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A major mystery in strongly interacting quantum systems is the
microscopic origin of the “strange metal” phenomenology, with
unconventional metallic behavior that defies Landau’s Fermi liquid
framework for ordinary metals. This state is found across a wide
range of quantum materials, notably in rare-earth intermetallic
compounds at finite temperatures (T) near a magnetic quantum
phase transition, and shows a quasilinear-in-temperature resis-
tivity and a logarithmic-in-temperature specific heat coefficient.
Recently, an even more enigmatic behavior pointing toward a
stable strange metal ground state was observed in CePd1−xNixAl,
a geometrically frustrated Kondo lattice compound. Here, we
propose a mechanism for such phenomena driven by the in-
terplay of the gapless fermionic short-ranged antiferromagnetic
spin correlations (spinons) and critical bosonic charge (holons)
fluctuations near a Kondo breakdown quantum phase transition.
Within a dynamical large-N approach to the Kondo–Heisenberg
lattice model, the strange metal phase is realized in transport
and thermodynamical quantities. It is manifested as a fluctuating
Kondo-scattering–stabilized critical (gapless) fermionic spin-liquid
metal. It shows ω/T scaling in dynamical electron scattering rate,
a signature of quantum criticality. Our results offer a qualitative
understanding of the CePd1−xNixAl compound and suggest a
possibility of realizing the quantum critical strange metal phase
in correlated electron systems in general.
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Amajor mystery in strongly interacting quantum systems is the
microscopic origin of “strange metal” behavior, an unstable

finite-temperature quantum state with unconventional metallic
behavior that defies Landau’s Fermi liquid (FL) framework for
ordinary metals. This state is found across a wide range of quan-
tum materials, ranging from cuprate superconductors (1–3), to
rare-earth intermetallic compounds (4, 5), to quantum dot (6), to
magic-angled twisted bilayer graphene (7). This non-Fermi liquid
(NFL) behavior often exists near a magnetic quantum critical
point (QCP) (4, 8) and shows a quasilinear-in-temperature resis-
tivity and a logarithmic-in-temperature specific heat coefficient.
In particular, a number of rare-earth intermetallic compounds
displaying strange metal behavior, including YbRh2Si2 (9, 10),
CeRhIn5 (11), and CePdAl (12), also show Kondo breakdown
(KB) transition, a mechanism where the conventional quasi-
particle description completely breaks down when the Kondo
effect is suppressed (13–15). These findings go beyond the stan-
dard Hertz–Millis spin-density-wave (SDW) theory (16, 17). It
is commonly accepted that the Doniach framework (18), i.e.,
the competition of Kondo correlations with magnetic long-range
interactions, is at the heart of the problem. Previous attempts
have been made via different approaches to capture various
aspects of the problem (13, 19–24). However, a microscopic
understanding of the strange metal behavior is still incomplete.

Recently, an even more intriguing paramagnetic NFL behavior
pointing toward a stable strange metal “phase” at ground state
was observed in the geometrically frustrated heavy-electron
Kondo lattice systems. Examples of such behavior include
CePd1−xNixAl (0≤ x ≤ 1) near the KB QCP on a kagomé

lattice (12, 25–28) and YbAgGe, a triangular lattice system (29).
In these materials, the geometrical frustration suppresses the
antiferromagnetically (AF) long-range order (LRO) and likely
leads to a magnetically short-range–ordered spin-liquid state
with fractional spin excitations (or spinons). A similar strange
metal phase without long-range order has been observed in
unfrustrated Kondo lattice Ge-substituted YbRh2Si2, where
experimental evidence (30, 31) indicates the breakup of the heavy
electrons into separate spin and charge parts. The microscopic
origin of this emergent quantum phase of matter has remained
enigmatic and searching for the mechanism for this exotic phase
is essential to establish a general theoretical framework of it. This
strange metal phase goes beyond the well-known Hertz–Millis
SDW theory (16, 17). We thus expect that a distinct mechanism
for the competition of the spin short-range order strange metal
phase and the Kondo-screened FL phase is needed.

Motivated by these puzzling experimental observations, we are
led to the following fundamental theoretical questions: How can
a stable strange metal phase exist in principle given that the
strange metal properties mostly appear near an unstable QCP?
Can this phase emerge from the competition or collaboration
between Kondo-screening and spin-liquid states? Would physical
quasiparticles effectively get fractionalized into spin (spinon)
and charge (Kondo) excitations and the strange metal phase
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be closely connected to critical fluctuations of either excitation?
Is there ω/T scaling in dynamical observables, a signature of
quantum criticality?

In this paper, we develop a controlled method to address
these issues based on a dynamical large-N approach combined
with the idea of heavy-electron fractionalization to the Kondo–
Heisenberg (KH) model on a two-dimensional (2D) lattice (22,
23, 32). We discover a NFL strange metal phase near the KB QCP,
which separates the Kondo-screened heavy FL and the strange
metal spin-liquid states. Therein, the static electron scattering
rate at Fermi energy shows a quasilinear-in-T behavior, while the
dynamical electron scattering rate exhibits anω/T scaling, a typi-
cal signature of quantum criticality. We attribute these features to
the interplay of critical bosonic charge (Kondo) fluctuations and
gapless fermionic spinons. We clarify the nature of this phase in
terms of the fluctuating Kondo-scattering–stabilized critical spin-
liquid metal. The specific heat coefficient and spin susceptibility
in this phase exhibit NFL logarithmic-in-temperature divergence
as T → 0. Our results provide a qualitative understanding of the
strange metal phase observed in CePd1−xNixAl and suggest a
possibility of realizing the quantum critical strange metal phase
in correlated electron systems in general.

