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ABSTRACT

Motivation: Although several methods exist to relate high-dimensional

gene expression data to various clinical phenotypes, finding combin-

ations of features in such input remains a challenge, particularly when

fitting complex statistical models such as those used for survival

studies.

Results: Our proposed method builds on existing ‘regularization path-

following’ techniques to produce regression models that can extract

arbitrarily complex patterns of input features (such as gene combin-

ations) from large-scale data that relate to a known clinical outcome.

Through the use of the data’s structure and itemset mining techniques,

we are able to avoid combinatorial complexity issues typically encoun-

tered with such methods, and our algorithm performs in similar orders

of duration as single-variable versions. Applied to data from various

clinical studies of cancer patient survival time, our method was able to

produce a number of promising gene-interaction candidates whose

tumour-related roles appear confirmed by literature.

Availability: An R implementation of the algorithm described in this

article can be found at https://github.com/david-duverle/regularisa

tion-path-following

Contact: dave.duverle@aist.go.jp

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

From their inception, high-dimensional genomic data, such as

obtained through genome-wide expression microarrays, have

been used to identify genes that affects survival or tumour re-

occurrence time spans among cancer patients (Bøvelstad et al.,

2007; Van De Vijver et al., 2002). Survival data generally contain

partially known observations (e.g. when clinical follow-up of the

patient ends before a decisive event) requiring the use of regres-

sion models that can specifically handle censored data. Cox pro-

portional hazards model (Cox, 1972) is one such model that

combines advantages of both parametric and non-parametric

approaches to statistical inference, making it ideally adapted to

the type of data obtained in clinical trials.

Owing to the high dimensionality and small sample size of

gene expression data, it is desirable to add a penalization com-

ponent in fitting the Cox model (Dudoit et al., 2002; Ghosh,

2003; Van De Vijver et al., 2002), with ‘1-norm often preferred

for its ability to drive sparsity of the model and select a concise

set of variables (gene expression values, mutation types, etc.)

(Gui and Li, 2005; Tibshirani et al., 1997). Different methods

have been suggested (Gui and Li, 2005; Lin and Wei, 1989; Park

and Hastie, 2007) for fitting ‘1-penalized Cox model. Park and

Hastie (2007), in particular, proposed a method to compute the

regularization path of ‘1-penalized Cox model, producing a series

of Cox models that have different levels of complexity and

sparsity.
As for many models in systems biology, it has been widely

shown (Hanahan and Weinberg, 2000; Tibshirani et al.,

2002) that the gene regulatory pathways of cancer involve

non-linear gene interactions. Although models based on linear

combinations of gene expression may accurately approximate

more complex interactions for some tasks, it can be desirable

to specifically identify combinatorial covariates for such purpose

as the identification of synthetic lethal genes (Kaelin, 2005).

However, all current methods rely on the ability to enumerate

potential input variables: although it is computationally feasible

to examine each single gene in such a way (even for a large

microarray), issues of exponential complexity quickly arise

when considering interactions between more than one gene at

a time.

In this article, we extend the approach in Park and Hastie

(2007) to handle combinatorial interactions among genes. We

deal with issues of combinatorial explosion and computational

complexity by taking advantage of itemset mining techniques

(Uno et al., 2004). Using this approach, virtually limitless com-

binations of genes and phenotypes, grouped in itemsets of boo-

lean variables, can be used as single predictor variables in the

model. Our proposed algorithm computes the regularization

path of ‘1-penalized Cox models that account for the effects of

combinatorial gene interactions on survival.
Beyond proportional hazards models, our itemset-based

method can be applied to any regression model with convex

loss, each time making use of the input’s structure and sparsity

to sidestep complexity issues, while at the same time guarantee-

ing that events along the regularization path (values of the reg-

ularization parameter for which a change occurs in the model

structure) are exhaustively explored.*To whom correspondence should be addressed.
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In the rest of this article, section 2 first outlines our general

approach for adapting existing path regularization techniques to

work with patterns of discretized input features instead of single

continuous values. Section 3 details the mathematical basis for

our algorithm and illustrates its application to proportional

hazard models using Cox’s partial likelihood as loss function

(with further detailed proofs as Supplementary Material).

Finally, section 4 presents qualitative and quantitative results

obtained by applying our method to different survival datasets.

