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ABSTRACT

MyD88 KO (knockout) mice are exquisitely sensitive to CNS
(central nervous system) infection with Staphylococcus
aureus, a common aetiological agent of brain abscess,
exhibiting global defects in innate immunity and exacer-
bated tissue damage. However, since brain abscesses are
typified by the involvement of both activated CNS-resident
and infiltrating immune cells, in our previous studies it has
been impossible to determine the relative contribution of
MyD88-dependent signalling in the CNS compared with
the peripheral immune cell compartments. In the present
study we addressed this by examining the course of S.
aureus infection in MyD88 bone marrow chimaera mice.
Interestingly, chimaeras where MyD88 was present in the
CNS, but not bone marrow-derived cells, mounted pro-
inflammatory mediator expression profiles and neutrophil
recruitment equivalent to or exceeding that detected in WT
(wild-type) mice. These results implicate CNS MyD88 as
essential in eliciting the initial wave of inflammation during
the acute response to parenchymal infection. Microarray
analysis of infected MyD88 KO compared with WT mice
revealed a preponderance of differentially regulated genes
involved in apoptotic pathways, suggesting that the
extensive tissue damage characteristic of brain abscesses
from MyD88 KO mice could result from dysregulated
apoptosis. Collectively, the findings of the present study
highlight a novel mechanism for CNS-resident cells in
initiating a protective innate immune response in the

infected brain and, in the absence of MyD88 in this
compartment, immunity is compromised.
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INTRODUCTION

In the CNS (central nervous system), brain abscesses arise

from a parenchymal infection by pyogenic bacteria and

represent a serious life-threatening condition. Brain abscesses

can form by bacterial perforation of the thin bony structures

separating the brain from neighbouring sites of chronic

infection occurring in the paranasal sinuses, middle ear, or

upper molars. Other routes include seeding of the brain with

bacterial emboli originating from systemic sites of infection

(i.e. endocarditis or septicemia) (Mathisen and Johnson, 1997)

where the frontal and temporal lobes are most commonly

affected (McClelland et al., 1978; Carpenter et al., 2007),

penetrating trauma to the head, or following neurosurgery

(Tenney, 1986; Schliamser et al., 1988). Although brain

abscesses ensue in response to a diverse array of pathogens,

streptococcal species and Staphylococcus aureus represent

the most common aetiological agents of infection in humans.

Innate immunity plays an essential role in the host

response to bacterial infections. Among the central players
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in anti-bacterial immunity are members of the TLR (Toll-like

receptor) family of pattern recognition receptors (Akira et al.,

2006; Trinchieri and Sher, 2007). These receptors recognize

conserved motifs from a wide range of pathogens that are

inherently resistant to mutation based on their essential

nature for pathogen survival (Medzhitov and Janeway, 2002).

When considering the array of TLRs that could be triggered

during S. aureus infection in the brain, several candidates

emerge, since the bacterium presents an arsenal of distinct

immunostimulatory motifs. For example, bacterial lipopro-

teins and PGN (peptidoglycan) can trigger TLR1 and TLR2,

whereas bacterial DNA can stimulate TLR9 in endosomal

compartments (Akira et al., 2006; Trinchieri and Sher, 2007).

Based on this complexity it is expected that numerous

receptors are engaged following bacterial infection in the

brain. This is supported by our previous studies demonstrating

that brain abscess pathogenesis following S. aureus infection

was not markedly affected by the loss of TLR2 (Kielian et al.,

2005). Therefore a broader role for additional recognition

molecules sensing bacterial infection was apparent.

MyD88 is a central adaptor molecule for the majority of

TLRs, with the exception of TLR3 (Akira, 2006; O’Neill and

Bowie, 2007). This molecule is also responsible for transdu-

cing activation signals emanating from the IL-1R [IL

(interleukin)-1 receptor] and IL-18R (Wesche et al., 1997;

Adachi et al., 1998; Burns et al., 1998; Medzhitov et al., 1998).

Since IL-1 and IL-18 have been shown to have important roles

in anti-bacterial immunity, coupled with the pivotal role of

MyD88-dependent pathways in bacterial recognition and the

induction of downstream cytokine signalling networks,

MyD88 represents a central converging point in the innate

inflammatory pathway. Indeed, recent studies from our

laboratory have demonstrated the essential role of MyD88-

dependent mechanism(s) in mounting a productive host

innate immune response during the acute stage of brain

abscess development (Kielian et al., 2007). Studies by other

groups have also established the importance of MyD88-

dependent pathways in the innate immune response to

Gram-positive infections in both the CNS and periphery

(Takeuchi et al., 2000; Koedel et al., 2004; Miller et al., 2006;

Fremond et al., 2007).

Although our previous report demonstrated an essential

and non-redundant role for MyD88 in eliciting an innate

immune response during brain abscess development (Kielian

et al., 2007), it remained unclear whether MyD88 expression

was more important in CNS-resident compared with

infiltrating immune cells since the molecule was globally

absent in KO (knockout) mice. To address this question, we

engineered radiation bone marrow chimaera mice where

MyD88 was differentially expressed in the CNS compared

with the peripheral immune cell compartments.

Unexpectedly, the results demonstrated that MyD88 express-

ion in the CNS was required to mount an innate immune

response equivalent to WT (wild-type) during the acute stage

of brain abscess development. The requirement for MyD88 in

CNS-resident cells was reinforced by the finding that

neutrophil influx into the infected brain was only achieved

in chimaeric mice where MyD88 was present in the CNS. This

is probably due to the fact that numerous neutrophil

chemokines were restored to WT levels only in animals where

MyD88 was expressed in the CNS compartment.

Curiously, our previous study demonstrated that, despite

global defects in innate immunity, bacterial burdens

remained relatively consistent between MyD88 KO and WT

mice, suggesting that mechanisms other than bacterial

burdens themselves were responsible for the enhanced

susceptibility of MyD88 KO mice to CNS S. aureus infection

(Kielian et al., 2007). In the present study, we performed

transcriptional profiling with Illumina microarrays to identify

pathways that were differentially regulated by MyD88 during

brain abscess development that might provide some insights

into why these animals succumb so quickly to infection,

despite having relatively equivalent bacterial burdens as WT

animals. These studies revealed a preponderance of differ-

entially regulated genes involved in apoptotic pathways,

suggesting that the extensive tissue damage characteristic of

brain abscesses from MyD88 KO mice could result from

dysregulated apoptosis. Collectively, these results reveal an

essential role for MyD88 in CNS-resident cells that triggers a

protective innate immune response within the first 24 h

following intracerebral infection with S. aureus.

