 2�0.6745�SD
, SD = IQR/1.3489 = 0.7413� IQR

Like the z score, the absolute value of R(x,y) indicates the extent
to which T(x,y) differs from the median value among the different
scans. Using robust z scores, hierarchical cluster analyses were
performed for parameters in unfiltered and filtered images.
Table 4

Scanner variability index for each texture parameter.

SSF0 SSF2 SSF4 SSF6

Mean 0.011 0.146 0.097 0.099
SD 0.134 0.044 0.020 0.026
Entropy 0.108 0.040 0.044 0.040
Skewness 0.092 0.166 0.638 0.692
Kurtosis 0.074 0.068 0.437 0.430

SD= standard deviation, SSF= spatial scaling factor.
3. Results

The T(x) for each cartridge of the phantom is described in
Table 3. The 10 cartridges had various textures in unfiltered CT
images, with mean0 varying from �825 (cartridge D) to 508
(cartridge J), SD0 from 5.1 (cartridge H) to 119.1 (cartridge D),
entropy0 from 3.04 (cartridge H) to 5.74 (cartridge D),
skewness0 from �0.58 (cartridge B) to 0.24 (cartridge I), and
kurtosis0 from �1.26 (cartridge D) to 0.74 (cartridge I).
The VI values are shown in Table 4. For mean0, SD2, SD4,

SD6, entropy2, entropy4, and entropy6, the VI was less than
0.05. The VI value for the mean was small in the unfiltered image
(mean0) compared with those in the filtered images (mean2,
mean4, and mean6) (0.097–0.146). In terms of SD and entropy,
the VI values were small in filtered images (SD2, SD4, SD6,
entropy2, entropy4, and entropy6) compared with those in the
unfiltered image (SD0 and entropy0) (0.108–0.134). For
skewness and kurtosis in the processed images (with image
filtration featuring medium to coarse textures), the VI was
relatively large (0.638–0.692 and 0.430–0.437, respectively).
The VI(x) for each cartridge of the phantom is described as a

color map in Fig. 2. In some cartridges, VI(x) was larger than 1 for
4

skewness4, skewness6, kurtosis0, kurtosis4, and kurtosis6. This
indicates greater scanner variability than the variability of different
objects regarding these parameters. Mean0, SD6, entropy2,
entropy4, and entropy6 were relatively robust for all cartridges.
Hierarchical clustering dendrograms and values for R(x,y) as a

color map are presented in Fig. 3 and Fig. 4, respectively. Tube
voltage had relatively large effect on mean0 compared with
scanner variability (Fig. 3A). However, for other parameters
including SD0, the effects of tube voltage and tube current were
relatively small compared with that of scanner variability
(Fig. 3B–J). All R(x,y) values for mean0, SD0–6, and entropy0–6
were within the range �3.0 to 3.0 (Fig. 4). In terms of mean 2–6,
skewness and kurtosis, some values of R(x,y) were considerably
different from T(x), with a robust z score greater than 3.0 or less
than�3.0 (Fig. 4). For mean 2–6, T1 tended to show high values
compared with other scanners.

4. Discussion

CT texture analyses using filtered images have been gaining
attention, as they reportedly provide clinically useful
information.[10–15] However, for such studies, how quantitative



Figure 2. Color map of the scanner variability for each phantom cartridge (VI(x)). Columns indicate the 10 cartridges. The dark and light blue colors indicate VI(x)
values of less than 0.05 and 0.05–0.1, respectively. Light, medium, and dark red colors indicate VI(x) values of 0.2–0.33, 0.33–1.0, and greater than 1.0,
respectively.
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texture parameters differ among CT scans and whether the
reported study results could be directly applicable to clinical
situations have been unclear.We found that the mean in unfiltered
images and the entropy and SD in filtered images were relatively
robust among different scanners. However, the skewness and
kurtosis infiltered imageswithmedium to coarse SSFwere variable
across different scanners. Our data would help radiologists in
applying results of articles regarding histogramanalyses for images
with and without filtration to clinical settings, and would help
researchers conducting studies with this technique in designing the
studies and in interpretation of data.
Several different methods are available for quantitative texture

