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Abstract: Food composition databases (FCDBs) provide the nutritional content of foods and are
essential for developing nutrition guidance and effective intervention programs to improve nutrition
of a population. In public and nutritional health research studies, FCDBs are used in the estimation
of nutrient intake profiles at the population levels. However, such studies investigating nutrient
co-occurrence and profile patterns within the African context are very rare. This study aimed to
identify nutrient co-occurrence patterns within the South African FCDB (SAFCDB). A principal
component analysis (PCA) was applied to 28 nutrients and 971 foods in the South African FCDB to
determine compositionally similar food items. A second principal component analysis was applied to
the food items for validation. Eight nutrient patterns (NPs) explaining 73.4% of the nutrient variation
among foods were identified: (1) high magnesium and manganese; (2) high copper and vitamin B12;
(3) high animal protein, niacin, and vitamin B6; (4) high fatty acids and vitamin E; (5) high calcium,
phosphorous and sodium; (6) low moisture and high available carbohydrate; (7) high cholesterol and
vitamin D; and (8) low zinc and high vitamin C. Similar food patterns (FPs) were identified from a
PCA on food items, yielding subgroups such as dark-green, leafy vegetables and, orange-coloured
fruit and vegetables. One food pattern was associated with high sodium levels and contained bread,
processed meat and seafood, canned vegetables, and sauces. The data-driven nutrient and food
patterns found in this study were consistent with and support the South African food-based dietary
guidelines and the national salt regulations.

Keywords: food composition database; nutrient pattern; nutrient composition; principal component
analysis; food-based dietary guideline; salt intake; South Africa

1. Introduction

Public health nutrition focuses on promotion and improvement of optimal health
of a population through nutrition-related health dietary guidelines and policies. In the
sub-Saharan African region, public health challenges such as the increasing burden of
malnutrition, diabetes mellitus and cardiovascular diseases, can potentially be addressed
with adequate nutrition interventions [1,2]. However, to implement effective nutritional
interventions in the region, the nutritional situation of the targeted population needs to be
known. This requires reliable food consumption data.

Food composition databases (FCDBs) are essential to public health nutrition and
associations between diet and health have been shown at the levels of dietary patterns,
food groups, foods, and nutrients [3]. They are used together with dietary intake studies to

Nutrients 2021, 13, 3194. https://doi.org/10.3390/nu13093194 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-6449-3260
https://orcid.org/0000-0002-9672-3312
https://doi.org/10.3390/nu13093194
https://doi.org/10.3390/nu13093194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13093194
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13093194?type=check_update&version=1


Nutrients 2021, 13, 3194 2 of 17

develop food frequency questionnaires and assess relationships between diet and disease.
FCDBs also provide insight into food groups and foods containing low or high nutrient
levels. Once these relationships have been determined, food-based dietary guidelines
(FBDGs) and nutrition policies can be implemented. FBDGs translate recommended
dietary allowances to food-related guidelines for improved public health nutrition and
guidance [4]. South Africa first developed the FBDGs in 2003 and revised the guidelines
in 2012. The South African FBDGs have since been adopted by the National Department
of Health as the ‘official’ dietary recommendations for the country in people aged 5 years
or older [4]. The eleven guidelines aim to promote a change in the dietary habits of
South Africans to address nutrition-related public health diseases such as malnutrition and
obesity. The guidelines encourage dietary diversity and highlight foods that should be
limited such as fats, sugar, and salt. Other public health nutrition measures to improve
health such as food fortification [5], salt regulations [6] and taxes on sugar-sweetened
beverages [7], have also been implemented in South Africa.

Fruits, vegetables, legumes, dairy, and meat are just a few of the common food
groups found in FCDBs and accepted by nutritionists. Food items within these food
groups generally provide similar amounts of macronutrients. However, while nutritional
composition may be similar within these groupings, subgroups may be identifiable and
compositional similarity may also be found across these groupings. The growing number
of food items in FCDBs presents consumers with dietary choices that need to be based
on nutrition, availability, cost, and preference. Classifying food items into nutritionally
homogenous groups allows consumers to select alternative food items whilst maintaining
a similar nutritional intake. Identifying compositionally similar food items guides dietary
recommendations, assists in consumer education, and informs product reformulation.
With the ever-expanding food market and inclusion of country-specific foods, it can also
aid the categorization of a new food item by grouping it with similar foods that are
already known [3]. The identification of unhealthy food items that may not be immediately
apparent, also becomes possible.

Several studies have investigated the clustering of food items [8–12] and nutrient
co-occurrence patterns [13,14] using statistical methods, but only one was found to use
data from Africa [15]. More specifically, the study of nutrient patterns in South Africa has
been limited to consumption data [16–19]. Thus, there is a need to develop capacity in
methods applicable to the African scenario to help inform consumers and public health
policy makers in food nutrient patterns and composition.

Using statistical methods, this study aims to identify compositionally similar food
items and nutrient co-occurrence patterns within the South African Food Composition
Database (SAFCDB) [20]. The results of this study will provide data-driven evidence that
may support the current dietary guidelines and nutritional policies or offer an alterna-
tive view.

2. Materials and Methods
2.1. Data

The 2017 SAFCDB [20] (available at http://safoods.mrc.ac.za/products.html, accessed
on 9 September 2021) contained nutrient information on 1667 food items and 169 food
components. This consisted of both uncooked and cooked food items, as well as composite
dishes. Fortified food items were described as such. Table 1 provides a detailed description
of the food items by food group. For ease of reference, we will use the term ‘nutrients’ to
encompass the nutrients, minerals and vitamins used in the analysis. All nutrient values
were expressed per 100 g. The most common nutrients with a minimal quantity of missing
values were selected for analysis (n = 28; Table 2). In our selection of the nutrients, we
also ensured that nutrients were non-collinear. For example, because total carbohydrate
is the sum of available carbohydrate and dietary fibre, we opted to include available
carbohydrate and dietary fibre instead of total carbohydrate. Nine macronutrients, nine
minerals, and ten vitamins were analysed. Due to the standard principal component
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analysis (PCA) technique requiring complete data for all variables, all food items that had
complete nutrient information for the selected 28 nutrients were included in the principal
component analysis (n = 971).

Table 1. Number of foods per food group.

