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Abstract

Endogenous retroviruses (ERVs) represent host genomic ‘fossils’ of ancient viruses. Foamy viruses, including those that
form endogenous copies, provide strong evidence for virus-host co-divergence across the vertebrate phylogeny.
Endogenous foamy viruses (EFVs) have previously been discovered in mammals, amphibians, and fish. Here we report a
novel endogenous foamy virus, termed ERV-Spuma-Spu, in genome of the tuatara (Sphenodon punctatus), an endangered rep-
tile species endemic to New Zealand. Phylogenetic analyses revealed that foamy viruses have likely co-diverged with their
hosts over many millions of years. The discovery of ERV-Spuma-Spu fills a major gap in the fossil record of foamy viruses
and provides important insights into the early evolution of retroviruses.
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Introduction

Retroviruses (family Retroviridae) are viruses of major medical
significance as some are associated with severe infectious dis-
ease or are oncogenic (Hayward, Cornwallis, and Jern 2015;
Aiewsakun and Katzourakis 2017; Xu et al. 2018). Retroviruses
are also of note because of their ability to integrate into the host
germ-line, generating endogenous retroviruses (ERVs) that then
exhibit Mendelian inheritance (Stoye 2012; Johnson 2015). ERVs
are widely distributed in vertebrates (Hayward, Grabherr, and
Jern 2013; Cui et al. 2014; Hayward, Cornwallis, and Jern 2015;
Xu et al. 2018) and constitute important molecular fossils for

the study of retrovirus evolution. ERVs related to all seven ma-
jor retroviral genera (alpha-, beta-, delta-, epsilon-, gamma-,
lenti-, and spuma-) have been described (Hayward, Cornwallis,
and Jern 2015), although some of the more complex retrovi-
ruses, such as lenti-, delta- and foamy viruses, rarely appear as
endogenous copies.

As well as being agents of disease, foamy viruses are of im-
portance because they exhibit long-term virus-host co-
divergence (Switzer et al. 2005). Endogenous foamy viruses
(EFVs), first discovered in sloths (class Mammalia) (Katzourakis
et al. 2009) also co-diverge with their hosts, and have also been
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reported in primates and the Cape golden mole (Han and
Worobey 2012b, 2014). The subsequent discovery of a EFV in the
coelacanth genome indicated that foamy viruses may have an
ancient evolutionary history (Han and Worobey 2012a), likely
spanning hundreds of million years (Aiewsakun and
Katzourakis 2017). Although EFVs or foamy-like elements have
been reported in fish, amphibians, and mammals, to date they
have not been reported in genomes of two other major classes
of vertebrates—reptiles and birds (Tristem, Myles, and Hill 1995;
Herniou et al. 1998; Hayward, Cornwallis, and Jern 2015; Xu
et al. 2018).

Materials and methods
Genomic mining and consensus genome construction

To identify foamy viruses in reptiles, the TBLASTN program
(Altschul et al. 1990) was used to screen relevant taxa from 28
reptile genomes (Supplementary Table S1) and 130 bird
genomes (Supplementary Table S2) (as of October 2018) down-
loaded from GenBank (www.ncbi.nlm.nih.gov/genbank). In each
case, the amino acid sequences of the Pol genes of representa-
tive EFVs, endogenous foamy-like viruses, and exogenous
foamy viruses were chosen as queries (Supplementary
Table S3). As filters to identify significant and meaningful hits,
we chose sequences with more than 30 per cent amino acid
identity over a 30 per cent region, with an e-value set to 0.00001.
Genomes that contained only single hits for EFVs were excluded
as likely false positives. We extended viral flanking sequences
of the hits to identify the 50- and 30-long terminal repeats (LTRs)
using LTR finder (Xu and Wang 2007) and LTR harvest
(Ellinghaus Kurtz, and Willhoeft 2008). Sequences highly similar
to foamy virus proteins found in tuatara were termed
‘ERV-Spuma.n-Spu’ (in which n represents the number of the se-
quence extracted from this tuatara genome) according a re-
cently proposed nomenclature for ERVs (Gifford et al. 2018), and
aligned to generate an ERV-Spuma-Spu consensus genome
(ERV-Spuma.0-Spu) (Supplementary Table S4). Conserved
domains were identified using CD-Search service in NCBI
(Marchler-Bauer and Bryant 2004).

Molecular dating of integration times

The ERV integration time can be estimated using the following
simple relation: T = (D/R)/2, in which T is the integration time
(million years, MY), D is the number of nucleotide differences
per site between the two LTRs, and R is the genomic substitu-
tion rate (i.e. number of nucleotide substitutions per site, per
year). We used the previously estimated neutral substitution
rate for squamate reptiles (7.6 � 10�10 nucleotide substitutions
per site, per year) (Perry et al. 2018). LTRs less than 300 bp in
length were not included in this analysis. Five pairwise LTRs
were used for date estimation (Supplementary Table S5).

Phylogenetic analysis

To determine the evolutionary relationship of EFVs and retrovi-
ruses, sequences of the Pol proteins were aligned using MAFFT
7.222 (Katoh and Standley 2013) and confirmed manually in
MEGA7 (Kumar, Stecher, and Tamura 2016). The phylogenetic
relationships among these sequences were then determined us-
ing the maximum-likelihood (ML) method in PhyML 3.1 (Guindon
et al. 2010), incorporating 100 bootstrap replicates to determine
node robustness. The best-fit models of amino acid substitution
were determined by ProtTest 3.4.2 (Abascal, Zardoya, and Posada
2005): RtREV þ CþI for Pol, and LG þ CþI þ F for concatenated
Gag, Pol, and Env. All alignments used in the phylogenetic analy-
ses can be found in Supplementary data sets S1 and S2.