Results
Dynamical Large-N Multichannel Approach. We first develop a con-
trolled large-N approach to address the issue on the strange
metal phase. Our starting point is the KH model on a 2D square
lattice,

H = H0 + HK + HJ . [1]

Here, the conduction electron reservoir is described by the sum
of independent electron baths with constant density of states,
H0 =

∑
iPα εPψ

†
iα(P)ψiα(P) with α=±1 being the SU(2) spin

index. Here, ψiα =
∑

P ψiα(P) destroys a conduction electron
on the lattice at site i with ψiα(P) being its Fourier component
with momentum P defined on the “bath lattice” and εP being its
dispersion. For simplicity, we take the conduction bath to be at
half filled, showing particle–hole symmetry. Each local impurity
spin at site i, S i , can be screened by the conduction-electron
spin sc

i = (1/2)
∑

αβ ψ†
iασαβψiβ of the same site via the Kondo

coupling: HK = JK
∑

i S i · sc
i . The nearest-neighbor local spins

are coupled by an antiferromagnetic Heisenberg term HJ =∑
〈i,j〉 JHS i · S j . The local spin operator is represented by the

Abrikosov pseudofermion S i =
1
2

∑
αβ f †iασαβfiβ , subject to the

local constraint, nf (i) =
∑

α f †iαfiα =Q . We then generalize the
spin-1/2 KH model on a square lattice to the multichannel large-
N limit by considering K independent Kondo-screening channels
with channel-asymmetric couplings and N flavors of spin species
with N ,K →∞, while we set Q =K and fix κ≡K/N . The
large-N channel-asymmetric multichannel generalization of the
Kondo and Heisenberg terms from the single-channel physical
SU(2) limit reads (Materials and Methods)

HK =

(
− 1

N

) ∑
i,a,α,β

J a
Kψ†

iaαfiαf
†
iβψiaβ ,

HJ =

(
−JH

N

) ∑
〈i,j〉,αβ

(
α̃f †iαf

†
j ,−α

)(
β̃fj ,−βfiβ

)
, [2]

where α,β =±1, · · · ,±N /2 represent the spin flavors, a =
1, · · · ,K denotes the channel index, J a

K is a channel-dependent
Kondo coupling, and α̃≡ sgn(α). Here, we employ the fermionic
Sp(N) generalization of the SU(2) Heisenberg HJ term (33).
The Kondo term HK shows SU(K) channel symmetry when
J a=1
K = · · ·= J a=K

K ; however, in this work, we consider the
channel asymmetric limit where J a=K

K ≡ J ′
K > J a<K

K ≡ JK so
that the SU(K) channel symmetry is broken down to SU(K − 1).

Note that for symmetric (bosonic) representations of spins in the
large-N Kondo models, it is essential to add the extra channels
to obtain a Kondo energy extensive in N (34). However, for
the antisymmetric (fermionic) representation of the spins in
such models, one does not need to add additional channels to
obtain a good large-N expansion (35). Our fermionic large-N
approach departs from the conventional single-channel large-
N approach by adding extra Kondo-screening channels for the
following advantages: It includes NFL effects in the large-N
limit, allowing an exploration of possible strange metal physics.
By doing so, one can maintain the physical value of κ= 1/2
important for a conventional Kondo lattice, while also bringing
in non-Fermi liquid physics in the large-N limit. In particular,
the channel-asymmetric multichannel Kondo lattice model we
develop here further advances the previously studied channel-
symmetric one (19). It opens up a possibility to have fully Kondo-
screened FL and overscreened Kondo NFL phases as well as the
possible emergent strange metal phases appearing as the ground
state of the generic phase diagram (below). By contrast, the
channel-symmetric multichannel Kondo model supports only
the overscreened Kondo NFL state, but not the FL state (19).
Our approach therefore constitutes a distinct approach to the
large-N expansion.

To make progress, we work on a simple square lattice
where the magnetic frustration via the disorder effect (e.g.,
random exchange couplings) (36) may lead to a spin-liquid
state (24). We expect that our results qualitatively apply
for geometrically frustrated lattices to which our large-N
approach is readily generalized. This expectation is borne
out as suggested by the comparison to experiments. This
approach is appropriate to study paramagnetic spin-liquid to
Kondo quantum phase transition. The AF Heisenberg term
with a coupling JH and Sp(N) symmetry (20) is described by
Anderson’s AF short-ranged resonating-valence-bond (RVB)
spin liquid (37) made of the uniform spin singlets Δij =Δ=

JH
∑

α〈sgn(α)f †iαf
†
j ,−α〉. The Kondo hybridization with coupling

constants JK , J ′
K is expressed by the spin-charge–separated

fermionic spinons and bosonic (charged) holon (Fig. 1E). In
particular, holons are composite boson fields χia , consisting of
Bose-condensed part x = (J ′

K/
√
N )

∑
iα〈ψ

†
iα,a=K fiα〉 on the

Kth channel and the fluctuating fields χ̂ia on the remaining
K − 1 channels; i.e., χia → x

√
N δa,K + χ̂ia(1− δa,K ). We

apply the independent conduction bath approximation (38)
(SI Appendix, sections S.I. and S.II) and set J ′

K = 2JK . When
the Kondo effect dominates, the above channel-asymmetric
Kondo couplings lead to a condensation of the bosonic Kondo
hybridization field (x 	= 0) and therefore favor a Kondo-
screened Fermi-liquid phase. We solve the self-consistent
Dyson-type equations for the dynamical (frequency-dependent)
Green’s functions of various fields (Materials and Methods and
SI Appendix, section S.II) (34, 36). This approach allows us to
simultaneously explore the Kondo-screened and fermionic spin-
liquid phases as well as possible static and dynamical strange
metal properties via the interplay of these two, which goes beyond
the static large-N mean-field theories and offers additional in-
sight among existing approaches (20, 36, 39–41). This additional
insight includes the possible NFL strange metal phase, as well
as dynamical correlations and quantum critical ω/T scaling
of physical observables therein. The fluctuating χ̂ field plays a
crucial role in the development of the strange metal phase. To
stabilize the strange metal phase, we find it is essential to preserve
the particle–hole symmetry of the pseudofermion (f field); but
this symmetry is not required for the conduction-electron bath
(see below and SI Appendix, sections S.IV and S.IX).