Food Group n %

Cereals and Cereal Products 273 16.38
Vegetables 312 18.72

Fruit 143 8.58
Legumes and Legume Products 37 2.22

Nuts and Seeds 27 1.62
Milk and Milk Products 76 4.56

Eggs 30 1.80
Meat and Meat Products 172 10.32

Fish and Seafood 61 3.66
Fats and Oils 50 3.00

Sugar, Syrups and Sweets 48 2.88
Soups, Sauces, Seasonings and Flavourings 76 4.56

Beverages 52 3.12
Infant and Paediatric Feeds and Foods 250 15.00

Therapeutic/Special/Diet Products 32 1.92
Miscellaneous 28 1.68

Total 1667 100.00

Table 2. Nutrients included in the analysis with their unit of measurement and corresponding abbreviations used in figures.

Macronutrients Minerals Vitamins

Moisture (g), moist Calcium (mg), ca Vitamin A (RE) (µg), vita_re
Plant protein (g), pl_prot Iron (mg), fe Thiamin (mg), thiamin

Animal protein (g), an_prot Magnesium (mg), mg Riboflavin (mg), ribofl
Saturated fatty acids (g), satfat Phosphorous (mg), p Niacin (mg), niacin

Mono-unsaturated fatty acids (g), mufat Potassium (mg), k Vitamin B6 (mg), vit_b6
Polyunsaturated fatty acids (g), pufat Sodium (mg), na Vitamin B12 (µg), vit_b12

Cholesterol (mg), choles Zinc (mg), zn Pantothenate (mg), pantothn
Carbohydrate, available (g), cho_avail Copper (mg), cu Vitamin C (mg), vit_c

Total dietary fibre (g), fib_tot Manganese (µg), mn Vitamin D (µg), vit_d
Vitamin E (mg), vit_e

Abbreviations: g = grams; mg = milligrams; µg = micrograms; RE = retinol equivalents.

2.2. Methods

Statistical methods that consider the correlated nature and presence of multiple nu-
trients within a food item are needed to evaluate the nutrient patterns amongst food
items. Principal component analysis is one of the oldest and simplest dimension-reduction
techniques available [21] and is applicable to correlated variables. When applied to food
composition data, PCA allows the analysis of multiple nutrients simultaneously. PCA aims
to describe the maximum amount of variation in the dataset using the least number of
principal components (PCs). The PCs are uncorrelated linear combinations of the original
variables that capture most of the variation within the first few components. PCA aids
data reduction by explaining the covariation amongst the variables using a few linear
combinations. PCA also aids data interpretation by finding features that explain the co-
variation. The contribution of each variable to a component is called the loading and
high loadings indicate important variables. Rotation methods can be applied to enhance
interpretability by producing loadings that are as close to zero or one as possible. For each
PC, observations have a score that combines each of the variables. The score indicates how
much each observation is related to a PC [22]. Factor analysis is also a common multivariate
dimension reduction technique but has slight differences to PCA. While PCA describes the
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relationships among the observed variables in a simpler way, factor analysis finds latent
factors that influence the observed variables. Hence, the application of factor analysis is
more suited to the analysis of consumption data as it will be able to generate latent factors,
that is, dietary patterns, which predict food choices [23]. Figure 1 presents the methodology
and rationale.
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Figure 1. Flow chart of methodology and rationale.

2.2.1. Correlation Analysis

For each nutrient, some foods contained exceptionally high values. For example,
oysters were especially high in zinc and amaranth leaves were especially high in magne-
sium. Due to these outliers, we calculated pairwise-complete Spearman correlations for
the complete dataset (n = 1667), to determine nutrient co-occurrence patterns.

2.2.2. Nutrient Pattern Analysis

For the sub-sample (n = 971), we explored the data using PCA with orthogonal vari-
max rotation and Kaiser normalization to enhance interpretability. PCA was applied to
the correlation matrix due to the scale differences between nutrients. Components were
retained considering the scree plot, eigenvalues greater than 1 (the average of the eigenval-
ues when using the correlation matrix) and interpretability. High-loading nutrients were
defined as having an absolute loading of at least 0.4 and were used to interpret the compo-
nent. To enhance and support the interpretation, nutrients with absolute loadings between
0.3 and 0.4 were also considered. Food items were allocated to groups corresponding to
their highest PC score. The chi-square test was used to test for an association between
the FCDB and PCA groupings. The Kruskal–Wallis test was used to test for differences
in nutrient values between the PC groupings. The PCs identified by the nutrient analysis
were termed ‘nutrient patterns (NPs)’.
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2.2.3. Food Pattern Analysis

We also applied PCA to the food items to confirm the components found during the
nutrient pattern analysis. Components with eigenvalues greater than 1 and that accounted
for at least 1% of the variation were retained. The highest absolute loading within each
component ranged between 0.07 and 0.16. Hence, absolute loadings greater than 0.05 were
used to interpret the component. The PCs identified by the food item analysis were termed
‘food patterns (FPs)’.

Trace values (values below the limit of detection) accounted for 1.2% of the data
and were imputed with half of the limit of detection for each nutrient [24]. Results were
considered significant for p < 0.05 and Bonferroni-adjusted significance levels were used
to account for multiple testing. All analyses were done in Stata version 16 (StataCorp,
College Station, TX, USA) and R (available at https://www.R-project.org/, accessed on 9
September 2021).

3. Results
3.1. Correlation Analysis

The correlations between the nutrients are presented in Figure 2. Overall, correlations
were mostly positive indicating frequent nutrient co-occurrences. Negative correlations
occur when the increase in one nutrient results in the decrease of another nutrient. Most
negative correlations were found between moisture and all other nutrients, except vitamin
C (r = 0.25, p < 0.001). Animal protein, fatty acids, and cholesterol positively correlated
with phosphorous, sodium, zinc, riboflavin, vitamin B12, pantothenic acid and vitamin D
(p < 0.001). In contrast, animal protein, saturated fatty acids, mono-unsaturated fatty acids,
and cholesterol, negatively correlated with total fibre and vitamin C (p ≤ 0.001). Vitamin E
had the highest positive correlations with fatty acids (r = 0.46, r = 0.52, r = 0.67, p < 0.001) and
vitamin D (r = 0.64, p < 0.001). Plant protein had the highest positive correlations with total
fibre (r = 0.82, p < 0.001) and manganese (r = 0.67, p < 0.001). Plant protein and total fibre
both negatively correlated with animal protein, cholesterol, and vitamin B12 (p < 0.001).
Vitamin B12 and vitamin D exhibited similar patterns, both negatively correlating with
plant protein, total fibre, and manganese (p < 0.001). Strong, positive correlations among
the minerals and vitamins were also found. Iron, magnesium, and copper were connected
by positive correlations (p < 0.001) as well as thiamin, riboflavin, niacin, and vitamin B6
(p < 0.001). Positive correlations were also evident between animal-derived micronutrients
such as phosphorus, zinc, and pantothenic acid (p < 0.001).