MATERIALS AND METHODS

Mice
All animal use protocols were approved by the University of

Arkansas for Medical Sciences Institutional Animal Care and

Use Committee and are in accordance with the National

Institutes of Health guidelines for the use of rodents. MyD88

gene KO mice (originally from Dr Shizuo Akira, Osaka

University, Japan) (Adachi et al., 1998) have been previously

backcrossed with C57BL/6 mice for over ten generations

(Kawai et al., 1999; Fremond et al., 2004). Age- and sex-

matched C57BL/6 mice (Harlan Laboratories) were used as WT

controls. For the generation of bone marrow chimaeras, B6/

SJL mice that are congenic for the CD45 allele (CD45.1) on a

C57BL/6 background were purchased from Jackson

Laboratories. Mice were used between 10 and 12 weeks of

age for all brain abscess studies.

Generation of MyD88 radiation bone marrow
chimaera mice
For generating MyD88 bone marrow chimaeras, CD45

congenic B6/SJL mice were used where only one allele,

CD45.1, originates from the SJL strain, whereas the remainder

of the genome is derived from C57BL/6 mice. These animals
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represent the WT strain since they express functional MyD88.

MyD88 KO mice are on a C57BL/6 background and express

the CD45.2 allele, allowing for the discrimination between

donor- compared with recipient-derived leucocytes based on

staining with antibodies specific for CD45.1 and CD45.2. The

following radiation chimaeras were generated in these

experiments (donor bone marrowRirradiated recipient):

WTRWT, KORKO, WTRKO and KORWT. The experimental

chimaeras were WTRKO and KORWT, whereas the other two

groups (WTRWT and KORKO) represented controls to rule

out any non-specific effects of irradiation on immune

activation. The latter could be verified by confirming that

the inflammatory profiles of irradiated control groups

obtained in the present study (WTRWT and KORKO) were

similar to those observed in non-irradiated MyD88 WT and KO

mice as reported recently (Kielian et al., 2007). CNS

parenchymal cells are radiation-resistant and maintain the

host phenotype following radiation exposure (Hickey and

Kimura, 1988; Ajami et al., 2007). Reconstitution of irradiated

MyD88 KO animals with bone marrow from WT recipients

ensured that cells derived from the bone marrow expressed

this molecule along with CNS perivascular cells (Hickey and

Kimura, 1988; Bechmann et al., 2001). In contrast, parenchy-

mal microglia would not express MyD88 as a result of their

radioresistance. The procedure for bone marrow chimaera

generation was based on previously published studies with

minor modifications (Hickey and Kimura, 1988; Byram et al.,

2004; Zehntner et al., 2004; Chakravarty and Herkenham,

2005). Briefly, bone marrow donor mice were euthanized with

an overdose of inhaled isoflurane and marrow was isolated

from the long bones by flushing with sterile 16PBS.

Recipient mice were placed on antibiotic-supplemented

water (1 g/l neomycin and 125 mg/l polymyxin) for 4 days

prior to bone marrow transfer and subjected to irradiation

(1000 rad) using a J.L. Shepherd Model i45 caesium irradiator

to destroy the marrow. Within 4 h following irradiation,

recipient mice received an i.v. (intravenous) injection of

26107 bone marrow cells supplemented with 16107 cells

from the spleen to serve as an immediate source of immune

cells. Engraftment was allowed to take place over a 6–8 week

period and chimaeric animals were maintained on antibiotic-

supplemented water for the first 2 weeks to provide

protection during transient immunocompromise. At 6–8

weeks post-transplant, chimaeric mice were bled retro-

orbitally and cells were stained for flow cytometric analysis

using CD45.1 and CD45.2. Only animals that displayed

chimaerism of greater than 90% were used in brain abscess

studies. Animals were evaluated for their responses to an

intracerebral inoculation of S. aureus at approx. 10–12 weeks

following bone marrow transfer, a period that we, and others

(Hassan-Zahraee et al., 2000; Becher et al., 2001; Zehntner et

al., 2004), have established to be sufficient for establishing

chimaerism. We found that bone marrow chimaeras gener-

ated with B6/SJL and MyD88 KO mice did not exhibit any

evidence of graft versus host disease, indicating that this was

not a confounding issue.

Generation of experimental brain abscess
Live S. aureus (strain RN6390) was encapsulated in agarose

beads prior to implantation in the brain as previously

described (Kielian et al., 2001). Previous studies from our

laboratory have established that the introduction of sterile

agarose beads does not induce overt inflammation or

peripheral immune cell infiltrates (Kielian et al., 2001;

Baldwin and Kielian, 2004). To induce brain abscesses, mice

were anaesthetized with 2.5% avertin i.p. (intraperitoneally)

and a 1 cm longitudinal incision was made along the vertex

of the skull extending from the ear to the eye. A rodent

stereotaxic apparatus equipped with a Cunningham mouse

adaptor (Stoelting) was used to implant S. aureus-encapsu-

lated beads into the caudate/putamen region using the

following co-ordinates relative to bregma: +1.0 mm rostral,

+2.0 mm lateral, and 23.0 mm deep from the surface of the

brain. A burr hole was made and a 5 ml Hamilton syringe

fitted with a 26-gauge bevelled needle was used to slowly

deliver 2 ml of beads [104 CFUs (colony forming units)] into

the brain parenchyma. The needle remained in place for 2.5

min following injection to minimize bead efflux and potential

leakage into the meninges. The incision was closed using

surgical glue.

Preparation of brain abscess homogenates
To prepare brain abscess homogenates for downstream

protein and RNA analysis, lesion sites were visualized by the

stab wound created during injections and were sectioned

within 1–2 mm on all sides. Upon recovery, brain abscesses

were homogenized in 500 ml of PBS supplemented with a

CompleteTM protease inhibitor cocktail tablet (Roche) and 160

units/ml RNAse inhibitor (Promega) using a Polytron

homogenizer (Brinkmann Instruments). At this point, a 20

ml aliquot of abscess homogenate was removed for

quantitative culture of viable bacteria as described below.