analysis.[5,7] One such method is based on histogram analysis of
values from each pixel, and several parameters, such as the mean,
SD, entropy, skewness, and kurtosis, are measured. This type of
method, termed first-order statistics, does not take the relationships
between neighboring pixels into account. With higher order
statistics, texture is analyzed by comparing neighboring pixels for
similarity and dissimilarity, and parameters such as busyness and
coarseness are calculated.[7] A further method, which analyzes
texture for filtered (using Laplacian of Gaussian filter) as well as
unfiltered images,[20] enables theanalysisoffine tocoarse textures. In
this study, we evaluated scanner variability using this latter method.
5

The texture parameter of SD indicates variance from the mean
value of the grayscale. For unfiltered images, this parameter is
usually used as an indicator of image noise if measured in
theoretically homogeneous areas. Therefore, in general, the
value of SD0 is thought to be affected by image noise in
addition to differences among CT scanners. Image noise itself is
affected by tube current. In this study, two tube current levels were
used for theBrilliance 64 scanner. Fromcluster analyses, the effect of
small difference of tube current on SD0 was found to be relatively
small compared with that of scanner variability in this study.
The SD in filtered images was less variable compared with that

in unfiltered images. A Gaussian filter uses a weighted average
using a normal distribution type weighting factor and renders
images smooth. A Laplacian filter uses secondary differentiation
of the grayscale of pixels and identifies edges. A Laplacian of
Gaussian filter, which was convolved with the original image in
this study, has a circularly symmetric “Mexican hat”-like
distribution.[7] It is possible that the effects of image noise were
reduced in filtered images, and this might have resulted in reduced
variance in the SD of filtered images among different scanners.
Entropy is an indicator of inhomogeneity, and its clinical

relevance has been reported in other studies.[12–15] Entropy in
filtered images was relatively less variable compared with that in

http://www.md-journal.com


Figure 3. Hierarchical clustering dendrograms for parameters in unfiltered and filtered images. Note that the S1 and S2 or P1 and P2 are clustered closest for all
dendrograms indicating that the effect of tube current (P1 vs P2) and tube voltage (S1 vs S2) on parameters is relatively small compared with that of computed
tomography scanner, except for mean0 (A).

Yasaka et al. Medicine (2017) 96:21 Medicine
unfiltered images. The behavior of this parameter across
unfiltered and filtered images was similar to that of the SD.
Therefore, entropy might also be affected by photon noise, the
effect of which might have been reduced by image filtering.
The mean in unfiltered CT images (i.e., mean0) is equal to the

average CT attenuation within the ROI. Tube voltage alters CT
attenuation. Because of the limitation of the scanner itself, a
different tube current was used for scan S1 (110 kVp) and scan S2
(130 kVp). And because evaluation of the effect of special
6

protocols, such as reduced tube voltage (e.g., 80 kVp) or
aggressive tube current reduction on quantitative texture
analysis, was not the main theme of this study, the difference
in tube voltage from that used normally (120 kVp) was kept
minimal. This small difference of tube voltage was actually found
to have relatively large effect on mean0 compared with scanner
variations. CT attenuation also varies when the tube current is
reduced aggressively (a volume CT dose index [CTDIvol] level
less than 1mGy),[21,22] while a small difference in the tube current



[23]

Figure 4. Color maps of the robust z scores (R(x,y)) for each phantom cartridge with scans. For each matrix, rows indicate the 10 cartridges, and columns indicate
the 6 scans. Light and dark blue colors indicate R(x,y) values of less than �3 and�3 to �1.5, respectively. Light and dark red colors indicate R(x,y) values of more
than 3 and 3 to 1.5, respectively.
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does not significantly affect CT attenuation. Aggressively
reduced tube currents were not used in this study (the CTDIvol
was in the range 9.5–20.4 mGy). And the effect of small
difference of tube current on mean0 was found to be relatively
small compared with scanner variability. The difference in the CT
scanner also affects CT attenuation.[23] In our study, the scanner
variability was relatively small for mean0 compared with that for
other parameters. On the contrary, the mean in filtered images
was found to be relatively variable among different scans
compared with that in unfiltered images. And we need to
recognize that mean 2–6 values in Toshiba CT are relatively high
compared with other scanners.
For skewness0–6 and kurtosis0–6 in some cartridges, scanner