3.2. Nutrient Pattern Analysis

Eight nutrient patterns had an eigenvalue greater than 1 (Figure S1) that explained
73.4% of the total nutritional variation in the data. The rotated loadings are presented in
Table A1 in Appendix A. A characterisation of the patterns, using the nutrients that loaded
highly (absolute loadings >0.4) on each, is shown in Table 3, along with the supporting
nutrients that had absolute loadings between 0.3 and 0.4. At least two nutrients per pattern
had high loadings. PC scores were calculated for each food item and the highest score
determined pattern membership. NP 1 was characteristic of food items high in plant
protein, total fibre, magnesium, potassium, and manganese. Iron also featured on NP
1 but had a loading of 0.27—less than our threshold of 0.3. Wheat products, dark leafy
greens, legumes, nuts, and seeds scored highest on this pattern. NP 2 was found to be high
in vitamin A, copper, riboflavin, and vitamin B12 and linked with foods such as kidney,
liver, mussels, and oysters. Meat, meat products, crab, and oily fish scored high on NP
3 as they shared high levels of animal protein, niacin, and vitamin B6. Fortified bread
was also included due to its increased vitamin B6 content. Saturated fatty acids, mono-
unsaturated fatty acids, polyunsaturated fatty acids, and vitamin E characterised NP 4 and
were found to be highest in fats and oils, avocados, some nuts (almonds, pecans, walnuts,
macadamias, and coconuts), and sauces. Foods made or fried with oil or margarine also
scored highly on this pattern, as well as chicken skin and processed meats. NP 5 identified

https://www.R-project.org/
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foods high in calcium, phosphorous and sodium such as milk, milk products, canned
vegetables, biltong, and shrimp. Foods made with milk and cheese were also found to be
associated with NP 5. While most nutrients had positive loadings, moisture and zinc had
a negative loading on NPs 6 and 8, respectively. NP 6 had positive loadings of available
carbohydrate and thiamin, correlating with baked items, dried fruit, jams, as well as sugar
and sweets, while NP 8 had positive loadings of vitamin A and vitamin C. Fruits and
vegetables related mostly to NP 8, as well as soft maize meal. High cholesterol and vitamin
D content characterised NP 7. Foods associated with this pattern were eggs, composite
dishes using eggs, fish, offal, and tripe. Fortified milk powder and breastmilk substitutes
also scored high on this nutrient pattern. Pantothenic acid featured on NP 2 and NP 7 but,
like iron, had loadings below the absolute value threshold of 0.3.
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Table 3. Characterisation of nutrient patterns (NP).

NP Nutrients with Absolute Loadings >0.3 and >0.4 Examples of Food Items That Scored Highly on Pattern

1 high in plant protein, total fibre, magnesium,
potassium, and manganese

wheat products, oats, brown rice, dark leafy greens, peas,
dehydrated green beans, dehydrated cabbage, dehydrated

cauliflower, legumes and legume products, nuts, seeds
2 high in vitamin A, copper, riboflavin, and vitamin B12 kidney, liver, giblets, mussels, oyster, mushroom
3 high in animal protein, niacin, and vitamin B6 meat and meat products, crab, oily fish, fortified bread/rolls

4 high in fatty acids and vitamin E foods made or fried with oil or margarine, chicken skin,
processed meats, fats and oils, avocado, nuts, sauces

5 high in calcium, phosphorous, and sodium milk and milk products (including foods made with milk and
cheese), canned vegetables, biltong, shrimp/prawn

6 low in moisture, high in available carbohydrate,
and thiamin

bread, breakfast cereals, cakes, cookies, puddings, pasta,
pastries, maize and maize meal (stiff and crumbly), white rice,

pies, dried fruit, jam/marmalade, honey, sugar, sweets

7 high in cholesterol and vitamin D

eggs and foods using eggs (e.g., custard, choux pastry),
fortified milk powder, breastmilk substitutes, offal, tripe,
battered/crumbed fish, fishcake made with egg, salmon,

sardine, salad dressing
8 low in zinc, high in vitamin A, and vitamin C fruit, vegetables, fruit juices, soft maize meal

Nutrients with absolute loadings >0.4 are indicated in italic.

Table 4 compares the food categories in the SAFCDB to the groupings found by the
PCA. PCA groupings consisted of food items across the SAFCDB groupings, and the
grouping structures were significantly associated (p < 0.001). Vegetables and legumes
contributed 42% and 23% of NP 1, respectively. Meat and seafood together accounted for
91.8% of NP 3. All food items in the category ‘Eggs’ were grouped under NP 7, together
with composite dishes from ‘Cereals and cereal products’ that were made with eggs. Most
of the food items within ‘Legume and legume products’, ‘Milk and milk products’, ‘Fats
and oils’ and ‘Sugar, syrups and sweets’ remained together under the PCA groupings.

Table 4. Food group percentage for each nutrient pattern (NP); n (%).

Food Group Nutrient Pattern a Total

NP 1 NP 2 NP 3 NP 4 NP 5 NP 6 NP 7 NP 8

Cereals and Cereal
Products 17 (17) 4 (3.64) 15 (17.05) 17 (21.52) 116 (70.73) 19 (21.35) 7 (2.16) 195 (20.08)

Vegetables 42 (42) 4 (23.53) 1 (0.91) 12 (13.64) 4 (5.06) 2 (1.22) 180 (55.56) 245 (25.23)
Fruit 3 (3) 1 (1.14) 1 (1.27) 20 (12.2) 107 (33.02) 132 (13.59)

Legumes and Legume
Products 23 (23) 1 (1.14) 2 (1.22) 26 (2.68)

Nuts and Seeds 11 (11) 8 (9.09) 1 (0.61) 20 (2.06)
Milk and Milk Products 32 (40.51) 1 (0.61) 8 (8.99) 41 (4.22)

Eggs 27 (30.34) 27 (2.78)
Meat and Meat Products 9 (52.94) 89 (80.91) 15 (17.05) 2 (2.53) 2 (1.22) 3 (3.37) 120 (12.36)