Results and discussion
Discovery of foamy viral elements in reptile genomes

We screened all available reptilian and bird genomes by using the
TBLASTN algorithm with various foamy viruses, including EFVs,
as screening probes. We only considered viral hits within long ge-
nomic scaffold (>20 kilobases in length) to be bona fide ERVs. This
genomic mining identified 118 ERV hits in tuatara (Sphenodon
punctatus) and none in bird genomes. Hence, a total of 118 ERV
hits in the tuatara genome were extracted and subjected to evolu-
tionary analysis (Supplementary Table S6) and these ERVs were
named as ERV-Spuma.n-Spu (where n = 1�118).

Genomic organization

We extracted all significant foamy viral elements and con-
structed a consensus genomic sequence of ERV-Spuma-Spu
(Supplementary Fig. S1, Table S4), termed ERV-Spuma.0-Spu.
The consensus genome harboured a pairwise LTRs and exhibits
a typical spuma virus structure, encoding three main open read-
ing frames (ORF)—gag, pol, and env—and one putative additional
accessory gene, ORF 1 (Fig. 1). Interestingly, this accessory ORF 1
exhibits no sequence similarity to known foamy accessory
genes. Notably, by searching the Conserved Domains Database
(www.ncbi.nlm.nih.gov/Structure/cdd), we identified three typi-
cal foamy conserved domains for both the consensus and one
of two full-length original ERV-Spuma.23-Spu: (1) Spuma virus
Gag domain (pfam03276) (Winkler et al. 1997), (2) Spuma aspar-
tic protease (A9) domain (pfam03539) which exists in all mam-
malian foamy virus Pol protein (Aiewsakun and Katzourakis
2017), and (3) foamy virus envelope protein domain (pfam03408)
(Han and Worobey 2012a) (Supplementary Figs S2 and S3), con-
firming that ERV-Spuma-Spu is indeed of foamy virus origin.

Estimated integration times

To broadly estimate the integration time of ERV-Spuma-Spu, we
utilized the LTR-divergence method which analyzes the degree
of divergence between 50 and 30LTRs assuming a known rate of
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Genome structure of ERV-Spuma-Spu

Figure 1. Genomic organizations of ERV-Spuma-Spu. LTR, long-terminal repeat; PBS, primer-binding site; Pro, aspartic protease; RT, reverse transcriptase; RH, ribonu-

clease H; IN, integrase.
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nucleotide substitution (Johnson and Coffin 1999). In total, five
pairwise LTRs flanking ERV-Spuma-Spu elements were used for
date estimation (Supplementary Table S5), from which we esti-
mated an integration time of ERV-Spuma-Spu ranging from 1.3
to 35.47 MYA (million years ago). Although these dates are
young relative to the age of reptiles, LTR dating may severely
underestimate ERV ages (Kijima and Innan 2010; Aiewsakun

and Katzourakis 2017), such that all estimates of integration
time should be treated with caution.

Evolutionary relationships of ERVs-Spuma-Spu

Sequences of the Pol protein (490 amino acids in length) of ERV-
Spuma-Spu were used for phylogenetic analysis. Our ML
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Figure 2. Phylogenetic tree of retroviruses, including ERV-Spuma-Spu, inferred using amino acid sequences of the Pol gene (490aa). The tree is midpoint rooted for clar-
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phylogenetic trees revealed that the EFVs present in the tuatara
genome formed a close monophyletic group within the foamy
virus clade, indicative of a single origin, and with high bootstrap
support (Fig. 2). The divergent phylogenetic position of ERV-
Spuma-Spu is compatible with virus-host co-divergence for the
entire history of the vertebrates. However, it is possible that this
pattern will change with a larger sampling of taxa such that the
EFV phylogeny expands.

In addition, we inferred a phylogenetic tree of FVs, EFVs, and
foamy-like ERVs. This was consistent to those in previous stud-
ies (Aiewsakun and Katzourakis 2017) and revealed that the
ERVs reported previously in the tuatara genome are distantly re-
lated to foamy virus and belong to class III retroviruses
(Supplementary Fig. S4) (Tristem, Myles, and Hill 1995; Herniou
et al. 1998). Failure to detect any ERV-Spuma-Spu-related ele-
ments in the remaining reptilian genomes suggest that the vi-
rus may be not vertically transmitted among reptiles, although
this will clearly need to be reassessed with a larger sample size.
The absence of EFVs in avian genomes is puzzling and clearly
merits additional study.

Previous studies provided strong evidence for the co-
divergence of foamy viruses and their vertebrate hosts over ex-
tended periods of evolutionary time (Katzourakis et al. 2009). An
analysis of concatenated gag-pol-env protein sequences sug-
gests that the reptilian ERV-Spuma-Spu newly described here
follow the same pattern of long-term virus-host co-divergence
(Fig. 3). As such, these data imply that ERV-Spuma-Spu may
have diverged from the other mammalian foamy viruses along
with its tuatara host more than 320 MYA (http://www.timetree.
org/). The discovery of ERVs-Spuma-Spu therefore fills a major
gap in our understanding of the taxonomic distribution of the
foamy viruses and their evolutionary history.
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