Finite-Temperature Phase Diagram. Fig. 1A shows the finite-
temperature phase diagram of this model for κ= 1/2, in
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Fig. 1. The finite-temperature phase diagram, spectral weight of the spinon and holon fields, and schematic illustration of the composite holon, spin-singlet
bond, and the gapless strange metal (SM) phase. (A) The finite-temperature phase diagram of the large-N channel-asymmetric Kondo lattice model with
κ = 1/2 and J′K = 2JK . The cross-over scales on both sides of gQC exhibit power-law behavior in |g − gQC | (black dashed lines). Here, TK = D exp(−2D/JK) ≈
0.1 with fixed half-bandwidth D = 1 = JK . (B) Schematic plot of different mean-field phases: The black and blue arrows represent the local and conduction-
electron spins, respectively. The spin singlet (blue) bonds connect two adjacent local spins. In the Kondo FL phase, RVB singlets are suppressed, and the
coherent Kondo screening (purple) cloud is formed at each site. In the RVB-dominated strange metal phase, spinons in the RVB singlets couple to the Kondo
fluctuations. In the coexisting superconducting phase, both RVB singlets and coherent Kondo screening are present. (C) The spinon and holon spectral
function for κ = 1/2 displays a power-law behavior at a low-frequency limit. Inset shows spinon Fermi surface, −G′′

f (ω = 0, k)/π, for κ = 1/2 at low
temperature, T/TK = 0.05. (D) The spectral weight of the holon and spinon fields for κ = 0.3 shows a gap at low frequency, denoted as Δh and Δs. We fix
g = 0.052 and T/TK = 0.05 for C and D. (E) Left, schematic representation for generating a composite holon (χ): χ, represented by a blurred blue sphere
surrounded by a blurred purple cloud, is generated by creating a spinon (f, orange arrow) and annihilating a conduction electron (ψ, a solid blue sphere
with an orange arrow surrounded by a purple cloud) through the Kondo interaction vertex connecting the wavy, solid, and dashed lines. Right, schematic
representation of a RVB spin-singlet bond. (F) Schematic plot of the gapless strange metal spin-liquid phase in A.

which the half-filled f electrons show particle–hole symmetry
(SI Appendix, section S.IV), as a function of g = JK/JH and
dimensionless temperature T/TK with TK being the single-
impurity Kondo temperature. The RVB spin-liquid metal phase
dominates for small values of g (Δ 	= 0, x = 0; yellow, gray, and
orange in Fig. 1A), while the Kondo-screened paramagnetic
heavy-electron phase prevails at large g (Δ= 0, x 	= 0; green
and blue in Fig. 1A). A coexisting phase, an extended s-wave
superconducting phase when electron baths are connected, is
found at intermediate g (Δ 	= 0, x 	= 0; pink in Fig. 1A) (40, 42). A
high-temperature decoupled phase is reached when Δ= x = 0.

The T ∗ (blue in Fig. 1A) line sets the boundary between
x = 0 and x 	= 0. In the pure Kondo regime, T ∗ corresponds
to the mean-field Kondo coherence temperature below which
the Bose-condensed Kondo hybridization develops phase
coherence over the lattice, with a value T ∗ > TK (43). At lower
temperatures T < TFL, the system becomes a Fermi liquid
where the specific heat coefficient reaches a constant at T ∼ TFL

(SI Appendix, section S.IX).
In Fig. 1A, a quantum critical region (gray area) emerges due to

the QCP at g = gQC , characterized by a non-Fermi liquid behav-
ior (below). The signature of quantum-critical behavior near gQC

is supported by the power-law-in-|g − gQC | cross-overs on both
sides of gQC (black-dashed lines in Fig. 1A): TSL ∼ |g − gQC |m
and TSC ∼ (g − gQC )n with m ≈ 0.6 and n ≈ 0.8. For g < gQC

and at temperatures below TSL (Fig. 1A), the thermodynamical
observables and transport show an exotic NFL strange metal
phase as T → 0 (below).

The Fluctuating Kondo-Scattering–Stabilized Gapless Spin-Liquid
Strange Metal Phase. Interestingly, due to particle–hole symmetry
of our model, the spectral functions of the spinon [−G ′′

f (ω)/π:
imaginary part of the spinon Green’s function −Gf (ω)] and that
of the holon [−G ′′

χ(ω)/π] in the strange metal phase become
gapless. In particular, we find a power-law singular (pseudogap
vanishing) spinon (holon) spectral function near Fermi energy
(Fig. 1C), respectively, indicating an exotic Kondo-scattering–

stabilized gapless (critical) fermionic spin-liquid phase (27, 44).
The spectral function of the f electron (−1/π)G ′′

f (ω = 0, k)
reveals a diamond-shaped spinon Fermi surface with gapless
spinon excitations (Fig. 1 C, Inset). The effective Hamiltonian of
the spin liquid in the strange metal phase can then be described
as

H̃ SM
f =

∑
kα

εγ(k)γ
†
kαγkα, [3]

where the spinon dispersion εγ(k) = Δ(cos kx + cos ky) (the lat-
tice constant is set to be the unit of length) shows gapless lines
along |kx ± ky |= π and Bogoliubov diagonalized spinon field
γkα = (fkα + f †−k ,−α)/

√
2. The singular spinon spectral function

at the low-frequency regime in Fig. 1C can be understood via the
Van Hove singularity of the above gapless fermionic spinons at
half filling.

This strange metal phase is a gapless RVB spin liquid, distinct
from the previously studied spin liquids, such as the algebraic
gapless spin liquid in the frustrated Heisenberg antiferromagnet
(44, 45) and flux phase in the t-J model (46). In this phase,
the quasiparticles break up into fermionic spinons and bosonic
holons (Fig. 1E). In the absence of Kondo fluctuation, the sys-
tem is in the fractionized Fermi liquid (FL�) phase, reminis-
cent of that described in ref. 20, consisting of gapped fermionic
spinons and a decoupled conduction band. Note, however, that
our FL� phase exhibits a staggered local U(1) gauge symmetry:
fiα → fiαe

iθi , fjα → fjαe
iθj with θi =−θj for i , j being nearest-

neighbor sites, while it is a Z2 spin liquid on a frustrated lattice
(e.g., triangular lattice) (20). Fluctuating Kondo hybridizations
play an essential role to suppress the spinon gap. As illustrated
in Fig. 1F, the local spinon (f) in RVB singlets interacts with
conduction electrons (ψ) via the composite holons (χ) through
the fluctuating Kondo hybridization. The spinons gain kinetic
energy by coupling to the fluctuating Kondo hybridizations (40).
The total free energy of the system and consequently the spinon
gap are reduced. At κ= 1/2, a full suppression of the spinon gap
is reached due to 1) particle–hole symmetry in the spinon (f)
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sector (SI Appendix, section S.IV), 2) the SU(K − 1) channel-
symmetric fluctuating Kondo hybridization, and 3) the nature
of the particle–particle pairing of fermionic Sp(N) RVB sin-
glets. This is reminiscent of the Kondo-stabilized spin-liquid state
in the context of the large-N mean-field approach to heavy-
fermion superconductivity in ref. 40. The difference is that the
spinons in ref. 40 couple to mean-field Kondo hybridization,
while here they couple to Kondo fluctuations in the absence of
Bose-condensed mean-field Kondo hybridization. This emergent
unexplored quantum phase of matter is effectively a critical
Bose–Fermi Kondo lattice system with gapless fermionic spinons
and bosonic holons. This mechanism is generic and applicable to
other types of 2D lattices where different spinon dispersions are
expected to only quantitatively change the power-law exponents
of the strange metal properties. Below, we discuss transport and
thermodynamical observables in this NFL strange metal phase.