Fish and Seafood 3 (17.65) 12 (10.91) 2 (2.27) 3 (3.8) 16 (17.98) 36 (3.71)
Fats and Oils 20 (22.73) 1 (1.27) 1 (0.61) 4 (4.49) 26 (2.68)

Sugar, Syrups and Sweets 1 (1) 3 (3.41) 1 (1.27) 11 (6.71) 1 (0.31) 17 (1.75)
Soups, Sauces, Seasonings

and Flavouring 3 (3) 1 (5.88) 9 (10.23) 7 (8.86) 1 (0.61) 3 (3.37) 6 (1.85) 30 (3.09)

Beverages 8 (10.13) 3 (1.83) 1 (1.12) 15 (4.63) 27 (2.78)
Infant and Paediatric

Feeds and Foods 3 (1.83) 7 (7.87) 10 (1.03)

Therapeutic/Special/Diet
Products 4 (3.64) 2 (2.53) 1 (1.12) 7 (0.72)

Miscellaneous 2 (2.27) 1 (1.27) 1 (0.61) 8 (2.47) 12 (1.24)

Total 100
(100) 17 (100) 110 (100) 88 (100) 79 (100) 164 (100) 89 (100) 324 (100) 971 (100)

a Blank cells represent 0 (0).
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Table A2 in Appendix A reports the median (IQR) nutrient values for each principal
component grouping. Median nutrient values for each NP agreed with the characterisation
of the patterns and are graphically represented in Figure 3. Table A2 in Appendix A and
Figure 3 represent the expected nutritional composition of an average food item from each
pattern. A randomly selected food item from NP 3 will, on average, contain the highest
amount of animal protein and niacin than a food item from any of the other NPs. Sodium
content can be expected to be lowest in foods from NP 8, and highest in foods from NP 5
and NP 7. NP 2 and NP 8 had the greatest cumulative quantity of vitamins, with vitamin C
contributing the largest proportion of the composition. Niacin was also a large contributor
of vitamin content in NP 2. The first three patterns had the highest quantity of minerals
made up largely from phosphorous and potassium.
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3.3. Food Pattern Analysis

We also applied PCA to the 971 food items to confirm the nutrient patterns we found.
Seven food patterns had both an eigenvalue greater than 1 and accounted for at least 1% of
the variation in the dataset (Figure S2). The seven FPs explained 97.4% of the total variation
in the data (Table 5). The maximum absolute loading for components ranged from 0.07 to
0.16, hence, we interpreted the components using absolute loadings that were greater than
0.05. The patterns found when analysing the food items reflected the patterns found when
analysing the nutrients thus, confirming the presence of nutrient patterns and validating
our results. Both analyses identified a pattern grouping together wheat products, leafy
vegetables, and legumes (NP 1 and FP 2) as well as patterns for milk and milk products (NP
5 and FP 3), and eggs and food items using eggs (NP 7 and FP 4). However, applying PCA
to the food items enabled better discrimination of fruit and vegetables by vitamin C (FP
1) and beta-carotene (FP 6) content. Orange-coloured fruit and vegetables were identified
with FP 6 in the food item analysis. In addition, greater discrimination was apparent among
dark leafy greens, which were split between FP 2 and FP 6 compared to being grouped
together under the nutrient analysis. Composite dishes using distinctive ingredients were
also able to be identified and grouped with the raw versions of the ingredient. For example,
carrot cake grouped with carrots and pastries made using eggs grouped with eggs. Rusks
made with wholewheat flour (FP 2) and rusks made with white flour (FP 5) were also able
to be identified and separated. Processed meat such as luncheon meat and sausages were
separated from meat and meat products, and instead grouped with processed cheese (FP 5)
and processed fish. Sodium scored high on this food pattern. The last pattern in the food
item analysis (FP 7) separated soft maize meal from the stiff and crumbly versions based
on its higher moisture content, similar to the results of the nutrient analysis. Soft maize
meal was grouped together with other moisture rich food items such as beverages, cabbage
and brinjal.
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Table 5. Characterisation of food patterns (FP).

FP Explained
Variance (%)

Cumulative Explained
variance (%)

Food Item with Absolute Loadings
>0.05

Nutrients Which Scored High
on Pattern

1 56.5 56.5

white and sweet potatoes, squash, celery,
cucumber, cauliflower, brinjal, mushroom,

green pepper, citrus fruits, stone fruits,
and grapes in raw, canned, dried, and

juice versions

potassium,
magnesium,
vitamin C

2 14.5 71.0

oats, rice, wheat, maize, barley, rye,
wholewheat products, spinach and
amaranth leaves, peas, green beans,

berries (including pineapples), legumes
and legume products, nuts and seeds,

oyster, chocolate

manganese

3 10.4 81.4

milk and milk products (including foods
made with milk and milk beverages),

breastmilk substitutes, canned sardine,
canned salmon

calcium

4 6.7 88.1
eggs and foods made with eggs (e.g.,

custard, choux pastry, sauces), meat and
meat products, battered/crumbed fish

animal protein, cholesterol,
phosphorous

5 3.9 92.0

bread, breakfast cereals, pastries,
breadcrumbs, rusks made with white
flour, canned vegetables, processed

cheese, feta cheese, processed meat, meat
pies, processed fish and seafood, sauces,

icing for cakes

sodium

6 3.0 95.0

fortified maize meal, carrot (including
carrot cake), pumpkin, butternut, hubbard
squash, orange flesh sweet potato, leafy
greens (e.g., lambquarters, sow thistle,
cat’s whiskers leaves), apricot, mango,
naartjie, beef kidney and liver, chicken

liver and giblets, offal

vitamin A

7 2.4 97.4

soft maize meal, marrow, cabbage, brinjal,
apple, pear, lemon, lime, fruit canned in

syrup, trotters, tripe, miscellaneous
(water, tea, coffee, alcohol)

moisture, plant protein, fatty
acids, available carbohydrate,
total fibre, iron, zinc, copper,
thiamin, riboflavin, niacin,

vitamin B6, vitamin B12,
pantothenic acid, vitamin D,

vitamin E

The patterns found supported the South African FBDGs [4], as shown in Table 6.
Guideline 1 aims to facilitate balanced nutrient intake by encouraging the consumption
of a variety of foods. As the nutrient patterns obtained differ in nutritional composition,
consuming foods from different patterns supports this guideline. Starchy foods, as de-
scribed in Guideline 2, such as bread, rice, cereals, and pasta were associated with NP 6.
NP 6 also contained products high in sugar content such as cakes, cookies, and sweets
and reflects Guideline 10. Similarly, other nutrient patterns were able to be matched to the
South African FBDGs.