Subsequently, homogenates were centrifuged at 21 000 g for

15 min at 4 C̊ to pellet membrane material, and supernatants

were removed and stored at 270 C̊ until ELISA and multi-

plex cytokine microbead array analysis as described below.

Quantification of viable bacteria from brain
abscesses
To quantify the numbers of viable bacteria associated with

brain abscesses, serial 10-fold dilutions of abscess homo-

genates were plated on to blood agar plates. Titres were

calculated by enumerating colony growth and were expressed

as CFUs per ml of homogenate.

ELISA
Protein levels of CXCL2 were quantified in brain abscess

homogenates using an ELISA kit according to the manufac-

turer’s instructions (DuoSet, R&D Systems; level of sensitiv-

ity515.6 pg/ml). Results were normalized to the amount of

CNS MyD88 in brain abscesses
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total protein extracted from tissues to correct for differences

in sampling size as previously described (Baldwin and Kielian,

2004; Kielian et al., 2004a).

Multi-analyte microbead array to detect pro-
inflammatory mediator expression
To expand the analysis of inflammatory mediators differenti-

ally expressed between the various MyD88 bone marrow

chimaera mice, a mouse 20-plex cytokine microbead array

system was used according to the manufacturer’s instructions

(BioSource International). This microbead array allowed for

the simultaneous detection of 20 individual inflammatory

molecules in a single 50 ml brain abscess homogenate sample

including IL-1a, IL-1b, TNF-a (tumour necrosis factor-a), IFN-

c (interferon-c), IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12 p40/

p70, IL-13, IL-17, IP-10 (chemokine CXCL10), MIG (monokine

induced by IFN-c), MCP-1 (monocyte chemotactic protein-1),

KC (chemokine CXCL1), GM-CSF (granulocyte/macrophage

colony-stimulating factor), VEGF (vascular endothelial growth

factor) and bFGF (basic fibroblast growth factor). Results

were analysed using a Bio-Plex Workstation (Bio-Rad) and

adjusted based on the amount of total protein extracted from

abscess tissues for normalization. The level of sensitivity for

each microbead cytokine standard curve ranged from 1 to 35

pg/ml.

Immunofluorescence staining and confocal
microscopy
Neutrophil and microglia/macrophage accumulation in brain

abscesses from MyD88 bone marrow chimaera mice were

evaluated by immunofluorescence staining using Gr-1 and

Iba-1 respectively. For these studies, mice were infected with

104 CFUs of S. aureus RN6390 engineered to express GFP

(green fluorescent protein) under the control of the RNAIII

promoter (a gift of Dr Ambrose Cheung, Dartmouth Medical

School, Hanover, NH, U.S.A.) to visualize bacterial dissemina-

tion in tissue sections. At the indicated time points post-

infection (i.e. 18 or 24 h), MyD88 bone marrow chimaera

mice were perfused transcardially to eliminate leucocytes

from the vasculature, whereupon brains were removed and

immediately flash-frozen on dry ice. These early time intervals

were required since the survival period of MyD88 KO mice did

not extend much beyond this time point (Kielian et al., 2007).

Prior to cryostat sectioning, brain tissues were embedded in

OCT (optimal cutting temperature) medium, whereupon serial

10 mm sections were made throughout the entire lesioned

tissue, mounted on to SuperFrost Plus slides (Fisher

Scientific), air-dried, and stored at 280 C̊ until use. For Gr-1

staining, fresh frozen tissues were analysed; however, to

detect Iba-1 immunoreactivity, tissue sections were post-

fixed in 4% (w/v) paraformaldehyde for 1 h, since strong

reactivity with this antibody was not detected in freshly

frozen sections. Tissues were incubated with either rat anti-

mouse Gr-1 (BD Biosciences) or rabbit anti-mouse Iba-1

(Biocare Medical) antibodies overnight at 4 C̊ in a humidified

chamber. Following numerous rinses in PBS, Gr-1 staining

was detected with a mouse anti-rat IgG-HRP (horseradish

peroxidase)-conjugated antibody (Invitrogen) for 1 h at room

temperature (25 C̊) and visualized using a TSA-Alexa FluorH
594 kit (Invitrogen). For Iba-1 detection, a rabbit ImmPRESS

kit (Vector Laboratories) was used in conjunction with a TSA-

Alexa FluorH 594 kit. Upon completion of the staining

protocols, slides were coverslipped using the Prolong anti-

fade reagent (Invitrogen) and sealed using nail polish. Slides

were imaged using a Zeiss laser-scanning confocal micro-

scope (LSM 510; Carl Zeiss Microimaging). Specific staining of

antibodies was confirmed by the absence of fluorescence

signal following incubation of brain abscess tissues with

secondary antibodies alone (results not shown).

RNA isolation and Illumina oligonucleotide
microarray
Total RNA from brain abscesses of MyD88 KO and WT mice

was isolated using TRIzolH reagent (Invitrogen) and subjected

to DNAse treatment prior to use in microarray studies. RNA

concentrations and integrity were determined with an

Agilent 2100 bio-analyser using Agilent RNA6000 Nano kits.

Transcriptional profiling of changes in gene expression

between S. aureus-infected MyD88 KO and WT mice was

determined using Illumina Sentrix MouseRef-8 Expression

BeadChips (Illumina). For these experiments, RNA samples

from four individual animals/group/time point were analysed

to account for biological variability. Total RNA was used to

generate biotin-labelled cRNA using the Illumina TotalPrep

RNA Amplification Kit (Ambion, catalogue number IL1791).

Briefly, 0.5 mg of total RNA was first converted into single-

stranded cDNA with reverse transcriptase using an oligo-dT

primer containing the T7 RNA polymerase promoter site and

then copied to produce double-stranded cDNA molecules. The

double-stranded cDNA was cleaned and concentrated with

the supplied columns and used in an overnight in vitro

transcription reaction where single-stranded RNA (cRNA) was

generated and labelled by incorporation of biotin-16-UTP. A

total of 0.75 mg of biotin-labelled cRNA was hybridized at

58 C̊ for 16 h to Illumina’s Sentrix MouseRef-8 Expression

BeadChips. Each BeadChip has 24 000 well-annotated RefSeq

transcripts with approx. 30-fold redundancy. The arrays were

washed, blocked, and the labelled cRNA was detected by

staining with streptavidin-Cy3. The arrays were scanned using

an Illumina BeadStation 500X Genetic Analysis Systems

scanner and the image data was extracted using the

Illumina BeadStudio software, version 3.0.