Scattering T Matrix. The conduction-electron T matrix is defined
as T (ω) = Σc(ω)/ (1−Gc0(ω)Σc(ω)) with Σc being the self-
energy of the conduction-electron bath and Gc0 the Green’s
function of the independent conduction bath (Materials and
Methods). In the large-N limit, it reduces to Σc(ω)∼O(1/N )
(SI Appendix, sections S.II and S.III). The T matrix provides
insight into the local transport properties. It is proportional
to the local density of states of the conduction bath and
can be compared to the low-temperature scanning tunneling
microscope measurement. By allowing the conduction electrons
in the local baths to hop, the strange metal feature of the T matrix
implies the same qualitative behavior in electrical resistivity
Δρ(T ) = ρ(T )− ρ0 with ρ(T ) being the total resistivity and
ρ0 being the residual resistivity at T = 0. In the strange metal
phase, via the interplay of the (gapless) power-law spinon
and holon spectral functions of Fig. 1F, we find that the
static T matrix, corresponding to the scattering rate, τ−1(ω =
0,T ) =−NT ′′(ω = 0, T ), shows a strange metal feature with
superlinear-in-T power-law behavior

−NT ′′(ω = 0,T )∝ T 1+p with p ≈ 0.6 [4]

as T → 0 over a wide range in g and T/TK (Fig. 2A), signaling a
NFL strange metal phase (yellow region in Fig. 1A). This power-
law exponent is well accounted for by the power-law behavior
of spinon and holon spectral functions for T → 0 (Fig. 1C and
SI Appendix, section S.IX). Moreover, this exotic phase shows
a quantum critical nature, supported by the ω/T scaling of
−T−αNT ′′(ω,T ) over a wide range in ω/T and g (Fig. 2B and
SI Appendix, section S.IX):

−T−αNT ′′(ω,T )∝ Φ(ω/T ) [5]

with Φ(ω/T ) being a universal function that is shown in Fig. 2B.
Here, we realize a distinct type of critical spin liquid with strange
metal features mediated by the Kondo fluctuations. By contrast,
the critical (gapless) spin-liquid state realized in AF Heisenberg
models arises from magnetic frustration (44, 45). Furthermore,
a NFL strange metal region (gray area in Fig. 1A) centered
at the KB QCP (g = gQC ) at T = 0 shows features of the
quantum critical region with a different NFL behavior in the T
matrix, −NT ′′(ω = 0,T )∼ T 1−p with p ≈ 0.6, associated with
quantum-critical scaling (Fig. 2 A, Inset).

Thermodynamical Observables. We further find the strange metal
phase also shows NFL behavior in thermodynamical quantities.
The temperature-dependent specific heat coefficient γ(T ) ex-
hibits a logarithmic-in-T divergence both in the low-T limit and
in the quantum critical regime (Fig. 3 A–C):

γ(T ) =−a ln(T/T1,2), [6]

with a and T1,2 being nonuniversal constants. Similar −ln(T ) de-
pendence is found in both static and dynamical spin susceptibility

A

B

Fig. 2. The scattering T matrix and its ω/T scaling. (A) T matrix with
different values of g at κ = 1/2. Inset shows scaling of A with γ(g) being a
nonuniversal constant. (B)ω/T scaling of T matrix forω/T < 1 with α ∼ 1.75
(Left) and for ω/T > 1 with α = 0.37 (Right) for g = 0.052. Ω is a fitting
parameter. Inset shows the curves of the unscaled T matrix.

(Fig. 3 D and E). Interestingly, the dynamical spin susceptibility
at a fixed frequency tends to saturate at low temperatures, rem-
iniscent of the Pauli spin susceptibility (Fig. 3E), suggesting the
fermionic nature of the critical spin liquid (47).

The Quantum Critical Strange Metal Phase. Since the strange metal
phase shows NFL behaviors and dynamical ω/T scaling typically
appearing near a QCP, we investigate further the existence and
the nature of this alluded to QCP on more general grounds. As
mentioned above, we find the strange metal phase is protected by
both SU(K − 1) channel symmetry and particle–hole symmetry
in the spinon (f) part of the Hamiltonian. In a more general
parameter space of (κ, g), the strange metal phase is located
at an unstable spinon (f) particle–hole and SU(K − 1) channel-
symmetric QCP (19) at κc = 1/2 for a given g < gQC (Fig. 4A).
This QCP is then extended to a quantum critical line (or a
quantum critical phase for T < TSL) for 0< g < gQC as g is
tuned (the red shaded region bounded by the red solid and
dashed TSL lines in Fig. 4A).

The stability of the strange metal phase against particle–hole
asymmetry is analyzed below. We find our results are robust when
the particle–hole symmetry of the conduction bath is broken
(SI Appendix, section S.IX). For highly frustrated local spins with
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Fig. 3. Specific heat coefficient, spin susceptibility, and their NFL strange metal behavior. (A) The specific heat coefficient is plotted as a function of T/TK .
(B) γ(T) of the low-T regime is rescaled and fitted to a T-logarithmic function (black dashed line). (C) γ(T) of the NFL strange metal region is rescaled and
fitted to a T-logarithmic function (black dashed line). The plot keys for B and C are shown in A, Right. In B and C, α, C, β, C′, T1, and T2 are nonuniversal
constants. (D) Static uniform spin susceptibility χ′(T)/N as a function of T/TK . In Inset, χ′(T)/N of the low-T regime is rescaled and fitted to a T-logarithmic
function (black dashed line). Here, α, C, and T0 are nonuniversal constants. (E) Dynamical uniform spin susceptibility χ′(ω0, T)/N with different values of
frequency ω0 (in units of half-bandwidth D) for JK/JH = 0.052 fixed. The cyan dashed line is a fit to a T-logarithmic function.