Guideline 11 was best captured by FP 5 and reflected categories targeted by the
national sodium regulation [6], as highlighted in Table 7. Foods affected by the regulation
were all found within FP 5.
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Table 6. Comparison between the South African food-based dietary guidelines and principal component analyses.

South African Food-Based Dietary Guidelines [4] Corresponding Pattern

1. Enjoy a variety of foods. The nutrient patterns obtained differ in nutritional composition.
2. Be active! Not applicable

3. Make starchy foods part of most meals. NP 6
4. Eat plenty of vegetables and fruit every day. NP 8

5. Eat dry beans, split peas, lentils, and soya regularly. NP 1
6. Have milk, maas, or yoghurt every day. NP 5

7. Fish, chicken, lean meat, or eggs can be eaten daily. NP 3, NP 7
8. Drink lots of clean, safe water. Not applicable

9. Use fats sparingly. Choose vegetable oils, rather than hard fats. NP 4
10. Use sugar and foods and drinks high in sugar sparingly. NP 6

11. Use salt and food high in salt sparingly. FP 5

Table 7. Comparison between the food categories targeted by the national sodium regulation and foods associated with FP 5.

Food Category as per the National Sodium Regulation [6] Corresponding Foods Associated with FP 5

1. Bread
All bread types (pumpernickel, raisin, rye, sweetcorn, brown

and white bread/rolls, breadcrumbs) except wholewheat
bread/rolls

2. All breakfast cereals and porridges, whether ready-to-eat,
instant or cook up, hot or cold

All breakfast cereals (puffed rice, puffed corn) except
homemade muesli

3. All fat spreads and butter spreads Mixed butter and hard margarine, brick/hard margarine,
polyunsaturated margarine

4. Ready-to-eat savoury snacks, excluding salt-and-vinegar
flavoured savoury snacks Potato crisps

5. Flavoured potato crisps, excluding salt-and-vinegar
flavoured potato crisps

6. Flavoured, ready-to-eat, savoury snacks and potato crisps,
salted and salt-and-vinegar only

7. Processed meat, cured Bacon, biltong, corned beef, ham, luncheon meat, meatloaf,
pastrami, pork/beef sandwich spread8. Processed meat, uncured

9. Raw-processed meat sausages (all types) and similar products Frankfurter, pepperoni, salami, sausages
10. Dry savoury soup powders

Soups, sauces11. Dry gravy powders and savoury sauce powders
12. Dry savoury powders with dry instant noodles

13. Stock cubes, stock powders, stock granules, stock emulsions,
stock pastes or stock jellies

4. Discussion

Public health practitioners and policy makers rely on FCDBs to assess nutrient avail-
ability and provide information to link dietary data with nutrient intake for nutritional
epidemiology. They also utilize FCDBs for developing nutrition interventions and for
informing consumer education. Policies impact food product composition to address
dietary shortfalls, but the full potential of food composition is often not recognized [25].
In South Africa, studies have been limited to determining consumption habits among
populations [16–19] but our study aims to examine the nutrient patterns present within
the food items consumed by the population. More specifically, we aimed to examine the
nutrient patterns present among food items listed in the SAFCDB [20] using correlation and
PCA. FCDBs are often country-specific due to the influence of environmental, genetic, and
processing factors on the nutrient content of food. National FCDBs also include country-
specific foods and recipes, reflecting the unique consumption patterns of the country [26].
Therefore, analysing foods contained in the SAFCDB would provide information on the
nutrient levels of foods consumed by the South African population.

Significant correlations between the nutrients were identified. Nutrients obtained
primarily from plant-based foods, such as total fibre and available carbohydrates, exhibited
a strong positive correlation with plant protein. Nutrients obtained primarily from animal



Nutrients 2021, 13, 3194 12 of 17

products, such as cholesterol and vitamin B12, were strongly associated with animal protein.
These plant-derived nutrients negatively correlated with animal-derived nutrients, con-
firming what is known about nutrient co-occurrence. Our results are also consistent with
the correlations found elsewhere among raw foods [13] and raw plant foods [9], suggesting
that similar nutrient patterns are evident among cooked and composite dishes as well,
which were included in our analysis. The underlying correlation structure contributes to
features that distinguish between nutrient-based food groupings. This must be accounted
for in any statistical analyses undertaken using multivariate methods. In addition, the
high correlation implies better prediction models which are useful in estimating values
of missing nutrients, a problem common to FCDBs. While the 2017 SAFCDB contained
nutrition data for 1667 food items, only 971 food items could be analysed due to missing
data. In addition, missingness also excluded biotin and folate from the analysis, which are
both vital B-vitamins that are sourced from food [27]. Methods to impute missing values
in food composition data have been investigated [28–30] and further research in this area
could facilitate the completeness of FCDBs.

Our study affirmed that some food items are more compositionally alike than others,
by identifying eight nutrient patterns that were consistent with existing knowledge. All
analysed nutrients, except iron and pantothenic acid, featured on a pattern. Although iron
and pantothenic acid did not meet our threshold for a high loading, both stood out on
nutrient patterns that contained their expected sources. Vitamin A featured on two nutrient
patterns, due to its availability in foods of both plant and animal origin. A study [14]
conducted in Finnish foods, identified four nutrient content patterns using factor analysis
and was able to group wheat products with legumes, and mushrooms with offal foods—a
common finding in our study as well. Although the study was able to include 106 nutrients,
the patterns were comparable to the patterns found in our study, suggesting that only a
few key nutrients are needed to successfully determine nutrient patterns.