2 APPROACH

2.1 ‘1-penalized maximum likelihood estimation

A common defining feature to many major regression models,

such as generalized linear models (GLM) or previously men-

tioned Cox model, is the use of a loss function to fit the param-

eters of otherwise analytically intractable problems. Adding an ‘1
penalty term to the original loss criterion results in the typical

estimation problem:

bð�Þ ¼ argmin
b

ð�Lðy;XbÞ þ � k� k1Þ ð1Þ

where L denotes the log-likelihood function with respect to the

given data ðX, yÞ, b is the vector of coefficients that needs to be

estimated and � the regularization parameter.
For values of � tending towards infinity, all coefficients in b

will be forced to 0, whereas as � decreases, more coefficients will

have non-null values (i.e more predictor variables will be used in

the model estimation).

2.2 Regularization path-following algorithm

Among various methods for solving ‘1-regularized problems

similar to (1), the use of so-called ‘regularization path-following’

algorithms (Hastie et al., 2005; Park and Hastie, 2007) is of par-

ticular interest for their ability to finely control the number of

active variables in the model, regardless of the dimensionality of

the input. The general idea behind path-following is to study

variations of the � parameter in the space of b coefficient

values (see Fig. 1): by decreasing the value of �, starting from

the maximum �max for which b is non-null, we can find a se-

quence of all discrete values of �, for which new coefficients of b

change between null and non-null (corresponding to a particular

predictor variable exiting or entering the regression model).

The resulting sequence of �k and associated optimal bð�kÞ
allow us to model the data at varying levels of sparsity.
Park and Hastie (2007) suggested a path-following algorithm

for ‘1-regularized GLM that uses a predictor-corrector approach

to efficiently find all �k and the coefficients of the model asso-

ciated with each level of regularization. If we define the ‘active

set’, A�k , as the set of non-null indices in the coefficient vector

bð�kÞ, their algorithm can be defined as a loop over four main

steps:

(1) Predict: Starting with a known bð�k�1Þ and �k: the next

target value of �, estimate bbð�kÞ using a piecewise linear

approximation of b, under the assumption that A remains

unchanged.

(2) Correct: Solve the associated convex optimization problem

to find the exact value of bð�kÞ (using the linear approxi-

mation as a warm start).

(3) Update active set: By confronting the new values of b to

the optimality conditions of the problem, update A (i.e.

add/remove predictors from the model). Repeat step 3 if

necessary to adjust b.

(4) Decrement �: Analytically find the exact value of �kþ1, at
which the active set will next change.

It is worth noting that, when an ‘1-regularized model is fitted

to high-dimensional small sample data, sparse models are usually

selected (based on some model selection criteria). Therefore, we

do not really have to compute the ‘entire’ regularization path

(from �0 to 0). The algorithm is usually terminated for a value

of � where the size of the active set A is still much smaller than

the input dimension.
Because steps 1 and 2 only use variables in the current active

set A, they can be performed at little computing cost for values

of � where jAj remains much smaller than the number of vari-

ables. Steps 3 and 4 require solving simple equations for each

possible input variable (in linear time of the input’s dimension).
In their work, Park and Hastie (2007) showed that, along with

GLM, their algorithm could also easily be applied to the Cox

proportional hazards model. In fact, it can be shown that their

results hold for any loss-based model fitting task, provided a loss

function that exhibits certain mathematical properties (see sec-

tion 3 and Supplementary Material).

2.3 Finding combinatorial covariates

When the linear model is extended to combinatorial interaction

terms, the input dimension increases exponentially because of the

combinatorial explosion of gene interactions. Of the steps enum-

erated in section 2.2, the predictor and corrector steps only deal

with the small subset of covariates currently in the active set A,

and therefore do not need to be changed. On the other hand,

updating the active set in step 3 and finding the next value of � at
which an update event will occur in step 4, both potentially re-

quire examining a number of feature combinations that grows

exponentially with the order of the interactions considered.

One practical approach to dealing with issues of combinatorial

explosion and computational complexities in steps 3 and 4 is to

take advantage of the input’s structure to efficiently explore its

space. By discretizing our input (gene expressions or other

Fig. 1. Schematic representation of the regularization path in the space of

�. Successive values of �ð�kÞ can be approximated using @�ð�Þ
@�
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clinical data) and considering all possible sets of such binary

variables, we can use itemset mining techniques (Saigo et al.,

2007; Uno et al., 2004) to preserve the computational efficiency

of the path-following algorithm despite a high dimensional input.