κ < 1/2, which breaks particle–hole symmetry of f electrons, the
system develops gaps (Δs , Δh) in both the spinon and holon
spectral functions in the spin-liquid phase (Fig. 1D) where the
temperature-dependent observables show an exponential decay
as T → 0 (SI Appendix, section S.IX). Moreover, we find Δs,h

both vanish in a power-law fashion as κ approaches the QCP
at κc = 1/2 (Fig. 4B). The strange metal features in this phase
extend to a finite range of the quantum critical fan at finite tem-
peratures as κ is tuned slightly away from particle–hole symmetry
(Fig. 4A), as indicated in the T matrix (Fig. 4C).

We make some remarks here. Although the existence of the
strange metal phase requires the particle–hole symmetry of the
spinons at κ= κc , our results have broad applications. They
are generic features of a large class of intermetallic compounds
described by the S = 1/2 KH model and are robust against
particle–hole asymmetry of the conduction band. These features
also survive at finite temperatures even when the f spinons are
away from the particle–hole symmetric point at κ= κc (Fig. 4A).
We discuss below the application of our results for the strange
metal phase recently observed in a frustrated Kondo lattice
compound and the implication of our results in the context of
high-Tc cuprate superconductors (Discussion).

Benchmarking the Strange Metal Phase. To demonstrate the
unique particle–hole symmetry protected strange metal phase we
find here for κ= 1/2, we benchmark our results by comparing
its singular NFL properties with that of the Jones–Varma fixed
point in the two-impurity Kondo model (48, 49), also known to
be sensitive to particle–hole asymmetry. At the Jones–Varma
QCP of the two-impurity Kondo model, while the specific heat
coefficient shows a similar −ln(T ) divergence as observed in
our strange metal phase, uniform spin susceptibility does not
diverge as opposed to the T-logarithmic divergence in the
strange metal phase. Moreover, the superlinear-in-T (∼T 1.6)
electron scattering rate (associated with resistivity) in our
strange metal phase is distinct from the two-channel Kondo-like√
T -dependent resistivity found near the QCP of the two-

impurity Kondo model in an AF-coupled double-quantum dot
system (50), equivalent to the Jones–Varma QCP.

The above differences between the strange metal phase and
the Jones–Varma QCP suggest that they correspond to distinct
fixed points. In the context of renormalization group analysis,
the Jones–Varma QCP of the two-impurity Kondo model and the
quantum-critical strange metal phase we find here are indeed dis-
tinct fixed points and therefore belong to two different university
classes although they both sensitively depend on particle–hole
symmetry: The Jones–Varma QCP of the two-impurity Kondo
model is an unstable critical fixed point by tuning both g =
JK/JH and the particle–hole asymmetry, while the strange metal
phase consists of a line of fixed points (a phase instead of a single
quantum critical “point”) that are stable along g for 0< g < gQC

but unstable against particle–hole asymmetry (Fig. 4A). Note that
the sensitive dependence of the Jones–Varma QCP on particle–
hole symmetry comes as a result of the specific form of the Kondo
couplings, where the two impurity spins are coupled through the
Kondo term to the same (single) conduction-electron bath. Con-
sequently, any potential scattering term that destroys particle–
hole symmetry will smear out the transition (51). A slightly
different two-impurity Kondo model was studied in the context
of a double quantum dot setup where two magnetic impurities
couple independently to two separate conduction baths (50).
Interestingly, the QCP therein is robust against particle–hole
asymmetry, and it is unstable only against direct charge transfer
between the impurities.

Clear evidence confirming the distinction between the strange
metal and Jones–Varma fixed points of the two-impurity Kondo
model comes from the different values of the zero-temperature
entropy S0 in these two cases. At the Jones–Varma QCP, one has
S0 = (1/2) ln 2, identical to the residual entropy of a two-channel
Kondo fixed point. By contrast, the entropy S(T )/N in the
strange metal phase decreases as S(T )/N ∝ T + T ln(T1/T )
with decreasing temperatures (Fig. 5). Due to the quantum
critical nature of the strange metal phase, we expect the entropy
will saturate at a value much smaller than (1/2) ln 2 in the T → 0
limit. However, it goes beyond our present numerical capability
to confirm this expectation. This quantum-critical strange metal
phase is also different from the gapped-valence-bond (local spin-
singlet) phase of the two-impurity Kondo model. The latter
always has a finite spinon (holon) gap at the Fermi energy due to
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Fig. 4. Strange metal features with different values of κ. (A) Schematic
phase diagram as functions of g, κ, and T of our model. On the κ-T plane
for fixed 0 < g < gQC , the strange metal phase at κc = 1/2 (black dashed
line) is a QCP separating two gapped valence-bond (VB) phases for κ ≶ 1/2.
The quantum critical fan (yellow region) is centered at κc, where the strange
metal features extend over a finite region for 0 < g < gQC (the red shaded
area bounded by the red dashed and solid lines). (B) Spinon gap Δs versus
κ for g = 0.052. The spinon gap on both sides of κc exhibits a power-law
behavior in |κ − κc| (red curve), suggesting κc is a QCP. (C) Plot of the T
matrix for different values of κ near κc = 1/2 with g = 0.052 fixed.

the local (zero-dimensional) nature of the dispersionless spinon.
We find the key factor giving rise to the strange metal feature is
the gapless fermionic spinon and bosonic holon excitations in a
2D critical spin-liquid phase.

As a consistency check, we apply our method to the two-
impurity Kondo model. Similar to the lattice case, the resulting
phase diagram contains four phases: a gapped-valence-bond
(local spin-singlet) phase, a Kondo singlet phase, a decoupled
phase, and a coexisting phase (SI Appendix, section S.XII).
Within our numerical accuracy, the coexisting region can
be largely suppressed by fine tuning JK and JH , leading
to a QCP between the valence-bond phase and the Kondo
singlet phase. We found a finite zero-temperature entropy
slightly less than ln 2 around the critical value of TK/JH (34)
(SI Appendix, section S.XII), resembling the Jones–Varma fixed
point of the two-impurity Kondo model. The QCP of our
two-site problem shows distinct NFL behavior from that in
the quantum-critical strange metal phase on the 2D lattice
(SI Appendix, section S.XII), as expected. Note that, different
from the Jones–Varma two-impurity Kondo model where two
local-impurity spins share a single electron bath, our model
assumes two independent electron baths, coupled separately
to the two impurity spins. This setup forbids charge transfer
between the two impurity sites, allowing the QCP to persist even
without particle–hole symmetry (50).