We also validated our results by applying the dimension reduction technique to the
food items themselves. Results of both analyses were similar, and a large amount of the
nutritional variation was able to be explained by a few patterns. The patterns included
food items from across different food groups, suggesting compositional similarity despite
conceptual dissimilarity. Hence, applying clustering techniques within each conceptual
FCDB group may reveal more intricate groupings. However, this approach may suffer
from high dimensionality with small sample size issues. Two studies applied clustering
techniques within FCDB food groups. The first study [15] found six subgroups within the
‘Cereals’ category of the West Africa Food Composition Table. These subgroups separated
grains by type and preparation methods. For example, pearl millet separated from other
grains, and maize was separated across three clusters depending on whether it was raw,
boiled, or prepared as a porridge. Likewise, our analysis differentiated between white and
brown rice, and soft maize meal and stiff or crumbly maize meal. The second study [9]
applied clustering techniques within five food categories (fruits, vegetables, nuts and
seeds, legumes, and cereal grains) of the U.S. Department of Agriculture (USDA) National
Nutrient Database for Standard Reference (SR) Legacy (2018). The study found that similar
foods were not necessarily from the same category. For example, wheat germ was found to
cluster with legumes, a finding repeated in our analysis as well. Another similar finding
was almonds and coconuts, macadamias, pecans, and walnuts separating from other nuts
in the database. Chestnuts were also isolated from other nuts. Our results suggest that
statistical methods can be used to create a natural food exchange list to accommodate
different dietary preferences.

Dark leafy greens such as spinach and other leaves (amaranth, blackjack, cowpea, etc.)
were differentiated from other vegetables in the database. The application of PCA to food
items had greater discernability than PCA applied to nutrients. Under the food pattern
analysis, dark leafy greens were further divided into spinach and amaranth leaves and
other leafy greens. Similarly, orange-coloured fruit and vegetables grouped together, which
was not seen under the nutrient pattern analysis. This type of clustering was also identified
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in Pennington et al. [10]. The daily consumption of dark-green leafy vegetables and orange-
coloured fruit and vegetables is recommended as per the South African FBDGs [4] and
the Dietary Guidelines for Americans [31] and is important for a healthy diet as they are
rich sources of vitamins and minerals [4]. Classifications that are based on nutritional
similarity are useful to nutritionists, researchers, and consumers for the development of
dietary guidance materials, development of food frequency questionnaires and reporting
of consumption studies, and adherence to dietary guidelines [32].

The PCA method was also able to separate canned vegetables and vegetables fried in
oil from the other vegetables. This is helpful in determining food preparation characteristics
from nutrient information. Both analyses were able to identify foods made with egg, such
as choux pastry and custard, and group these items together with eggs. However, the
nutrient analysis additionally included milk and savoury tarts, which are traditionally
made with egg. Similarly, both analyses were able to identify foods made with milk and
cheese, such as malted milk beverages, puddings, yoghurt, and cheese sauces. Employing
a principal component analysis may additionally be helpful in identifying ingredients for
composite dishes in a FCDB.

Our results provide data-driven evidence to support the existing knowledge of food
and nutrient patterns, as well as South African food-based dietary guidelines and nutrition
policies. Each of the nutrient patterns identified corresponded to a guideline and supports
the consumption of a variety of foods and moderation of other foods. High sodium levels
in food items have led to the current promulgated salt regulation and reduction of salt
content of food items in the country [6]. Food items belonging in the high sodium food
pattern closely mirrored the categories identified in the regulation. Under the food item
analysis, canned vegetables grouped together with other processed food items on a high
sodium pattern. Canned vegetables, processed meat, processed cheese, bread, and sauces
are suggested to have similar levels of sodium, and this is consistent with research showing
these categories to have the highest median sodium levels, based on packaged foods in
South Africa [33]. This analysis supports the regulation and can be used in a similar fashion
to identify foods with a high sugar content. FBDGs are developed in response to a public
health problem [34] and requires identifying rich sources of nutrients that are of public
health importance [35]. The patterns identified in our results each describe foods that are
rich sources of specific nutrients. Foods providing these nutrients are recommended to
be either limited or increased, as appropriate, and implementation of the FBDGs should
then be accompanied by monitoring and evaluation of the effects. Food systems [36] are
dynamic and are influenced by key drivers such as regulatory frameworks, consumer
influence, technological innovations, concerns for food safety, and growing attention paid
to diet and health [37,38]. Thus, continuous updates of a FCDB are essential to reflect the
changes not only in the types of food provided but also the composition thereof [39]. The
evaluation of the effects can be based on changes in food composition [34] and some studies
have applied statistical methods to different versions of FCDBs to determine changes over
time in composition of fruits and vegetables [40–42]. Therefore, repeating our analysis
on past versions and future updates of food composition data could assess whether the
implementation of FBDGs and regulations have impacted the reformulation of products.
The SAFCDB is updated every three years as updates are resource-intensive and can be
challenging to regularly implement, as updates are applied to all database-related tools
and products such as publications, software programs, and applications.

The research of innovative statistical methods tailored towards food composition
data has the potential to provide improved evidence for dietary guidelines and policy. In
addition, it can also support the dietary patterns found in consumption studies. Makura-
Kankwende et al. [17] showed that the animal driven dietary pattern, characterised by
animal protein and saturated fat, was associated with an increased body mass index
amongst black South African women. From our results, foods high in animal protein and
saturated fat correspond to meat and meat products, processed meat, and fried foods.
These foods are generally present in the Western diet, and the animal driven pattern found
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may be suggestive of a shift towards this diet [17]. Another study, Visser et al. [19] found
that a dietary pattern featuring vitamin A and vitamin B12 was associated with lower odds
of anaemia in 5–12-year-old South African children. This dietary pattern is reflected in our
results which identified foods containing this combination of nutrients, mainly, organ meat
such as kidney and liver [19].

Some limitations need to be considered. Missing nutrient values excluded essential
nutrients such as folate and biotin from the analysis and contained our sample to 58% of
foods available in the SAFCDB. With respect to the PCA method, subjective decisions on
the data matrix, rotation method, number of retained components and loading threshold
need to be made [16,18]. However, our results are consistent with existing knowledge and
has strengths in presenting nutrient and food patterns among South African foods that
support food-based dietary guidelines, nutrition policies and consumption studies. We are
currently working on developing K-Means and Gaussian Mixtures (GMs) clustering models
to identify food items that are more like each other. We are aware that several food items
contain missing nutrient values in the database, so we will incorporate multiple imputation
techniques to account for missing data. We believe the development and application
of these models to food composition databases will contribute to an understanding of
nutritional uptake in the population and monitoring adherence to national nutritional
prevailing regulation and guidelines.