We show that step 3 can be reduced to a weighted itemset

mining problem, easily solvable using existing optimization tech-

niques (see Methods section 3.1.3), whereas step 4 requires sol-

ving a particular form of fractional programming problem, for

which we developed an efficient pruning approach (see Methods

section 3.1.4). Our method can therefore overcome those com-

putational complexity issues, and identify complex interactions

(between two or more factors) that contribute to the response

model, at varying degrees of sparsity (controlled by the penaliza-

tion component).

2.4 Application to Cox proportional hazards model

We applied our modified version of the path-following algorithm

to the Cox proportional hazards model, where patient survival

(or any timed event) is used as a response, allowing for missing

data because of right censorship. To estimate this model, we seek

to maximize a so-called log partial likelihood function (see

Methods section 3.2) for a given set of data. As predictors, we

use discretized values of the gene expression levels (see section

4.1).

3 METHODS

In this section, we give a quick overview of the path-following algorithm

first presented by Park and Hastie (2007) and the necessary changes to

work on combinatorial interactions:

3.1 Path-following algorithm

Let JðbÞ be the criterion from (1):

JðbÞ :¼ �Lðy;XbÞ þ �jjbjj1 ð2Þ

In the regularization path, we consider the optimal parameter vector b

as a function of the regularization parameter �, and represent the optimal

parameter vector at � as bð�Þ. We can write the optimality condition as

follows:

Hðbð�Þ, �Þ :¼
@JðbÞ

@b
jb¼bð�Þ ¼ 0 ð3Þ

Our goal is to compute the path of solutions of (3) for all the �. If we

only consider the range of � where the active set A does not change

(noting bA: the restriction of b to the active set A), the partial change

of the optimality condition (3) with respect to � must satisfy:

@Hðbð�Þ, �Þ

@�
¼
@H

@�
þ
@H

@bA

@bA
@�
¼ 0 ð4Þ

3.1.1 Predictor step In each predictor step, we assume that the cur-

rent active set, A, does not change. In the k-th predictor step, we use a

linear approximation to predict b with the current active set:

bbAð�kþ1Þ :¼ bAð�kÞ þ ð�kþ1 � �kÞ
@bAð�Þ

@�
j�¼�k ð5Þ

3.1.2 Corrector step We also assume that the active set A does not

change during each corrector step. Any convex optimization algorithm

can be used to minimize the penalized loss function (2). The use of

bbAð�kþ1Þ as an initial starting point ensures that an optimal solution

can be found in a small number of iterations.

3.1.3 Active set update After each corrector step, it is necessary to

identify all new features that should enter A. If we consider the set P of

all possible patterns, up to a given length, of binarized input features (e.g.

‘gene A over-expressed and gene B under-expressed’) and assign each such

pattern an index value, for any ‘ 2 f1, . . . , jPjg, we note x‘ 2 B
n (where n

is the total number of observations) the indicator vector for the matching

pattern. Our goal is to identify such values of ‘ that contribute to mini-

mize the loss function (2), and for which the matching value of the par-

ameter vector b should be non-null (noted as �‘ being ‘active’ and ‘ being

in the ‘active set’ A).

With the feature notation X :¼ fxijgi, j, we define:

wi :¼ �
@L

@b>xi
, c‘ :¼

Xn
i¼1

wixi‘ ð6Þ

Assuming strong complementarity slackness, we obtain the following

result (see Supplementary Material for detailed proof):

THEOREM 1.

�‘ is active, jc‘j ¼ � ð7Þ

Therefore, if jc‘j � �kþ1 after the corrector step, ‘ (and its associated

parameter �‘) must be added to the active set A.

If ‘ were an easily enumerable feature (such as in the case of single gene

expression level), it would be computationally feasible to exhaustively

enumerate all values of c‘ for all possible ‘. In our case, however, ‘

can match an arbitrarily long pattern drawn from the power set of all

binarized features; the number of such features grows exponentially with

the maximum size of the patterns, making the problem highly impractical

for sets of42 or 3 items. However, as long as c‘ can be rewritten as linear

sums of xi‘, finding all such ‘ can be accomplished in reasonable time,

using frequent itemset enumeration techniques.