Application for CePd1−xNixAl. The compound CePd1−xNixAl is
known as a partially frustrated Kondo lattice system (12, 26–28,
52). The Ce atoms on the geometrically frustrated kagomé lattice
show Kondo hybridization between the effective S = 1/2 local
f -electron spins and that of mobile d electrons. In the absence of
field and pressure, the system shows AF LRO below 2.7 K and
an effective single-impurity Kondo temperature TK ≈ 5 K (53).
Note that here TK is different from the coherent lattice Kondo
temperature (T ∗). Due to geometrical frustration, only two-
thirds of spin moments participate in the magnetic order (52).
The magnetic interactions are of the Ising type with AF couplings
along the c axis and ferromagnetic (antiferromagnetic) couplings
between nearest-neighbor (next-nearest-neighbor) spins in the
a-b kagomé plane, respectively. Chemical substitution of Ni
effectively introduces a positive pressure to the system.

With increasing field and pressure, the system undergoes two
phase transitions: Due to frustration, the long-range magnetic
order is first suppressed at a lower critical field (Bc1) and pressure
(pc1), leading to a paramagnetic metallic spin-liquid state (12,
27). At higher field and pressure, the system goes from a para-
magnetic spin-liquid phase to a heavy Fermi-liquid phase via the
KB transition, characterized by a small-to-large the Fermi surface
volume jump as T → 0 at a higher field (Bc2), observed in Hall
coefficient measurement (12). This is reminiscent of the Fermi
surface jump observed in YbRh2Si2 (9, 10). In the paramagnetic
phase of pure CePdAl under fields, the alternating current (AC)
susceptibility shows a pronounced increase upon cooling and
a Pauli-like saturation at low temperatures, consistent with a
fermionic spin liquid (12). The fermionic RVB spin-liquid state
we propose here is a possible realization of it. In the paramag-
netic spin-liquid phase, the features of a stable strange metal
phase are observed, including quasilinear-in-T resistivity and
−ln(T ) dependence in specific heat coefficient asT → 0 (27, 28).

Although magnetic interactions in the AF-ordered phase are
three-dimensional, signatures of effective two-dimensional na-
ture in specific heat coefficient have been observed in the absence
of AF LRO, showing logarithmic divergence in |B − Bc1| at the
edge of antiferromagnetism (54) and T-logarithmic singularity
in the frustration-induced spin-liquid phase (27, 54). Meanwhile,
geometrical frustration lying in the kagomé plane plays a crucial
role to give rise to the spin-liquid phase as suggested by the
abovementioned spin-liquid behavior in AC spin susceptibility
(12) and the enhanced low-temperature entropy (25) in this
region, making the material in the absence of magnetic LRO an
effective “two-dimensional” Kondo lattice system.

Fig. 5. Entropy with different values of JK/JH in the strange-metallic RVB
spin-liquid phase of the channel-asymmetric large-N case. The entropy
decreases as T + T ln(T1/T) with decreasing temperature (the cyan dashed
line). Inset displays the same plot in the linear scales.
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The conventional Hertz–Millis-type SDW theory is known
to capture the magnetic transitions at the edge of the LRO
phase, such as in itinerant ferromagnetic metals (4). The SDW
in CePdAl was observed in the form of amplitude modulations
of the Ising spins along the crystallographic c axis in the LRO
phase (55). This scenario was reported to capture the magnetic
transition at CePd1−xNixAl at Bc1 (pc1) due to proximity to the
magnetic long-range order (25, 27). However, the SDW scenario
is unlikely to account for the dominating features of the strange
metal phase and the paramagnetic spin-liquid-to-FL phase tran-
sition at Bc2 (pc2) of this material for the following reasons:
1) The finite-temperature cross-over line in Fermi volume for
a typical SDW QCP does not converge to the QCP at T =
0, leading to a smooth evolution of Fermi surface across the
SDW transition (14, 56, 57), inconsistent with the KB scenario
where the finite-temperature cross-over line merges with the
QCP and the jump in Fermi volume at T → 0 as was observed in
CePd1−xNixAl (12). 2) The KB QCP occurring atBc2 (pc2) is de-
tached from the AF LRO phase transition atBc1 (pc1). The SDW
fluctuations, more relevant in the LRO phase and near Bc1 (pc1),
are expected to be strongly suppressed in the strange metal phase
and near Bc2 (pc2) where the critical charge fluctuations become
essential. This expectation was demonstrated experimentally in
Ge-substituted YbRh2Si2, where SDW is unable to explain the
thermodynamic properties in the paramagnetic spin-disordered
NFL strange metal state (30, 31). By contrast, the mechanism
based on the KB scenario offers qualitative understanding of
these phenomena (24). Nevertheless, since these two transitions
are close by, SDW is expected to survive but to play only a
subleading role in the strange metal phase and near Bc2 (pc2).

Based on these observations, the interplay of Kondo and RVB
spin liquid analyzed above offers an attractive mechanism for a
qualitative understanding of the strange metal phase, despite the
different type (Heisenberg as opposed to Ising) of AF coupling
in our model. We expect that this difference may lead to a
quantitative change in the power-law exponents of the strange
metal phase. Note that critical exponents of the classical AF Ising
model are the same as for the AF Heisenberg model (58). The
ratio g ≡ JK/JH is expected to increase with increasing field
or pressure (24). The calculated strange metal feature in the T
matrix (Eq. 4) and the dynamical spin susceptibility are qualita-
tively in good agreement with the quasilinear-in-T resistivity per-
sistent to the lowest temperature, observed in both its pure and
Ni-doped forms (27), as well as the dynamical spin susceptibility
measurement for its pure form (12, 26, 27), respectively. The
T-logarithmic divergence in specific heat coefficient (Eq. 6) we
find in the strange metal phase bears a striking similarity to that
observed near critical Ni doping (27, 28).