Microarray data analysis and statistical methods
The expression data were filtered to include only probes with

a consistent signal on each chip; the probe original signal

filter value was established at a detection P value,0.02. The

resulting dataset was next analysed with DIANE 6.0, a
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spreadsheet-based microarray analysis program. An overview

of DIANE can be found online at http://www.grc.nia.nih.gov/

branches/rrb/dna/diane_software.pdf. Using DIANE, the

results were normalized with a Z-score transformation

(Cheadle et al., 2003). Z-normalized data were then analysed

with PCA (principal component analysis). To determine the

gene expression changes caused by each specific RNA

comparison, Z-scores for paired treatment groups were

compared using the Z-ratio statistic (Cheadle et al., 2003):

Z -ratio~
Z -scoreLPS{Z -scorevehicle

s Z -scoreLPS{Z -scorevehicle½ �

Expression changes for individual genes were considered

significant if they met four criteria: Z-ratio above 1.5 or

below 21.5; FDR (false detection rate) (Tusher et al., 2001) of

less than 0.30; a P value statistic for Z-score replicability

below 0.05; and mean background-corrected signal intensity

greater than zero.

qRT-PCR [quantitative real-time RT (reverse
transcriptase)-PCR]
To confirm a subset of differentially expressed genes from

microarray studies, qRT-PCR was performed as previously

described (Kielian et al., 2004b). ABI Assays on Demand kits

were used to examine Lcn2 (lipocalin-2), Pacsin3 (protein

kinase C and casein kinase substrate in neurons 3), Ier3/IEX

(immediate early response 3), Pfc (complement factor

properdin) and SOCS3 (suppressor of cytokine signalling 3)

expression, whereas GAPDH (glyceraldehyde-3-phosphate

dehydrogenase) primers and the TAMRA TaqMan probe were

synthesized by ABI based on previously published sequences

(Esen et al., 2004; Tanga et al., 2005).

Statistics
Significant differences between the various MyD88 bone

marrow chimaera experimental groups were determined

using one-way ANOVA followed by the Holm–Sidak method

for multiple pair-wise comparisons with Sigma Stat (SPSS

Science). For comparisons in gene expression profiles between

MyD88 KO and WT mice by qRT-PCR the Student’s t test was

used.

RESULTS

MyD88 expression in the CNS compartment is
essential for achieving maximal inflammatory
responses to intracerebral S. aureus infection
Recent studies from our laboratory have identified an

essential role for MyD88-dependent pathways in initiating

innate immune responses to S. aureus during the acute stage

of brain abscess formation (Kielian et al., 2007). However, the

relative importance of MyD88 within the CNS compartment

compared with infiltrating peripheral immune cells was

uncertain, since prior studies utilized MyD88 KO mice where

this adaptor was globally absent. To address this question, we

generated chimaeric animals using B6.SJL congenic mice that

express the CD45.1 allele, allowing the discrimination

between donor and recipient cells based on the fact that

MyD88 KO mice are on a C57BL/6 background and express

CD45.2. In pilot studies, we carefully titrated the dose of

ionizing radiation administered to recipient mice to ablate

the bone marrow without inducing toxicity to the gastro-

intestinal tract (results not shown). Mice were evaluated at 8

weeks following bone marrow transfer to assess the degree of

chimaerism by examining the extent of CD45.1 and CD45.2

expression on peripheral blood leucocytes by FACS. A

representative FACS screen of bone marrow chimaera mice

is provided in Figure 1. For these experiments, a total of four

bone marrow treatment groups were compared. The two

experimental groups consisted of mice where MyD88 was

present in the CNS but not in bone marrow-derived cells (i.e.

KORWT; Group 1) and vice versa (i.e. WTRKO; Group 2),

whereas bone marrow transfers into genetically identical

mice (i.e. KORKO and WTRWT; Groups 3 and 4 respectively)

were also performed to rule out any non-specific effects of

ionizing radiation on the responses obtained. The latter could

be verified by confirming that the inflammatory profiles of

irradiated control groups obtained in the present study

(WTRWT and KORKO) were similar to those observed in

non-irradiated MyD88 WT and KO mice as reported recently

(Kielian et al., 2007). Although chimaeric mice were screened

at 8 weeks following bone marrow transfer, animals were not

infected with S. aureus until 10–12 weeks after transplanta-

tion. Any mice that demonstrated incomplete chimaerism

(i.e..10% residual recipient phenotype) were excluded from

the study.

As previously reported, MyD88 KO mice do not survive very

long following intracerebral S. aureus infection, with the

majority of animals succumbing within 24 h after bacterial

exposure with the infectious inoculum used in the earlier and

present studies (i.e. 104 CFUs) (Kielian et al., 2007). This fact

dictated the time course for analysing the current experi-

ments, since we were restricted by the survival time of mice

where MyD88 KO bone marrow was transferred into

irradiated MyD88 KO recipients (KORKO). Therefore we

examined the entire cohort of bone marrow chimaera animals

at two acute intervals, namely 18 and 24 h following S.

aureus infection. As shown in Figure 2, numerous pro-

inflammatory cytokines and chemokines were already

detected in WT control mice (WTRWT) at these early time

points and were significantly attenuated in MyD88 KO

control mice (KORKO) in agreement with our previous

report using non-irradiated animals (Kielian et al., 2007),

suggesting that the irradiation paradigm itself did not

significantly alter the inflammatory phenotype of MyD88

CNS MyD88 in brain abscesses
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KO and WT mice. Next we assessed which of the experimental

chimaeras achieved cytokine expression profiles that were

equivalent to WT levels, which would implicate a compart-

mental-specific contribution for MyD88-dependent signals.

As shown in Figure 2, chimaeras where MyD88 was present in

the CNS but not in bone marrow-derived cells (KORWT) were

able to mount pro-inflammatory mediator expression profiles

equivalent to or exceeding those detected in WT mice at both

18 and 24 h post-infection. This finding implicates CNS

MyD88 as essential in eliciting the initial wave of inflam-

mation during the acute response to parenchymal infection.