Because the values wi in the linear sum defined in (6) do not depend on

‘ (and are constant for � 2 ½�kþ1, �k�), finding all items c‘ � �kþ1 is

equivalent to finding all itemsets with weighted support above �kþ1 (the

symmetrical problem of also finding fc‘j � c‘ � �kþ1g is then trivial). To

solve this problem, we use the LCM program (http://research.nii.ac.jp/

�uno/codes.htm) (Uno et al., 2004), which provides an exhaustive enu-

meration of frequent itemsets in guaranteed polynomial time per itemset.

If any variable is added to the active set A, or removed (indices

f‘ 2 Aj�‘ ¼ 0g), we go back to the corrector step (where the new

values of c‘ are first recomputed). These two steps are repeated until

the active set does not change, thus guaranteeing that the solutions are

optimal.

3.1.4 Step length To determine the optimal step length (the minimal

value by which the regularization parameter must be decreased in order

for the active set to change), we need to solve a similar problem, this time

involving the ratio of two separate frequent itemset mining optimization

problems.

If we define the step length:

��k ¼ �kþ1 � �k

the minimum decrement of � for which the active set A changes (a vari-

able is added or removed), it can be shown (see Supplementary Material

for detailed proof) that:

THEOREM 2.

��k ¼ �min
þ

‘2A

�k � ck‘
d‘ � 1

,
�k þ ck‘
�d‘ � 1

,�non�active, �k

� �
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where minþ is the smallest strictly positive value, d‘ :¼ @c‘
@� and �non�active

are obtained by:

�non�active ¼ min
‘2A
�bk

‘

@b‘
@�
j�¼�k

� ��1" #
ð8Þ

We note that �non�active only depends on the variables in the active set

and can be easily computed. On the other hand, much like in section

3.1.3, exhaustively computing the values of the first two expressions in (2)

for all ‘ in A is not computationally feasible given the dimension of our

input.

We designed an exploratory approach using bounds on each sub-

problem to efficiently prune the search tree and drastically reduce the

number of solutions explored.

First, we observe that both expressions can be rewritten as optimiza-

tion problems of the form:

min
þ

‘2A

�p þ
P
i

pixi‘

�q þ
P
i

qixi‘
ð9Þ

where 8i : pi, qi 2 R only depend on the variables in the active set A (and

can therefore be easily computed) and �p, �q: constant terms

(f��k, � 1,�k, 1g).

We consider a relaxed form of (9), known as unconstrained fractional

0–1 programming, problem (Hammer et al., 1968) and frequently encoun-

tered in the fields of scheduling or database query optimization (Hansen

et al., 1990):

��‘ ¼ min
fxigi2B

n

�p þ
P
i

pixi

�q þ
P
i

qixi
ð10Þ

where n is the number of non-zero values for the itemset ‘ being con-

sidered. fpigi 2 R
n and fqigi 2 R

n.

Although the general form of this problem is shown to be NP-hard (by

association to the well-known NP-complete subset sum decision problem),

it has an easy polynomial solution (Boros and Hammer, 2002; Hammer

et al., 1968) if certain conditions hold.

With the following notation, separating positive and negative terms in

the sums of pi and qi:

8i, pi ¼ pþi � p�i : pþi , p
�
i 40; ~pþ‘ :¼

X
pþi xi‘; ~p�‘ :¼

X
p�i xi‘

8i, qi ¼ qþi � q�i : qþi , q
�
i 40; ~qþ‘ :¼

X
qþi xi‘; ~q�‘ :¼

X
q�i xi‘

we have the following result:

THEOREM 3. For a given itemset ‘, it is not necessary to explore any super-

sets of ‘ if either of the following conditions holds:

ð�q � ~q�‘ � 0Þ ^ ð��‘ � curminÞ

ð�q þ ~qþ‘ � 0Þ ^ ð��‘ � curminÞ

where curmin is the current minimum value found by the algorithm up

until itemset ‘.

