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Abstract

Background: Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue
engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and
differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required.
Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion
of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample
preparation need.

Main body: This review highlights the relationship between the scaffold microstructure and cell behavior, and
provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published
in 2016 through a systematic search to address the need for specific improvements in the methods section of the
papers including the amount of provided information from the obtained results.

Conclusion: Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated
challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the
important details of the method, and the derived quantitative and qualitative information can be maximized.
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Background
In nature, structural materials including animal and hu-
man tissues have complex hierarchical architectures at
multiple scales from nano to macro [1]. To achieve the
regeneration of functional tissues, as in nature, complete
understanding and biomimicry of those 3D architectures
are necessary. Differences in the design of 3D scaffolds
[2] such as composition, surface chemistry, architecture,
and mechanical properties, can yield to almost countless
different scaffolds. Scaffolds host and interact with cells,
and the design of a scaffold affects the entire behavior of
the cells including adhesion, growth, migration, differenti-
ation, and matrix synthesis [3–8]. Certainly, the functional

performance of a scaffold in vivo not only depends on its
microstructure but also on all other factors involved in tis-
sue engineering which are very complex and probably not
yet completely known [9].
Tomography is defined as a method by which an object’s

3D image that corresponds to its internal structure is ob-
tained. Micro-computed tomography (micro-CT) [10, 11]
is a high-resolution CT that has a pixel size typically
between 1 μm and 50 μm, and allows to investigate the
microstructure of samples using X-rays. Conventionally,
the samples can be analyzed almost without any sample
preparation process generally in a non-destructive way.
Today, a search on “micro-CT” in PubMed yields more
than 10,000 items by being used in many fields. Within
the field of tissue engineering it has a place in many ap-
plication domains including (i) scaffold characterization
[12–15], (ii) in vivo small laboratory animal tissue
characterization [16–19] including assessment of bone
turnover using 4D micro-CT data [20], and tumor detec-
tion [19], (iii) ex vivo characterization of human tissues
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[21, 22] and animal tissues [23–27]. Micro-CT has fre-
quently been used in bone studies, and typically, the in-
vestigated parameters include volume, microstructural
features, and mineral density. The investigation of soft
tissues is relatively challenging due to their low contrast
in conventional micro-CT imaging; thus it may require
an extra effort such as employing high-atomic-number
element probes [28] or contrast agents [29–32].

3D Microstructural metrology of scaffolds used in tissue
engineering with tomography
Given the critical role of microstructure on the perform-
ance of scaffolds, characterization of the microstructure
is indispensable, and Micro-CT is an outstanding instru-
ment to characterize the microstructure of scaffolds. A
large surface area assists cell attachment and prolifera-
tion. Porosity and pore size define the surface area per
volume (Fig. 1) [33]. High porosity assists nutrient and
waste diffusion that is one of the critical factors for
vascularization and tissue ingrowth [34, 35]. Addition-
ally, porosity needs to be controlled for each application
since an increase in porosity leads to a relative decrease
in the mechanical properties [36]. The interconnection
of the pores is also an important parameter that defines
the effects of porosity and pore size [35, 37]. Given a
scaffold with constant porosity, a decrease in the mean
pore size will cause pore channels to narrow, which may
inconvenience cell migration despite an increase in the
surface area [38]. Relatively smaller pores and larger
specific surface area assist cell attachment as shown in a
study with collagen-glycosaminoglycan scaffolds that at-
tachment of osteogenic cells was increased with decreas-
ing mean pore size and increasing specific surface area
[39]. Regarding the mobility of cells in a scaffold, it is