Discussion
Due to the existence of an extended spinon Fermi sur-
face, spinons are deconfined despite the U(1) gauge field in
the spin-liquid dominating regions and strange metal phase
(SI Appendix, section S.V) (59). Our results are therefore stable
against U(1) gauge field fluctuations. However, a confining
spin-liquid phase for κ < 1/2 will give way to the translational
symmetry-breaking valence-bond state due to the confining
U(1) gauge force (Fig. 4A) (60). While spinon and holon
Green’s functions are gauge dependent, physical observables
are gauge-invariant combinations of these Green’s functions
(SI Appendix, section S.VIII). We have checked that the qualita-
tive features of the strange metal phase and quantum-critical
strange metal regions in the large-N limit persist at finite N
and K, including in the physical SU(2) ≡ Sp(2) (N = 2, K = 1)
limit (SI Appendix, section S.XI). Note that, in the physical limit,
following the way we decouple the Kondo hybridization (holon)
field in the multichannel case (Results), the χia field in the
single-channel case here is either a Bose-condensed mean field

(χia = x ) in the Kondo and coexisting phases or a pure fluctu-
ating quantum field χia = χ̂ia in the other phases or regions.
While the local bath approximation corresponds to the single-
site approximation of the self-energies of fields, it is already
sufficient to effectively capture the important aspects of the KB
QCP since the critical modes are dominated by local charge
(Kondo) fluctuations (13, 38). When the channel symmetry is
preserved (J ′

K = JK ), we find the Kondo-screened Fermi-liquid
and the coexisting phases are unstable against the overscreened
NFL ground state (the decoupled phase), consistent with ref.
19 on the large-N approach to the multichannel single-impurity
Kondo model. In this case, only the RVB spin-liquid strange
metal and the decoupled phases are stable ground states. To
describe the residual resistivity ρ0 as T → 0 in realistic materials,
one needs to also include scattering of conduction electrons
by local defect (nonmagnetic) impurities, which are inevitably
present there (61). In our case, the T matrix, proportional to the
local scattering rate, depends on energy (or frequency ω) and not
on momentum. The residual scattering rate in the T = 0 limit is
just a constant added to the total scattering rate.

Our results shed light on the strange metal state in cuprate
superconductors. The Fermi surface reconstruction has been
observed near the optimal-doped cuprates where strange metal
phenomena live (1). The presence of a small electron pocket
slightly below the optimal doping has been interpreted as Fermi
surface reconstruction induced by the charge-density-wave state,
distinct from the SDW state that already vanishes at a lower
doping (1, 62). This suggests a link between strange metal state
and the (critical) charge fluctuations near Fermi surface recon-
struction, reminiscent of the critical charge fluctuations near the
KB transition of our system. While signatures of the QCP hidden
inside the cuprate superconducting dome were reported (1, 62),
a recent experiment reveals the strange metal regime persisting
over a finite doping range as T → 0 (63), indicating an exotic
quantum-critical strange metal phase. Whether the strange metal
state in cuprates is linked to a quantum critical point or a phase
is under intense investigation (64). On theoretical grounds, it
has been known that the S = 1/2 KH model is related to the
S = 1/2 t-J model, appropriate for describing cuprates (65, 66).
In particular, the authors in ref. 66 map the slave-boson t-J
model onto an effective KH model, where the hoping (t) term
(Heisenberg J term) of the t-J model is equivalent to the Kondo
(Heisenberg) term of the KH model, respectively. At the mean-
field level, this effective KH Hamiltonian supports the pseu-
dogap, strange metal, superconducting, and normal FL phases.
Within this effective KH model, the system can undergo a phase
transition from the strange metal phase to a normal FL metal
phase via a “KB”-like transition in the context of critical charge
fluctuations and Fermi surface reconstructions. This transition
is expected to be characterized by Bose condensing the slave
bosons of the hoping term (or the effective Kondo term) in the t-J
model, leading to the jump in Fermi volume from a smaller value
in the strange metal phase to a larger value in the Fermi liquid
metal phase. Our approach and results therefore offer a unique
perspective to address this well-known problem.

Before we summarize, we discuss a few issues when comparing
our model and results to CePdAl. First, due to the lack of
inversion symmetry and the existence of spin–orbit coupling of
Ce atoms, Dzyaloshinskii–Moriya interaction (DMI) in principle
exists in this material with the following Hamiltonian: D ij ·
(S i × S j ), where the D ij vector is related to the spin–orbit
coupling. However, due to the Ising-like local spins whose spin
moments are predominantly parallel to each other, the DMI is
therefore strongly suppressed since S i × S j 
 1. Nevertheless,
we expect that the DMI does exist but plays only a sublead-
ing role here since 1) a strong magnetic anisotropy from the
spin susceptibility measurements for B ⊥ c and B ‖ c is present
(28, 67), indicating the material is not a pure Ising model system
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although it is almost Ising-like, and 2) the admixture of doublet
ground states of J = 5/2 Ce atoms implies a finite spin–orbit
coupling (68), giving rise to D ij 	= 0. To date, there is no ex-
perimental report on the existence of DMI in CePd1−xNixAl.
Further experimental confirmation on the signatures of DMI is
needed. Second, the splitting of the energy levels due to the
crystal electric effect (CEF) for CePdAl has been observed at a
rather high temperature, T > 240 K (69). However, we checked
that, based on the realistic estimation of Kondo coupling ρJK ≈
0.3 and bandwidth D ∼ 0.2 eV (70), the Kondo temperature
is estimated as TK =D exp (−2/ρJK )≈ 3 K, giving rise to the
cross-over temperature T ∗ ≈ 30TK ≈ 90 K of the Kondo phase
to occur at a temperature well below the temperature scale of
CEF effect T ∼ 240 K. Therefore, we do not expect significant
modifications for our results due to CEF splitting. The estimated
Kondo temperature TK ≈ 3 K here is in reasonable agreement
with experiments in ref. 53, where TK ≈ 5 K at ambient pres-
sure. Finally, the predicted coexisting superconducting phase in
our model calculations has not been observed in this material
although it commonly appears near a QCP in various fermionic
large-N approaches to the KH lattice models (20, 42, 71). We
think the possible explanations for this discrepancy are the fol-
lowing: 1) The size of the coexisting region we find here is
overestimated since the fluctuations of RVB spin-liquid order
parameter Δ are not included in our calculations. By including
these fluctuations, the cross-over temperature of the coexisting
phase is expected to get further reduced, and a full suppression
of the coexisting region may be possible. 2) The material may
show superconductivity at a much lower temperature than the
temperature range in the existing experiments. For example, the
superconducting phase in YbRh2Si2 was recently discovered at
a much lower temperature range (72) than that in previous mea-
surements where superconductivity was not observed for more
than a decade (73). Meanwhile, we further explored the phase di-
agram in a wider range in the multidimensional parameter space
of (T , J a

K , JH ). We find that the size of this coexisting phase in
our model calculations can be varied. It can be sizable, negligible,
or even fully suppressed, depending on the individual values of
Kondo and Heisenberg couplings and how these couplings are
approached to the KB QCP. Our phase diagram in Fig. 1A is
obtained with channel-asymmetric Kondo couplings J ′

K = 2JK
by fixing JK/D = 1 while changing the value of JH . However,
when JK and JH are tuned in a different way across the KB QCP,
we find a negligible and even full suppression of the coexisting
region with further decreasing channel asymmetry to J ′

K/JK →
1+ (SI Appendix, section S.XII). Although it is not clear how the
Kondo and Heisenberg couplings are varied in experiments of
CePd1−xNixAl across the KB QCP, by fine-tuning J ′

K/JK and
JK/JH , we do find a full suppression of coexisting phase. More
importantly, the qualitative features of our main results on the
strange metal non-Fermi liquid phase in the RVB spin-liquid–
dominated region are generic, robust, and relevant for a broad
range of rare-earth intermetallic compounds regardless of the
existence or the size of the coexisting superconducting phase.