A much faster (Oð1Þ), albeit slightly weaker, pruning condition can

also be obtained (see proof in Supplementary Material):

THEOREM 4. For a given itemset ‘, it is not necessary to explore any super-

sets of ‘ if either of the following conditions holds:

ð�q � ~q�‘ � 0Þ ^
�p � ~p�‘
�q þ ~qþ‘

� curmin

� �
_

�p þ ~pþ‘
�q � ~q�‘

� 0

� �� �

ð�q þ ~qþ‘ � 0Þ ^
�p þ ~pþ‘
�q � ~q�‘

� curmin

� �
_

�p � ~p�‘
�q þ ~qþ‘

� 0

� �� �

Although this pruning-based method loses some of its efficiency as the

regularization parameter � decreases and the model becomes less sparse,

for the range of values of �k treated, it remains well within the reach of

standard computing equipment (under a minute on a single 3.2GHz CPU

core).

3.2 Application to Cox proportional hazards model

To demonstrate the potential of our method, we applied it to the Cox

model. This model uses survival data of the general form fðxi, yi, �iÞg
n
i¼1,

where xi 2 R
d is the vector of risk factors, for instance gene expression

levels. In practice the xi used by our method is vector of binary indicators

of under- or over-expression (possibly in combination); yi40 is the time

observed (survival until an event or censoring); �i 2 f0, 1g is a binary

variable indicating whether an event has taken place (�i ¼ 1) or the ob-

servation was right censored (�i ¼ 0).

The Cox regression model (Cox, 1972) for the hazard of death at time t

can be expressed as:

hðtÞ ¼ h0ðtÞ expðb
>XÞ ð11Þ

where h0ðtÞ is the baseline hazard function, b 2 R
d is the vector of par-

ameters and X ¼ fX1, . . . ,Xdg is the vector of risk factor variables with

corresponding sample value of xi for the i-th sample.

However, it is not necessary to know h0ðtÞ to infer the regression par-

ameters, thanks to the use of the log partial likelihood function of the

Cox model (Tibshirani et al., 1997), defined as:

LðbÞ ¼
X
i:�i¼1

 
b>xi � log

 X
j:yj�yi

exp

 
b>xj

!!!
ð12Þ

Refer to the Supplementary Material for the exact computation of the

criterion c‘ (6) in the case of the Cox proportional model.

3.3 Gathering synthetic candidates

To extract as many interaction candidates as possible, while avoiding the

risk of overfitting the data, we repeatedly run the path-following algo-

rithm on a randomly chosen subset of the input. It has been shown

(Meinshausen and Bühlmann, 2010) that the use of such sampling

method with regularized methods of variable selection provides a good

estimator of the original data. On each run of the algorithm, we keep

feature combinations that show a significantly improved predictive power

over the linear models (likelihood ratio test P-value 50:01). We aggre-

gate all such combinations and rank them by Kaplan–Meier test P-value

to produce a list of candidate interactions positively or negatively affect-

ing the timed outcome.

As could be expected, a few combinations will tend to reoccur multiple

times across successive iterations of the algorithm, whereas a large

number only occurs once or twice. We hypothesized and verified a pos-

teriori (see Supplementary Material) that combinations with low number

of occurrences might be overfitting a particular iteration’s training subset

and have poor generalization power. We therefore set an additional

screening thresholds on the list of interactions, keeping only those that

occur in at least four (out of 100) iterations. This threshold value was

selected as giving the best compromise between ratio of false positives and

overall number of interactions found (see details in Supplementary

Material).

Independent testing shows remarkable stability of the list of selected

interactions for a large-enough number of iterations. With our chosen

occurrence and P-value thresholds, the final list of variables sees little

change after �50 iterations (see plot in Supplementary Material). This

trend is also confirmed when using an independent test: none of the rarely

occurring combinations added in later iterations turn out to be significant

in the test subset. For our experiment, we therefore set the total number
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of total iterations to 100, a value that once again seems to offer a good

compromise between exhaustivity and the risk of false discovery.

4 EVALUATION

4.1 Datasets

To test our method, we used two datasets publicly available:

survival studies of neuroblastoma (Oberthuer et al., 2006) and
breast cancer (Van De Vijver et al., 2002) patients. In both stu-

dies, complementary DNA microarray assays of gene expression
(10163 probes for 9878 unique genes and 24 158 probes for