5. Conclusions

To our knowledge, this is the first study to investigate nutrient patterns in food
items using South African food composition data. This analysis provides an overview
of the inherent groups available within South African foods. The nutrient co-occurrence
patterns identified using data-driven methods are consistent with current knowledge and
comparable to similar studies from other countries. The results support current dietary
guidelines and nutritional policies.
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Appendix A

Table A1. Explained variance and rotated principal component loadings for the first eight nutrient patterns (NPs) identified
by the analysis of nutrients.

Component NP 1 NP 2 NP 3 NP 4 NP 5 NP 6 NP 7 NP 8

Explained variance (%) 14.9 10.1 9.6 9.3 9 8 7.6 4.9
Cumulative explained

variance (%) 14.9 25 34.6 43.9 52.9 60.9 68.5 73.4

Nutrients
Moisture 0.0084 0.0133 −0.0682 −0.2164 −0.0549 −0.5215 0.0035 −0.0133

Plant protein 0.3867 −0.0242 −0.0419 0.045 −0.0535 0.127 −0.0618 −0.0681
Animal protein −0.1189 −0.0821 0.4862 0.0282 0.0676 −0.1463 0.1563 −0.1198

Saturated fatty acids −0.1144 −0.0298 0.1156 0.3581 0.0453 0.0524 0.0531 −0.0496
Monounsaturated fatty acids 0.0125 −0.0222 0.0587 0.5269 −0.0025 −0.0095 −0.0378 −0.0669
Polyunsaturated fatty acids 0.0376 0.0355 −0.0781 0.5328 −0.0255 0.0038 −0.0191 0.0308

Cholesterol −0.0064 0.0604 −0.025 −0.008 −0.028 −0.0622 0.5883 −0.0559
Carbohydrate, available −0.0884 0.03 −0.1202 −0.142 −0.0158 0.7057 −0.0234 0.0669

Total dietary fibre 0.3627 −0.0134 −0.0418 −0.0491 −0.0484 0.0324 −0.0696 0.2578
Calcium 0.0703 0.0182 −0.1097 −0.0302 0.5985 −0.0281 0.0271 0.0584

Iron 0.2691 0.1124 0.0588 −0.0642 0.0972 0.1351 0.1487 −0.0592
Magnesium 0.4515 −0.0281 0.0234 0.0396 0.0523 −0.1023 0.028 0.001

Phosphorous 0.0421 0.0322 −0.0445 0.0024 0.5864 0.0047 0.01 −0.0436
Potassium 0.3209 −0.0459 0.1839 −0.0612 0.0478 −0.0488 0.0185 0.264

Sodium −0.1109 −0.0525 0.1434 0.0302 0.5085 0.0352 −0.0727 −0.0058
Zinc 0.1675 0.1157 0.1339 −0.0286 −0.0123 −0.0914 −0.081 −0.4198

Copper 0.0509 0.573 −0.0206 0.0442 −0.0229 −0.032 −0.1268 −0.0586
Manganese 0.4394 −0.0077 −0.0655 0.0133 −0.0217 −0.0541 0.0014 −0.1554

Vitamin A (RE) −0.018 0.3839 −0.0597 0.0217 0.0298 −0.0291 −0.0148 0.3456
Thiamin 0.1796 −0.0436 0.1771 −0.0286 −0.0454 0.3188 0.0556 −0.1524

Riboflavin −0.0038 0.3799 0.0698 −0.0388 0.0141 0.1108 0.2049 −0.024
Niacin −0.0464 0.0425 0.5414 0.0395 −0.0341 0.0695 −0.1054 −0.0615

Vitamin B6 0.1054 0.0272 0.4134 −0.0376 −0.0218 0.0863 −0.0923 0.1435
Vitamin B12 −0.0782 0.5583 0.0201 −0.0098 −0.0014 −0.0439 0.0106 −0.0643

Pantothenic acid 0.016 0.075 0.2889 −0.0291 −0.0384 −0.009 0.2697 0.154
Vitamin C −0.0237 −0.0304 0.1344 0.0111 −0.0189 −0.073 −0.0439 0.6353
Vitamin D −0.0103 −0.092 −0.0612 0.0223 0.0033 0.0671 0.6351 0.0271
Vitamin E 0.0854 0.0302 −0.1135 0.4652 −0.0215 −0.0181 0.1437 0.1294

Absolute loadings greater than 0.3 are shown in bold.

Table A2. Median (IQR) nutrient values by nutrient pattern (NP).

Nutrient NP 1 NP 2 NP 3 NP 4 NP 5 NP 6 NP 7 NP 8 p-Value

Moisture (g) 69.9
(10.3–82.1)

71.8
(66.8–85.1)

61.4
(55.1–69.4)

50.1
(23.2–69.2)

76.4
(65.3–83.6)

24.9
(12–43.8)

72.2
(59.7–78)

85.7
(80.8–90.3) <0.001

Plant protein (g) 5.3
(3.3–13.7) 0.7 (0.2–2) 0.7 (0.6–0.8) 1.9 (0.9–3.6) 0.5 (0.3–0.8) 3 (2.1–4.9) 1.1 (0.5–1.7) 0.9 (0.6–1.4) <0.001

Animal protein (g) 1.4 (0–2.1) 20.4
(14.6–24.5)

24.7
(19.2–28.5) 2.5 (0.8–9.9) 3.8 (2.9–9.4) 1.4 (0.6–2.4) 9.1

(3.7–13.5) 0 (0–0.1) <0.001

Saturated fatty acids (g) 0.2 (0.1–0.9) 1.1 (0.3–1.5) 3.1 (1.5–6.1) 6.1 (2.2–12) 1.6 (0.7–4.2) 1.6 (0.2–3.2) 2.7 (1.8–3.4) 0 (0–0.1) <0.001
Mono-unsaturated fatty

acids (g) 0.2 (0.1–1.8) 0.6 (0.2–1.4) 3.7 (2.1–6) 8.1
(3.4–16.6) 0.8 (0.3–3) 1.6 (0.3–4.7) 3.6 (1.6–4.4) 0 (0–0.1) <0.001

Polyunsaturated fatty
acids (g) 0.5 (0.2–2.8) 0.6 (0.3–1.1) 0.8 (0.3–2.4) 8.6

(3.5–11.7) 0.1 (0.1–0.8) 1.3 (0.4–3.2) 2.1 (0.7–3.6) 0.1 (0–0.2) <0.001

Cholesterol (mg) 44.5
(8.1–49.4)