In contrast, the inflammatory phenotype of chimaeric mice

where MyD88 was absent in the CNS compartment but

present in infiltrating bone marrow-derived cells (WTRKO)

was basically identical with MyD88 KO control mice (KORKO;

Figure 2). This finding reinforces the importance of MyD88 in

the brain to elicit an effective innate immune response to S.

aureus and that MyD88 originating from peripheral immune

cells alone is not sufficient to recover inflammatory mediator

expression to WT levels.

CNS MyD88 dictates the degree of neutrophil
influx into S. aureus-induced brain abscesses
Our previous study with MyD88 KO mice demonstrated that

neutrophil influx into brain abscesses was significantly

attenuated in these animals (Kielian et al., 2007). In the

present study, we examined whether MyD88 in the CNS or

peripheral immune cell compartment was important for

dictating neutrophil entry into the infected brain. For these

studies we utilized immunofluorescence staining and con-

focal microscopy with an S. aureus strain that constitutively

expresses GFP. Importantly, this S. aureus-GFP strain is

Figure 1 Validation of MyD88 bone marrow chimaera mice by FACS analysis
Peripheral blood leucocytes were recovered from MyD88 bone marrow chimaeric mice at 8 weeks following irradiation and bone
marrow reconstitution, whereupon CD45.1 (B6/SJL origin) and CD45.2 (MyD88 KO origin) expression was evaluated by FACS. Results
are presented from one bone marrow chimaera study and are representative of five independent experiments.
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identical with the isolate used in our previous studies with

the exception of the GFP construct. As shown in Figure 3,

neutrophil influx was readily apparent in abscesses of WT

control mice (WTRWT), whereas very few cells could be

visualized in lesions of MyD88 KO control animals (KORKO),

in agreement with our previous report (Kielian et al., 2007). In

concordance with the finding that chemokine expression was

restored to WT levels in bone marrow chimaera where MyD88

was present in the CNS compartment (KORWT), significant

numbers of neutrophils were associated with brain abscesses

of these chimaeras, reaching levels that were equivalent to

WT mice (WTRWT; Figure 3). In contrast, minimal neutrophil

influx was detected in chimaeras where MyD88 was only

present in bone marrow-derived cells and absent in the CNS

(WTRKO; Figure 3). We did not perform quantitative

measurements of PMN (polymorphonuclear cell) infiltrates

by FACS in the various chimaera groups owing to limiting

numbers of mice. Collectively, these findings indicate that

MyD88 expression in resident CNS cells is critical for dictating

subsequent neutrophil efflux into the infected brain.

Importantly, these findings mirror chemokine expression

profiles (Figure 2), providing additional supportive evidence

for the important role of central MyD88 in initiating the

inflammatory cascade required for CNS amplification of

inflammatory networks to recruit peripheral anti-microbial

effector cells.

Neutrophil and microglia/macrophages occupy
distinct anatomical niches during S. aureus
infection in the CNS parenchyma
The use of a S. aureus-GFP isolate enabled us to evaluate the

cell type(s) intimately associated with bacteria in the CNS

parenchyma. A consistent trend surfaced where neutrophils

were in direct contact with bacteria (Figure 4), whereas

microglia/macrophages were never found associated with S.

aureus, but rather were physically removed from the bacteria
and localized along the abscess margins. The physical locales
of these cell types are probably attributed to their effector
functions during brain abscess development. For example,
neutrophils are essential for controlling bacterial burdens and
the extent of brain abscess dissemination (Kielian et al.,

Figure 2 MyD88 in the CNS compartment is important for regulating pro-inflammatory mediator expression in brain abscesses
Abscess homogenates from MyD88 bone marrow chimaeras (n54–6 mice per group) were prepared at 18 or 24 h following S. aureus
infection, whereupon inflammatory mediator expression was analysed at the protein level using multi-plex microbead arrays.
Mediator levels were normalized to the amount of total protein to account for differences in tissue sampling size. Significant
differences between chimaera groups were determined by one-way ANOVA followed by the Holm–Sidak method for multiple pair-
wise comparisons and are denoted with asterisks (*P,0.05; **P,0.001). Results are representative of three independent experiments.
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2001), whereas microglia/macrophages are typically localized
along the abscess margins (Flaris and Hickey, 1992; Kielian et

al., 2008).

Lack of MyD88 expression in the CNS
compartment leads to elevated S. aureus burdens
We next examined whether MyD88 expression in CNS

parenchymal compared with infiltrating immune cells

influences S. aureus survival in the brain. Interestingly,

although no significant differences in bacterial burdens were

observed at 18 h post-infection, a significant increase in S.

aureus titres was detected in chimaeric animals where MyD88

was absent in the CNS but present in bone marrow-derived

cells (WTRKO) at 24 h following bacterial exposure

(Figure 5). This finding is in agreement with the fact that

pro-inflammatory mediator production was depressed in

MyD88 WTRKO chimaeras compared with KORWT and

Figure 3 MyD88 expression in the CNS dictates the degree of neutrophil influx into the infected CNS
Bone marrow chimaera mice (n54–6 per group) received an intracerebral infection with a S. aureus-GFP strain (green) and were
euthanized 24 h later, whereupon brain tissues were flash-frozen on dry ice for subsequent cryostat sectioning. Serial 10 mm thick
sections were prepared throughout the entire abscess, subjected to immunofluorescence staining for the neutrophil marker Gr-1
(red), and imaged by confocal microscopy (magnification, 406). Nuclei were visualized by DAPI (49,6-diamidino-2-phenylindole)
staining (blue). Significant numbers of neutrophils can be visualized infiltrating brain abscesses of WTRWT and KORWT chimaeras.
Results are representative of two independent experiments.