not affected by the pore size alone, but also scaffolds’
mechanical properties and adhesiveness [40]. Cell arrange-
ment and morphology are influenced by scaffolds’ archi-
tecture and topography [41], and it was shown that cell
morphology has a role in the cell function [42–45]. Sur-
face roughness may lead cells to have a round morphology
while flat surfaces lead to an increased cell spreading [41].
Presence of aligned structures can facilitate cell alignment,
for example, designing concave microgrooves in scaffolds
can also be effective to align cells, and has implications in
muscle tissue engineering by facilitating the formation of
layered bundle tissues [46].
In a study with osteoblast-like cells, increased cell in-

growth was observed in the scaffolds with relatively
smaller pores among the scaffolds with different mean
pore sizes ranging from 100 μm to 200 μm [47]. In an-
other study, a scaffold with gradually changing pore sizes
from 88 μm to 405 μm was examined, and the pore
range of 380–405 μm provided higher chondrocyte and
osteoblast proliferation while the range between 186–
200 μm was more suitable for fibroblast proliferation
[48]. On the other hand, new bone formation occurred
faster in the scaffolds with the pore size range of 290–
310 μm than in the other scaffolds [48]. Scaffolds with a
mean pore size of 250 μm had higher fibrous tissue in-
growth in vivo than that of other scaffolds with mean
pore sizes of 30 μm, 60 μm, 110 μm, 350 μm and 700
μm [38]. The scaffolds with mean pore sizes of 30 μm
and 60 μm had no tissue ingrowth even though pore
sizes are larger than the size of a fibroblast [38]. The size
of the pores can affect the osteogenic differentiation and
proliferation of stem cells oppositely [49]. Ceramic scaffolds
with a pore size of 200 μm and 500 μm were found to pro-
vide a relatively higher rate of osteogenic differentiation,

Fig. 1 A 3D micro-CT image of the polycaprolactone-polyurethane scaffold. The distance between two adjacent white dots is 250 μm
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and proliferation, respectively, when compared to each
other [49]. Both surface chemistry and pore size can signifi-
cantly affect the lineage-specific differentiation of stem cells
while the effect of surface chemistry found to be relatively
larger if the pore size is smaller than 300 μm [50].
Micro-CT characterization comprises three major sequen-

tial processes: acquisition, reconstruction, and analysis [13].
The X-rays are generated by the source and emitted to the
target sample. When passing through the sample, the X-rays
are attenuated based on the properties of a sample that is
being scanned (e.g., its density, thickness, and composition).
The acquisition is completed by collecting 2D projection im-
ages (radiographs) from many viewing angles. In the conven-
tional micro-CT instruments, the X-ray system is fixed, and
the sample stage rotates, while in the instruments for live
small animals the stage is fixed, and the X-ray system rotates
to scan the animal. The projection images are reconstructed
by a computer using algorithms [51–53] to obtain the
cross-sectional 2D images in the transverse plane (Fig. 2).
Binarization is the process by which the pixels that belong to
sample are discriminated in the reconstructed images that
are in a contrast scale of 0-255, and the images are made
black and white (Fig. 3). Typically, white indicates the mater-
ial while black indicates empty space. Volume, porosity, pore
size, and suchlike results can be quantified using the binary
image dataset. Commercial micro-CT instruments come
with the manufacturers’ software while an external software
such as ImageJ (https://imagej.nih.gov/ij/index.html)
could also be used.

Systematic search of the papers that were published in 2016
A systematic search was performed on the papers that
were published in a predetermined year, 2016, to answer
these questions: (i) what type of data was reported in the

papers, i.e., quantitative or qualitative, or both, (ii) what
kind of quantitative results were reported (such as micro-
structure (e.g., porosity, pore size, wall thickness), volume,
and mineral density if relevant), and (iii) whether the
reporting of the methods were adequate including the in-
formation on pixel size, number of replicates, rotation step
or number of obtained projections, voltage and current
values, and use of any filter). A search was performed on
the electronic databases of Scopus, Web of Science, and
PubMed using the term “micro-CT” with “scaffold” to
identify the relevant original research papers in English
that were published in 2016. The year 2016 was selected
in the current work because it was presumed as a repre-
sentative period. The papers that involve micro-CT
characterization of scaffolds were considered as eligible.
The papers were screened, selected as shown in the flow-
chart that is presented in Fig. 4, and analyzed to answer
the aforementioned questions.