343
(165–426.8) 81 (57–97) 47.6 (21–91) 9.8 (6.5–37) 29.3

(18.5–49.5)
86.3

(62.6–280) 5.7 (2.2–7.6) <0.001

Carbohydrate, available
(g)

11.5
(4.8–23) 3.9 (2.5–5.9) 4.2 (1.6–6.3) 8.7

(3.6–19.8)
10.6

(4.9–15.4)
50.7

(38–67.5) 7 (2.4–14.9) 8.8
(4.3–14.7) <0.001

Total dietary fibre (g) 5.5 (3.6–9.3) 1.1 (0.4–2.1) 0.7 (0.3–1.2) 1.4 (0.8–3.1) 0.2 (0.1–0.7) 1.7 (0.7–3.7) 0.3 (0.1–0.4) 1.8 (1.4–2.6) <0.001

Calcium (mg) 54.5
(26.4–119.2) 12 (6–19) 15.2 (11–24) 21.4

(9.7–73.3)
118.9

(102.7–212)
27.7

(12.4–68.3)
65.8

(39–93.9) 15 (8–27) <0.001

Iron (mg) 2.4 (1.5–4.7) 4.9 (1.1–6.2) 1.3 (0.8–2.2) 1 (0.5–1.7) 0.4 (0.2–0.8) 1.8 (0.9–2.9) 1.2 (0.7–1.8) 0.4 (0.3–0.6) <0.001

Magnesium (mg) 59.5
(30–134) 16 (12–19.4) 24 (20–27) 11.5

(9–21.5)
14

(11.4–18.7)
18.2

(9.7–37.4)
11

(9.3–18.7) 11.4 (9–15) <0.001

Phosphorous (mg) 92
(62–311.5)

244.7
(73–327)

196
(158.8–223)

79.1
(43.1–122.5)

110
(85.3–192.7)

75
(52.4–120)

142.8
(94.7–186) 26 (16–35) <0.001

Potassium (mg) 362.5
(206–652)

229
(198–265)

287
(247–337)

143.4
(98–232.5)

141.2
(117–185)

120.9
(74.2–250.5)

128.4
(98–176)

186
(131–256.7) <0.001
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Table A2. Cont.

Nutrient NP 1 NP 2 NP 3 NP 4 NP 5 NP 6 NP 7 NP 8 p-Value

Sodium (mg) 17 (6–66.5) 85
(69–106.6)

81
(59–204.8)

59
(12.6–230.8)

113.2
(51.4–530)

68.5
(11–159.5)

119.4
(80.9–156.8) 7 (3–25.7) <0.001

Zinc (mg) 1 (0.6–2.5) 3 (0.8–4.2) 2.5 (1.5–4.1) 0.4 (0.3–1.1) 0.5 (0.4–1) 0.5 (0.4–0.8) 0.6 (0.5–1.1) 0.2 (0.1–0.3) <0.001
Copper (mg) 0.2 (0.2–0.5) 0.6 (0.4–4.5) 0.1 (0.1–0.2) 0.1 (0–0.1) 0 (0–0.1) 0.1 (0.1–0.2) 0.1 (0–0.1) 0.1 (0.1–0.1) <0.001

Manganese (µg) 1189 (416.5–
1894)

199
(133–345.5) 22 (14–70.1) 118.4

(29.5–254.4)
22.3

(4.9–66.5)
253.6

(156–360)
46.8

(38–110)
120.4

(70–200.6) <0.001

Vitamin A (RE) (µg) 25
(4.5–163.5)

175.8
(41–1753)

14.6
(8–25.4)

64.1
(14.4–178.9)

43.1
(22.1–98.7)

55.9
(10.6–119.3)

68.6
(48–108.7)

22
(4.6–62.5) <0.001

Thiamin (mg) 0.2 (0.1–0.4) 0.2 (0.1–0.2) 0.1 (0.1–0.2) 0.1 (0–0.2) 0 (0–0.1) 0.2 (0.1–0.3) 0.1 (0.1–0.1) 0 (0–0.1) <0.001
Riboflavin (mg) 0.1 (0–0.2) 0.7 (0.2–2.8) 0.2 (0.1–0.3) 0.1 (0–0.2) 0.2 (0.1–0.2) 0.1 (0.1–0.2) 0.2 (0.2–0.3) 0 (0–0) <0.001

Niacin (mg) 1 (0.6–2.4) 4.6 (1.2–9.6) 5.4 (4.2–7.9) 1.1 (0.4–2.8) 0.2 (0.1–0.5) 1.8 (0.7–2.6) 0.6 (0.1–1.5) 0.5 (0.3–0.7) <0.001
Vitamin B6 (mg) 0.2 (0.1–0.4) 0.3 (0.1–0.7) 0.3 (0.2–0.4) 0.1 (0–0.1) 0 (0–0.1) 0.1 (0–0.2) 0 (0–0.1) 0.1 (0–0.1) <0.001

Vitamin B12 (µg) 0.1 (0–0.3) 18.9
(8.8–48.8) 1.5 (0.5–2.2) 0.2 (0.1–0.4) 0.4 (0.3–0.6) 0.2 (0.1–0.3) 0.9 (0.4–1.5) 0 (0–0) <0.001

Pantothenic acid (mg) 0.3 (0.1–0.8) 0.6 (0.2–3.3) 0.6 (0.3–1.1) 0.3 (0.1–0.5) 0.3 (0.3–0.4) 0.4 (0.2–0.4) 0.5 (0.4–1.1) 0.2 (0.1–0.3) <0.001

Vitamin C (mg) 5.3 (1.2–14) 7.4
(2.7–10.4) 3.3 (1–8.3) 1.9 (0.9–4.3) 1 (0.8–2.2) 1 (0.2–3.8) 0.6 (0.4–4.4) 10.7

(4.4–24) <0.001

Vitamin D (µg) 0.3 (0.3–0.9) 1.1 (0.6–1.2) 0.6 (0.2–1) 0.8 (0.4–1.9) 0.1 (0–0.5) 1 (0.5–1.7) 2.9 (1.4–5.9) 0.3 (0.2–0.3) <0.001
Vitamin E (mg) 0.6 (0.2–2.2) 0.4 (0.1–0.8) 0.3 (0.2–0.5) 3.6 (1–6.9) 0.1 (0.1–0.6) 0.7 (0.3–1.3) 1.3 (0.7–3.4) 0.3 (0.1–0.6) <0.001
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