(b) Ratios of MyD88 KO compared with MyD88 WT at 24 h post-infection

Gene name Common name GenBankH accession number Z-ratio

Ifitm2 Interferon-induced transmembrane protein 2 NM_030694 23.26
Lcn2 Lipocalin 2 NM_008491.1 22.39
Pfc Properdin factor, complement XM_135820.3 22.05
Serpina3n Serine (cysteine) proteinase inhibitor, clade A, member 3N NM_009252.1 21.87
Socs3 Suppressor of cytokine signaling 3 NM_007707.2 21.68
IL-1b Interleukin-1b NM_008361 21.67
Ifitm1 Interferon-induced transmembrane protein 1 NM_026820.2 21.54
Egr4 Early growth response 4 NM_020596.1 1.81
Pacsin3 Protein kinase C and casein kinase substrate in neurons 3 NM_028733.1 1.73

Table 1 Differentially expressed genes between MyD88 KO and WT mice harbouring brain abscesses
(a) Ratios of MyD88 KO compared with MyD88 WT at 12 h post-infection

Gene name Common name GenBankH accession number Z-ratio

Lcn2 Lipocalin 2 NM_008491.1 211.13
Pacsin3 Protein kinase C and casein kinase substrate in neurons 3 NM_028733.1 23.25
Erdr1 Erythroid differentiation regulator 1 NM_133362.1 22.62
SOCS3 Suppressor of cytokine signaling 3 NM_007707.2 22.40
CXCL1 C-X-C motif ligand 1 NM_008176.1 22.25
Ier3 Immediate early response 3 NM_133662.1 22.02
Pdap1 PDGFA-associated protein 1 XM_132501.2 21.93
Calm2 Calmodulin 2 NM_007589 21.65
Glul Glutamine synthase NM_008131.2 21.65
Hspca Heat-shock protein 1a NM_010480.3 21.65
Mtch1 Mitochondrial carrier homologue 1 NM_019880.2 1.95
Bach Brain acyl-CoA hydrolase NM_133348.1 1.93
Hba-a1 Haemoglobin a, adult chain 1 NM_008218.1 1.63
Ndufs2 NADH dehydrogenase Fe-S protein 2 NM_153064.3 1.55
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WTRWT animals; however, it is intriguing that elevated

bacterial burdens were not also observed in MyD88 KO

controls, although the latter is in agreement with our

previous findings (Kielian et al., 2007). It is not clear what

mechanism(s) are responsible for enhanced bacterial burdens

in MyD88 WTRKO chimaeras, but one possibility could relate

to the recent observation that some bacterial species possess

homologues of the TIR (Toll/IL-1 receptor) domain to subvert

host defences (Cirl et al., 2008), and it is conceivable that this

mechanism could result in the failure to contain bacterial

burdens in the presence of MyD88 WT leucocytes. An

alternative explanation is that MyD88-positive leucocytes

infiltrating the brain parenchyma do not receive a requisite

signal(s) from the brain microenvironment in the absence of

MyD88, culminating in ineffective bacterial neutralization.

These possibilities remain highly speculative at the present

time. Collectively, these results indicate that CNS-derived

MyD88 signals influence the efficacy of ensuing bactericidal

effector mechanisms.

Transcriptional profiling of MyD88 KO mice
following intracerebral S. aureus infection
reveals alterations in apoptosis regulatory
pathways
Previous studies with MyD88 KO mice in the experimental

brain abscess model revealed that, although these animals

were incapable of mounting a significant innate immune

response and experienced high mortality rates, paradoxically,

these mice did not exhibit significantly elevated bacterial

burdens as compared with WT animals (Kielian et al., 2007).

This finding demonstrated that bacterial burdens themselves

are not the sole determinant in dictating the extent of tissue

injury and/or mortality during brain abscess development. To

begin to dissect the potential mechanism(s) responsible for

the rapid decline of MyD88 KO mice following intracerebral S.

aureus infection, transcriptional profiling was performed.

Interestingly, only a small subset of genes was found to be

differentially expressed by microarray analysis and many of

these have been implicated in controlling apoptotic pathways

(i.e. Erdr1, Ier3, Pdap1, Calm2, Hspca, Mtch1, and Ifitm1 and

2; Table 1). Dysregulation of apoptotic pathways could

conceivably be responsible, in part, for the excessive tissue

destruction observed in MyD88 KO mice (Kielian et al., 2007),

where a combination of rampant necrotic and apoptotic

death leads to the destruction of infected and neighbouring

non-infected brain parenchyma respectively. In addition,

several genes detected by microarray analysis (i.e. CXCL1, IL-

1b) have previously been shown to be down-regulated in

brain abscesses of MyD88 KO mice at the protein level

(Kielian et al., 2007), confirming the validity of the microarray

findings to accurately distinguish changes in gene expression

between the groups. However, to further confirm the

differential expression patterns detected by microarray

analysis, we selected a subset of genes for validation by

qRT-PCR. As shown in Figure 6, the expression patterns of the

five genes examined (Lcn2, SOCS3, Ier3, Pfc and Pascin3) were

in agreement with the microarray findings, indicating that

these genes may impact the differential outcome of S. aureus

infection and widespread parenchymal destruction in the

brains of MyD88 KO mice. It should be noted that the

relatively low number of differentially expressed genes

detected between MyD88 KO and WT mice is probably the

result of our experimental design. Namely, we elected to

perform microarrays on brain abscess RNA collected from

individual animals at each time point rather than pooling

RNA from a group of animals. We felt this was important to

account for biological variability between individual mice

and, as such, it is highly likely that the breadth of

differentially expressed genes was underestimated by this

approach. Collectively, these transcriptional profiling studies

suggest dysregulation of pro-inflammatory and apoptotic

genes in acute brain abscesses of MyD88 KO mice. The

functional role for each of these molecules in contributing to

the excessive parenchymal destruction observed following S.

aureus infection in MyD88 KO mice remains to be determined.

Figure 4 Neutrophils and microglia/macrophages occupy distinct ana-
tomical niches during acute S. aureus infection in the brain parenchyma
WT mice received an intracerebral infection with a S. aureus-GFP strain
(green) and were euthanized 24 h later, whereupon brain tissues were flash-
frozen on dry ice for subsequent cryostat sectioning. Serial 10 mm thick
sections were prepared throughout the entire abscess, subjected to
immunofluorescence staining for the neutrophil or microglia/macrophage
markers Gr-1 and Iba-1 respectively (red), and imaged by confocal
microscopy (magnification, 406). Neutrophils are found to directly interact
with bacteria, whereas microglia/macrophage staining did not overlap with S.
aureus. Results are representative of two independent experiments.
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DISCUSSION

MyD88-dependent signalling plays a pivotal role in regulating

the host innate immune response to bacterial infection (Akira

et al., 2006; Trinchieri and Sher, 2007). Not only is this

adaptor molecule central in the signalling of the majority of

TLRs, but also mediates activation through the IL-1R and IL-

18R (Wesche et al., 1997; Adachi et al., 1998; Burns et al.,

1998; Medzhitov et al., 1998). The importance of MyD88 in

the host response to infectious diseases has been highlighted

by several laboratories in diverse infectious disease models

(Takeuchi et al., 2000; Koedel et al., 2004; Miller et al., 2006;

Fremond et al., 2007).