Findings of the systematic search and discussion
A total of 105 papers [54–158] were included in the
systematic analysis. The data indicated that micro-CT
was used only qualitatively in around 15% of the papers
[63, 74, 75, 79, 95, 102, 106, 108, 112, 116, 122, 129,
133, 146, 149, 158], and only quantitatively in 9.5% of
the papers [55, 78, 83, 85, 98, 111, 125, 131, 137, 155].
Micro-CT was used both qualitatively and quantita-
tively in the rest of the papers [54, 56–62, 64–73, 76,
77, 80–82, 84, 86–94, 96, 97, 99–101, 103–105, 107,
109, 110, 113–115, 117–121, 123, 124, 126–128, 130,
132, 134–136, 138–145, 147, 148, 150–154, 156, 157].
Only around 29% of the papers reported the number of
replicates (i.e., “n”) they analyzed, and around 77% of
the papers reported the used pixel size. Among the

Fig. 2 Schematic illustration showing the basics of micro-CT. Cone-beam X-rays travel from the source to the detector through the
sample with attenuation, and a gray-scale projection image is acquired at each rotation angle. Projection images are then reconstructed,
and the reconstructed image dataset is used for analysis. The red dashed line indicates the vertical position of the reconstructed image,
i.e., the cross-sectional image
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papers that reported n, the mean size of n was 4.4 with a
standard deviation (SD) of 2.8. The mean used pixel size
was 16.8 μm with an SD of 13.3. The analysis also showed
that less than 3% of the papers used the term “spatial reso-
lution”, and around 14% of the papers used the term “reso-
lution” which might get confused with “pixel size” as it was
discussed below. As Fig. 5 illustrates, volume measure-
ments, microstructural characterization, and mineral dens-
ity determination are the three most frequent quantitative

results. The results categorized as “other” include histo-
grams, area/distance measurements such as tissue thick-
ness, bone contact area or graft diameter, callus index and
intensity signals. The rotation step, or the number of ob-
tained projections, is not mentioned in over 68% of the pa-
pers. The information on the used voltage and current was
not reported in around 26% of the papers, while around
73% of the papers did not report whether they used a filter
or not. One paper was identified that the term “in vivo
imaging” was used when only explants were characterized.
The internal architecture of a scaffold has major roles in

the cell behavior and thus on the overall performance of
the construct, the characterization of its macro (> 100 μm)
and micro (0.1 μm - 100 μm) structure is inherently of
interest. With the demonstrated use and advantages of
micro-CT, it has been a valuable instrument in research
laboratories with its challenges that are summarized in
Table 1.
Micro-CT has been considered as the gold standard

for bone explants’ microstructure and morphology study
[25]. In the case of scanning live animals, excessive ex-
posure to radiation [159–161] can be a problem for the
survival of the animal, tumorigenesis, and ethics. Using a
pixel size less than 50 μm may be fine to prevent exces-
sive exposure to radiation [11].
From the results of this systematic analysis, two major

points can be emphasized to be resolved in future studies
that will use micro-CT: (i) methods section from acquisi-
tion to analysis should be complete, and (ii) information
obtained should be maximized. The methods part should
cover the used pixel size, voltage and current, number of
replicates, scanning medium, use of any filter, rotation step/
number of projections, and use of any specific image pro-
cessing. Various results can be derived from a Micro-CT
characterization. These results can be quantitative or quali-
tative, and obtained in a 2D or 3D fashion. Qualitative
results include X-ray and reconstructed image of the sam-
ple, mineral density color map, pores size color map, and
structure thickness color map, and thus, provide valuable
information. Quantitative results include quantification/
proportion of volumes, microstructural features (mean pore
size, mean wall thickness, and their distribution and change
vertically across the sample), mineral density, histograms,
quantification of surface area, and surface:volume ratio. It
should be noted that some of these parameters are relevant
only for certain studies. For instance, bone mineral density
is related only with scaffolds for bone tissue engineering.
Therefore, this is a factor affecting the outcome of the
systematic analysis.
CT experts may accept that resolution is a quite sensi-

tive topic among authors by being a measure of image
quality. As the outcome of the systematic analysis shows,
some authors including some of the CT experts prefer
to use terms “resolution” and “spatial resolution” instead