variance exceeded the variance among cartridges. The differ-
ence in the scanner and reconstruction algorithm might have
affected these results. For images processed using medium to
coarse filters, skewness and kurtosis were variable with a VI of
0.430–0.692. Researchers should take this variance into
account in interpreting the data associated with these
parameters if several CT scanners are included for analysis.
And cares should be taken for applying the reported results
regarding these variable parameters to actual clinical settings if
there is a difference in CT scanners.
7

The variability of the mean, SD, and entropy in unfiltered
images has been described by a previous report.[8] Mackin et al
evaluated scanner variability, comparing the variability of CT
texture for non-small cell lung cancer (NSCLC). Although their
study design differs from ours, the reported scores for scanner
variability in their study corresponded to 8.972 for busyness,
1.633 for coarseness, 0.326 for entropy, 0.124 for the mean, and
0.116 for SD. Compared with the variance among 20 NSCLCs,
busyness and coarseness were more variable across scans, while
entropy, mean, and SD were less variable across scans. The
relatively low scanner variabilities for mean, SD, and entropy do
not conflict with the results of our study.
Some limitations should be acknowledged in the current study.

First, we evaluated scanner variability for CT texture using a
radiomics phantom. Ideally, it is better to evaluate the difference
in CT texture parameters among different scanners for tumors or
organs in comparison with the degree of difference among
clinically relevant groups. However, such a study design requires
exposing patients to increased radiation exposure. Second, to
evaluate the difference in quantitative texture parameters among
CT scanners, it is better to set identical scanning and
reconstruction parameters across scanners. Because the FOV is
known to affect the CT texture parameter in unfiltered images,[8]

http://www.md-journal.com


[4] Fletcher JG, Leng S, Yu L, et al. Dealing with uncertainty in CT images.
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we set an identical FOV across different scans. Slice thickness is
also known to affect texture parameters in unfiltered images
when it is widely different (1.25mm vs 5mm).[24] However,
because of the limitations of the CT scanners, some parameters
including slice thickness could not be set as identical among the
different scans. Instead, we attempted to replicate daily clinical
situations for CT scanning, adopting some of the scanning or
reconstruction parameters used in daily clinical practice. And we
also tried to keep the difference of slice thickness among CT scans
minimal (2.5–3mm). Third, the study design was not based on
the hypothesis testing approach. This was because we thought
that showing the fundamental data (the degree of variability in
each parameter derived from histogram analyses for images with
and without filtration) would be preferable to the hypothesis
testing approach (whether or not the parameters are universally
applicable across scanners). Fourth, we investigated how texture
parameters are affected across scanners in standard-of-care
scanning protocols. Future studies on how these parameters are
affected at special scanning protocols (e.g., reduced-dose CT and
considerably different tube voltages) are expected. Finally, we did
not evaluate the effect of iterative reconstruction on quantitative
CT texture parameters. Iterative reconstruction is gaining
attention, especially for reducing radiation exposure to patients
without compromising image quality. However, the details of
their algorithms and achievable radiation dose reduction levels
differ from vendor to vendor. Therefore, we thought it would be
better to evaluate them focusing on one vendor not across
different vendors. Future study investigating the effect of iterative
reconstruction algorithms on quantitative CT texture analyses
focusing on each vendor is expected.
In conclusion, the quantitative CT texture parameters of the

mean in unfiltered images and the SD and entropy in filtered
images were relatively robust among different scans; however,
skewness and kurtosis were variable in filtered images featuring
medium to coarse textures. The behavior of these quantitative CT
texture parameters among different scans should be taken into
consideration when interpreting results of studies regarding
quantitative texture analyses or when applying reported study
results to clinical situations.
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