Our recent study demonstrated that MyD88 KO mice

displayed global defects in innate immunity following

intracerebral S. aureus infection as typified by the dramatic

reduction in pro-inflammatory cytokine and chemokine

expression and the inability to recruit significant numbers

of neutrophils and macrophages from the periphery (Kielian

et al., 2007). One main question that remained to be

answered was how important is MyD88 in the CNS

compartment? Does CNS MyD88 expression play a role in

shaping the subsequent innate immune response following

bacterial infection in the brain or are infiltrating leucocytes

alone sufficient for establishing immunity? This issue could

not be resolved in our previous study since MyD88 was

globally absent in MyD88 KO mice and the fact that the brain

abscess model is complicated by the involvement of both

activated CNS-resident and infiltrating immune cells both of

which express this adaptor molecule (Kielian, 2004; Stenzel et

al., 2005; Kielian et al., 2007). This conundrum was addressed

in the present study by generating radiation bone marrow

chimaera mice where MyD88 was specifically expressed in

either CNS-resident cells or peripheral bone marrow-derived

leucocytes.

The results from MyD88 bone marrow chimaera mice were

rather unexpected given the essential nature of MyD88-

Figure 5 Lack of MyD88 expression in the CNS compartment leads to
elevated S. aureus burdens
Abscess homogenates from MyD88 bone marrow chimaeras (n54–6 mice per
group) were prepared at 18 or 24 h following S. aureus infection, whereupon
the number of viable bacteria were determined by quantitative plate assays.
Significant differences between chimaera groups were determined by one-
way ANOVA followed by the Holm–Sidak method for multiple pair-wise
comparisons and are denoted with asterisks (**P,0.001). Results are
representative of three independent experiments.

Figure 6 qRT-PCR confirms a subset of differentially expressed genes detected by microarray analysis
MyD88 KO and WT mice (n54–5 per group) were infected with S. aureus intracerebrally and euthanized at 12 or 24 h, whereupon
total RNA was isolated and evaluated for a subset of genes determined to be differentially expressed by microarray analysis using
qRT-PCR. Genes analysed included Lcn2, SOCS3, Ier3, Pfc and Pascin3. Gene expression levels were calculated after normalizing
target signals against the housekeeping gene GAPDH and are presented as the change in mRNA expression compared with
uninfected animals (mean¡S.D.). Significant differences in gene expression levels between MyD88 KO and WT mice are denoted
with asterisks (*P,0.05). Results are representative of two independent experiments examining a total of 8–10 individual animals.
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dependent signalling in peripheral leucocyte activation and

the fact that these cells represent the major infiltrate

associated with evolving brain abscesses (Kielian, 2004).

Indeed, studies by our group and others have shown that

neutrophils constitute the main cell type associated with

brain abscesses during the early stage of infection (Kielian et

al., 2001; Stenzel et al., 2005; Kielian et al., 2007). In essence,

our results demonstrated that MyD88 expression in CNS-

resident cells, not bone marrow-derived cells, was essential

for inducing maximal cytokine/chemokine expression since

levels were restored to those observed in WT-infected animals

only in MyD88 KORWT chimaeras. In contrast, animals where

MyD88 was present in bone marrow-derived cells, but not the

CNS (i.e. WTRKO) did not display WT mediator expression.

However, the finding that some inflammatory molecules were

more highly expressed in WTRKO chimaeras compared with

MyD88 KO controls (i.e. KORKO) suggests a minor

contribution for peripheral MyD88 in shaping the innate

immune response during the first 24 h following S. aureus

infection. It should be acknowledged that we cannot discount

a potential role for MyD88 expression in the periphery during

later stages of infection. In fact, this possibility appears likely

since resident CNS cells (i.e. microglia and astrocytes),

although immune competent, have relatively poor bacter-

icidal activity compared with professional phagocytes (i.e.

neutrophils and macrophages). In addition, since many gene

products driven by MyD88 impact bacterial survival [i.e. iNOS

(inducible NO synthase), ROI (reactive oxygen intermediates)

and cytokines] it is likely that, with time, MyD88 signals

originating from bone marrow-derived leucocytes may

become more important in regulating anti-bacterial immun-

ity in brain abscesses. However, this possibility could not be

examined in the current study due to the short survival

period of infected MyD88 KO mice.

A similar requirement for MyD88 expression in the CNS

compartment was observed when evaluating neutrophil

influx into the infected brain. Specifically, WT levels of

neutrophil recruitment were only observed in chimaeras with

MyD88 expression in the brain parenchyma (i.e. KORWT).

This finding probably stems from the fact that the expression

of neutrophil chemokines was also restored to WT levels in

these chimaeras. It is important to note that radiation bone

marrow chimaera studies are not without potential caveats.

For example, irradiation has been shown to induce transient

blood–brain barrier compromise and the expression of several

pro-inflammatory mediators (Belka et al., 2001; Diserbo et al.,

2002; Li et al., 2004; Linard et al., 2004). The likelihood that

these factors influenced the results obtained in the present

study is minimized by the fact that chimaeras were not

infected with S. aureus until 8 weeks post-transplant. Indeed,

a recent report has demonstrated that pro-inflammatory

molecule expression was similar between radiation chimaera

and non-irradiated mice in response to intracerebral LPS

(lipopolysaccharide) (Turrin et al., 2007). It has been

suggested that irradiation serves to condition the CNS for

subsequent colonization by bone marrow-derived cells that

eventually transition into microglia-like cells, although some

controversy with regard to this latter point still exists

(Simard et al., 2006; Ajami et al., 2007; Mildner et al.,

2007; Davoust et al., 2008). Therefore it is possible that a

minor percentage of parenchymal microglia in the present

study originated from bone marrow precursors since we did

not shield the head during the irradiation procedure;

nonetheless, our results clearly demonstrate an essential role

for MyD88 expression by CNS-resident cells in eliciting

protective immunity during early stages of brain abscess

development.