Fig. 3 Binarization of reconstructed micro-CT images. Gray-scale
reconstructed 2D image of a silk-based tissue engineering scaffold
with a circular region of interest (ø 3 mm) (a), half-tone views
(b, d, and f) and the corresponding binary images (c, e, and g)
respectively if no gray-scale value is included that yields to complete
black, if entire gray-scale values are included that yields to complete
white, and if the right gray-scale values (that is in this case 38-255) are
obtained by global thresholding that yields to a binary image showing
the microstructure of the scaffold
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of “pixel size” or “voxel size”, while some micro-CT sys-
tem manufacturers prefer to communicate the size of
the pixels or voxel of the images. Additionally, there is
no standardized approach for spatial resolution reporting
accepted by the micro-CT system manufacturers [25].
The definitions of these terms are presented in Table 2.

The studies that report a value for resolution need to
show how they quantify the resolution whether it is the
pixel size given by the scanner software or they quanti-
fied it with calibrated thickness wires [162]. Given the
definitions of the terms, the images that have the same
number of pixels would contain different information if
their pixel sizes are not identical. It is noteworthy to
know that a smaller pixel size does not necessarily pro-
vide a better image, for instance, the image does not im-
prove when the pixel size is smaller than the X-ray spot
size [162, 163]. Some other factors [25, 162, 164, 165]
are needed to be considered as well, regarding X-ray
(e.g., energy, geometry, and focal-spot size), sensitivity of
detector, use of filter, integration time of X-ray with the
sample per projection, characteristics of the sample (e.g.,
composition and size), scanning medium, noise and arti-
facts. The attenuation of the X-rays depends on the char-
acteristics of the sample such as its density and thickness.
The level of the X-ray energy, i.e., the source voltage and
current, should be tuned for the sample (denser samples
require higher energy) since the obtained the images are in
gray-scale and associated with the X-ray absorption that is
linked with the sample’s electron density [163]. Therefore,
the reconstructed images are quantitatively densitometric.
The pixel size and rotation step can have significant influ-
ences on the quantitative and qualitative results of the
μ-CT characterization of scaffolds, as well as the size of

Fig. 4 The flowchart of the systematic search

Fig. 5 Venn diagram showing the number of the papers that
reported quantitative results regarding the volume, microstructure,
mineral density and other measures. Two of the seven papers that
reported volume, microstructure, and mineral density also reported
additional results. The sizes of the circles in the diagrams are directly
proportional to the number of the associated papers
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the generated data and the duration of the characterization
[13]. Integration time is the duration of each projection. A
longer integration time provides more photos to be de-
tected and affect the micro-CT image [166]. The use of a
filter can improve the characterization of thick/dense sam-
ples by attenuating the low-energy X-rays and minimizing
the beam hardening effect [25]. Spatial resolution depends
on the geometry of the X-ray, and detector [10]. Cone
beam X-rays and flat panel detectors provide significantly
shorter scanning times because the data for multiple slices
is obtained in each rotation step, while fan beam X-rays
and linear detectors provide less scatter effects for
thick samples [167] and higher accuracy [164]. Re-
construction method also depends on the geometry
of the source. The scanning medium (e.g., air, water,
phosphate-buffered saline, or ethanol) influences the
characterization results since different media affect
the X-ray attenuation differently [25, 168].