In summary, by constructing a controlled dynamical large-
N approach to the 2D Kondo–Heisenberg model, we have
identified a mechanism of realizing a strange metal phase
applicable to paramagnetic rare-earth intermetallic compounds.
This phase is stabilized by the interplay of the short-range
antiferromagnetic spin-liquid and critical charge (Kondo)
fluctuations near the Kondo breakdown quantum critical point.
We clarify the nature of this phase in terms of the fluctuating
Kondo scattering-stabilized quantum critical spin-liquid metal.
The quantum critical nature of this phase is manifested in ω/T
scaling of the dynamical electron scattering rate. Our results
in quasilinear-in-temperature conduction-electron scattering
rate and logarithmically in-temperature divergent specific heat
coefficient as T → 0 were recently observed in CePd1−xNixAl.

Our results serve as a basis of realizing emergent quantum critical
strange metal phases in correlated electron systems in general.

Materials and Methods
The Large-N Multichannel Generalization of the Kondo Lattice Model. Starting
from Eq. 1, the HK and HJ in the single-channel physical SU(2) limit can be
written as

HK =

(
−

JK

2

) ∑
i,α,β

ψ
†
iαfiαf†iβψiβ ,

HJ =

(
−

JH

2

) ∑
〈i,j〉,αβ

(
α̃f†iαf†j,−α

) (
β̃fj,−βfiβ

)
, [7]

where α, β = ±1 are the SU(2) spin indexes and α̃(β̃) is defined in Eq. 2.
The bath lattice is orthogonal to the impurity lattice. We then generalize
Eq. 7 to the large-N channel-asymmetric multichannel KH model by allowing
N spin flavors (α, β = ±1, · · · , ±N/2) and K Kondo screening channels
(ψiα → ψiαa) with a = 1, · · · , K and channel-dependent Kondo coupling Ja

K ,
as shown in Eq. 2 (19, 33). Next, we introduce two auxiliary bosonic fields, the
Kondo hybridization (holon) field χia and the RVB spin-singlet pairing field
Δij , to factorize HK and HJ of Eq. 2 via Hubbard–Stratonovich transformation
(see SI Appendix, section S.I for details). This generalized large-N channel-
asymmetric multichannel KH model with Ja=K

K ≡ J′K > Ja<K
K ≡ JK shows a

total symmetry of Sp(N)× SU(K − 1). The effective action of this model reads
(see SI Appendix, section S.I for derivations)

S = −
∑
kaα

ψ
∗
kaαG−1

c0 (k)ψkaα −
∑
kα

f∗kα
[
iω + λ − x2Gc0(k)

]
fkα

+ βNNs

(
2Δ2

JH
+ λ

K

N
+

x2

J′K

)
+

∑
k,a

|χ̂ka|2

JK

+

⎡
⎣ x√

N

∑
kaα

f∗kαψkaα +
1√
N

∑
kpαa

χ̂p−k,af∗pαψkaα

+Δ
∑
k,α

α̃fkαf−k,−αξk + c.c.

⎤
⎦ , [8]

where a ∈ [1, K − 1] and k ≡ (ωn, k) with ωn being the Matsubara
frequency. In Eq. 8, Gc0(iω) =

∑
P (iω − εP )

−1 is the bare Green’s function
of local electron baths. Here, Ns denotes the number of impurity lattice
sites, the Lagrange multiplier λ is imposed to capture the local constraint
of fiα, 〈nf (i)〉 = Q, and x represents the Bose-condensed part of the Kondo
hybridization field χia. Also, Δ represents the uniform mean-field value of
the RVB spin-singlet pairing fieldΔij :Δ = (JH/N)

∑
pα sgn(α)ξp〈f†pαf†−p,−α〉

with extended s-wave form factor ξp = cos px + cos py .

Self-Consistent Equations. In the large-N limit, Eq. 8 is solved by a set of self-
consistent equations. Due to the independent electron bath approximation,
the χia field is completely local; it therefore gives rise to the momentum-
independent self-energies, and only the momentum-integrated Green’s
functions are involved (SI Appendix, section S.II):

Gχ(iν) =
[
−J−1

K − Σχ(iν)
]−1

,

Gf (iω) =
∑
p

γ(−iω)

γ(iω)γ(−iω) + 4Δ2
p

, [9]

where γ(iω) ≡ iω + λ − |x|2Gc0(iω) − Σf (iω) and Δp ≡ Δξp is the form
factor of the extended s-wave pairing. Note that this local approximation
is sufficient to effectively capture important aspects of the local KB
QCP since the critical modes are dominated by local charge (Kondo)
fluctuations (13, 23, 32, 38). By neglecting the O(1/N) vertex corrections
(SI Appendix, section S.II), the leading O(1) Dyson–Schwinger equations for
the self-energies read

Σχ(iν) =
∑
ω

Gf (iω + iν)Gc0(iω),

Σf (iω) = −κ
∑
ν

Gχ(iν)Gc0(iω − iν). [10]

The self-energy of the conduction electrons is of order O(1/N) and is
therefore neglected in the large-N limit.

We solve the Green’s functions Eq. 9 and self-energies Eq. 10 self-
consistently subject to the saddle-point equations of the three mean-field
variables λ, Δ, x through minimizing the free energy of Eq. 8 with
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respect to λ, Δ, x. We provide the details of the saddle-point equations in
SI Appendix, section S.II.

Data Availability. Original data and codes created for the study have been
deposited in the online Zenodo repository (DOI: 10.5281/zenodo.5914650).
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