To further investigate the potential pathway(s) affected by

MyD88 loss during early brain abscess development, micro-

array analysis was performed. Interestingly, many genes that

were differentially expressed in MyD88 KO mice were related

to apoptosis, which may be due, in part, to the inability to

trigger NF-kB (nuclear factor kB) activation, a well known

survival signal (Van Antwerp et al., 1996; Li et al., 1999). One

such gene was Ier3 (IEX-1), a stress-inducible gene that is

rapidly up-regulated in response to a variety of factors

including infection, inflammatory cytokines, and transcrip-

tion factors such as NF-kB (Pietzsch et al., 1997;

Domachowske et al., 2000; Arlt et al., 2008). Indeed, a

previous study has demonstrated that IEX-1 expression is NF-

kB- and TNF-a-dependent (Osawa et al., 2003) and, since

both molecules are significantly attenuated in MyD88 KO

mice, this is in agreement with the reduction in IEX-1 levels

detected by microarray in these animals. Although IEX-1 has

been shown to play a pivotal role in promoting cell survival in

response to stress (Wu et al., 1998; Garcia et al., 2002; Mittal

et al., 2006), its functional impact on cell survival remains

controversial and probably depends on cell type, stimulus,

and expression levels (Arlt et al., 2001; Schilling et al., 2001;

Osawa et al., 2003). Interestingly, a previous study has

demonstrated that IEX-1 reduces ROS (reactive oxygen

species) production (Shen et al., 2006) and, by extension,

attenuated IEX-1 levels in brain abscesses of MyD88 KO mice

could conceivably exacerbate ROS accumulation contributing

to the massive tissue damage observed in these animals.

However, these possibilities remain speculative at the present

time.

Another gene that was significantly down-regulated in

brain abscesses of MyD88 KO mice is Lcn2 [also referred to as

NGAL (neutrophil gelatinase-associated lipocalin)]. Similar to

IEX-1, Lcn2 has also been implicated in regulating apoptosis

and is produced by numerous cell types including macro-

phages and neutrophils in response to infection (Kjeldsen et

al., 1993; Devireddy et al., 2001; Tong et al., 2005; Lee et al.,

2007). Therefore, in the context of our brain abscess model, it

is likely that reduced Lcn2 expression in MyD88 KO mice

resulted from the fact that neutrophil and macrophage

infiltrates are decreased approx. 85% and 15% respectively,

compared with WT animals as we previously reported (Kielian

et al., 2007). In addition, a previous study has demonstrated

that Lcn2 is induced in macrophages in response to heat-

killed group B Streptococcus via a TLR2-dependent manner,
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implying a role for TLRs in Lcn2 induction (Draper et al.,

2006). Obviously, TLR2-mediated signalling is ablated in

MyD88 KO mice, suggesting that this may represent one

mechanism by which Lcn2 expression is reduced during brain

abscess formation in these animals. Another gene whose

expression was decreased in brain abscesses of MyD88 KO

animals was properdin. Properdin activates the alternative

pathway of complement by assembling the C3 convertase on

target surfaces (Kemper and Hourcade, 2008). Properdin is

capable of binding to bacteria to engage the alternative

complement pathway and its importance in host defence is

illustrated by the enhanced sensitivity of properdin-deficient

patients to meningococcal disease (Densen et al., 1987;

Emonts et al., 2003). Unlike most complement components,

properdin is produced by neutrophils and macrophages

(Schwaeble et al., 1994; Wirthmueller et al., 1997) and the

fact that the influx of both of these cell types is significantly

attenuated in brain abscesses of MyD88 KO mice (Kielian et

al., 2007) probably explains the reduction in properdin levels

observed in these animals. Another gene that was attenuated

in brain abscesses of MyD88 KO mice was SOCS3, which is a

negative regulator of cytokine signalling elicited by JAK

(Janus kinase)/STAT (signal transducer and activator of

transcription), as well as TLR signalling pathways (Dimitriou

et al., 2008). It is interesting to note that SOCS3 has been

reported to block IL-10 production, as well as induce classical

macrophage activation (Dimitriou et al., 2008; Liu et al.,

2008). Our previous study demonstrated that macrophages

and microglia isolated from brain abscesses of MyD88 KO

mice expressed equivalent levels of IL-10 compared with WT

cells, and this fact could be explained by the reduction in

SOCS3 levels observed here. In addition, TNF-a has been

reported to stabilize SOCS3 mRNA expression (Ehlting et al.,

2007), and the failure to induce significant TNF-a expression

in brain abscesses of MyD88 KO mice could be another factor

contributing to reduced SOCS3 levels in these animals.

Importantly, our microarray analysis revealed several genes

that we have previously reported to be significantly

attenuated in brain abscesses of MyD88 KO mice at the

protein level including IL-1b and CXCL1 (KC) (Kielian et al.,

2007). This provides further confidence in the accuracy of our

microarray analysis. Collectively the propensity of apoptosis-

related genes that are differentially expressed in brain

abscesses of MyD88 KO mice is highly suggestive that the

expansive tissue damage that occurs in these animals is

influenced by accelerated/dysregulated apoptotic pathways.

This possibility remains to be directly tested in future studies

with MyD88 KO mice in the brain abscess model.

One important point to emphasize is that, although we

have identified a critical role for MyD88 in the CNS

compartment during the early phase of S. aureus infection,

several outstanding questions remain. The first is that we

cannot determine whether MyD88 mediates its effects

through TLRs or the IL-1R or IL-18R since all of these

molecules utilize this signalling adaptor. This is important

since earlier studies from our laboratory have revealed a

pivotal role for IL-1 in innate immunity to CNS S. aureus

infection (Kielian et al., 2004a). A second issue relates to the

target cells in the brain where MyD88 expression is

important. Likely candidates include microglia and astrocytes

since both cell types are capable of recognizing S. aureus via

a MyD88-dependent mechanism leading to pro-inflammatory

mediator release (Esen and Kielian, 2006; T. Kielian,

unpublished data). Regardless, the findings of the present

study highlight a novel mechanism for CNS-resident cells in

initiating a protective innate immune response in the

infected brain and, in the absence of MyD88 in this

compartment, immunity is compromised.
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