Conclusion
The microstructure of tissue engineering scaffolds
greatly influence the behavior of cells, and the perform-
ance of the tissue engineering construct; therefore, the
characterization of the scaffolds’ microstructure is of

Table 1 Challenges in the conventional micro-CT characterization

Challenge Potential solution Reference

Artifacts and noise. Detailed in Table 1 of Ref. [162] [162, 164, 169, 170]

Soft tissue characterization is not as easy as a dry-state
porous scaffold.

Using contrast agents or high-atomic-number
element probes can help.

[28–32]

Operator-determined acquisition parameters may affect
the results.

Parameters should be optimized during the
preliminary study.

[13]

Harsh acquisitions may damage/alter the sample/tissue
(for example, discoloring of a biomaterial or tumorigenesis
in animals); and radiation exposure of animals in live
animal studies, lethal dose 50/30 (both ethical and scientific
considerations).

Long scans (either due to very low rotation step,
frame averaging, or long exposure time) should be
avoided, and/or X-ray energy could be decreased.

[11, 159–161]

Comparing micro-CT results of different studies is not easy
if the used parameters are not identical.

There is a need to establish a protocol with
determined values for parameters.

[13]

Issues with very dense/thick samples resulting in a dataset
of almost only black images.

This is because there will be no contrast since
no X-ray can pass; however, use of a filter may
resolve the problem, but it may greatly increase
the acquisition time. The sample can be cut to
its smaller representative volume. If it is not
possible, then another instrument could be used
such as a scanning electron microscope.

Issues with very thin/light samples or a hydrogel, then no
contrast will be obtained (this gives a dataset of images
with very low contrast).

Contrast agents can be used. [29–32]

A limited volume of sample that can be analyzed at once
(the images have a certain number of pixels with a certain
size of a pixel).

Display matrix size and/or pixel size can be
adapted. The representative portion of the
sample can be pre-determined.

Overlaps in gray-scale values in multi-material samples
(i.e., scaffold-bone explants or composites).

Advanced segmentation protocol can be used. [171]

Considerations on the maintenance and sharing of micro-CT data. During the preliminary study, the duration of the
micro-CT characterization and the disc space
requirements can be estimated.

[13]

Table 2 Terms that are associated with the micro-CT images,
and their definitions

Term Definition

Pixel size Size of the 2D discrete parts that make up a 2D
micro-CT image. Usually, expressed as a single
value, e.g., 10 μm, indicating the size of each
pixel is 10 μm × 10 μm.

Voxel size The 3D equivalent of pixel size indicates the size
of each voxel, Typically, micro-CT images isotropic
(identical size in all dimensions), e.g., 10 μm × 10 μm
× 10 μm, in which case pixel size and voxel size
provide identical information.

Resolution ▪ Smallest perceptible detail (complete and exact
definition can be found in Ref. [164])

▪ Resolution of an image can indicate the number
of pixels in an image (such as 800 × 600). The
second definition is referred to the display matrix
size in the standard guide of ASTM International:
E1441-11.

Spatial resolution ▪ Smallest displacement that can be measured in
the measurement direction [164]

▪ Smallest separation where two points can be
identified as separate parts (complete and exact
definition can be found in the standard guide of
ASTM International: E1441-11)
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keen interest. Micro-CT is an outstanding instrument for
the quantitative 2D and 3D analysis and visualization of
scaffolds. The analysis results showed that the methods
sections of the majority of the analyzed papers are in need
of improvement in reporting the details of micro-CT
characterization. Moreover, the amount of quantitative and
qualitative information from micro-CT characterization
can be maximized. Given the fact that the obtained results
from micro-CT characterization significantly depend on
several parameters, the important acquisition related de-
tails should be clearly provided in the papers. It is recom-
mended that the parameters include the used pixel size,
rotation step, X-ray energy, scanning medium, use of filter,
as well as the number of samples analyzed since the omit-
ted data complicate the reproducibility of the experiments.
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