23 031 unique genes, respectively), along with (right-censored)
survival data, were available for n ¼ 251 and n ¼ 295 patients,
respectively. In both cases, after setting aside a test subset (25%

of all instances), the algorithm was iteratively applied on rando-
mized subsets of the training data (95%) in a method similar to

the leave-one-out procedure (Kearns and Ron, 1999).
For each study, gene expression data were normalized across

arrays using standard methods (Yang and Thorne, 2003), then

discretized in two binary classes depending on their distance to
the mean (�) using a threshold proportional to the standard

deviation (�): genes that are over-expressed (expression value
above �þ 	�, where 	 is a thresholding parameter, set to 1.5

in this instance) or under-expressed (below �� 	�).
To compare the higher-order interactions found by ourmethod

with a linear combination search, we ran the original Park and

Hastie (2007) algorithm on the same training datasets and ranked
the resulting variables found by the order in which they entered

the regularized model. These ranks appear in the result tables
under the column ‘single-variable rank’ (‘NA’, standing for ‘not

applicable’, indicates a variable that did not appear in any of the
models fitted by the single-variable version of the algorithmbefore
one of its default termination conditions were reached).

4.2 Analysis of breast cancer data

The list of interactions found for Van De Vijver et al. (2002) (see

Table 1) not only features a large number of genes strongly
associated with breast cancer prognosis in the medical literature,

such as SLC2A3 (Sternlicht et al., 2006), CA9 (Span et al., 2003),
RAB6B (van’t Veer et al., 2002), BBC3 (Cobleigh et al., 2005) or

KIAA0882 (Abba et al., 2005), many of which do not appear at
all in single-variable model fits (see single-variable ranks); it also

features interesting examples of synthetic interactions: e.g. the
Kaplan–Meier plot for the interaction between BBC3 and

KIAA0882 (Fig. 2) shows perfect prediction of survival of all
test samples (P50:0003), compared with the much less signifi-

cant plot for BBC3 alone (P ¼ 0:03), whereas a strong synthetic
effect can be observed with BBC3 over-expressed (logrank

P-value: 0.008, see plots in Supplementary Material).
Despite the overall small number of samples and difficulties to

obtain good generalization power from such small training and
test subsets, these results hold fairly well in test. Logrank

P-values computed over an independent test subset for all se-
lected combinations show 6 of 9 (66.7%) to be significant

(P50:05), with 4 combinations (44%) still significant after
Bonferroni correction for multiple-hypotheses testing.

4.3 Analysis of neuroblastoma data

The even smaller number of samples for Oberthuer et al. (2006)
makes it difficult to obtain good generalized results (Table 2);

however, the single interaction validated on the test subset (out
of four interactions in total selected by our algorithm) not only

shows strong predicting power on both subsets, but also involves
two sequences strongly tied to breast cancer in literature. Locus

BC046178 is associated with CENPW (previously known as
C6orf173 or CUG2), a well-studied oncogene associated with

apoptotic behaviours in tumour cells (Lee et al., 2007, 2010).

Probe Hs458148 is a match for multiple genes including

Table 1. Interaction results for Van De Vijver et al. (2002)

Gene combination LR test P-value Logrank P-value No. of occurrences Test logrank P-value Single-variable rank

up.SLC2A3 * up.CA9 0.00153 0.000175 65 0.003432472 NA NA

dn.Contig56307 * up.RAB6B 0.00168 0.000392 15 0.09744396 NA NA

dn.BBC3 * dn.KIAA0882 5.21e-05 0.00043 22 0.0002761196 NA NA

up.KIAA0964 * up.SLC2A3 0.000254 0.00132 23 0.04875811 NA NA

up.GADD153 * up.SLC31A1 0.0147 0.0022 5 0.2596054 540 NA

dn.Contig41887_RC * dn.KIAA0252 0.0151 0.00387 13 0.01261452 NA NA

up.RAD51C * up.TIMELESS 0.0367 0.0168 4 0.001651706 NA NA

up.TGFBI * up.ITGA5 0.0195 0.0298 11 0.2221538 NA NA

dn.Contig41887_RC * up.UGT8 0.000172 0.0329 51 0.003772726 NA NA

Note: Selected feature combinations, ranked by Kaplan–Meier P-value. Bonferroni-significant Kaplan–Meier test P-values are in bold (correction factor: m¼ 71). Total

variables found with single-variable model: 585. Combinations of two genes (or more) are indicated by the symbol ‘*’, while ‘up.’ and ‘dn.’ prefixes indicate up- and down-

regulated genes, respectively.

Fig. 2. Kaplan–Meier plots for genes BBC3 and KIAA0882 (separately

and in combination) in data used by Van De Vijver et al. (2002) (using

test subset independent from training data used to compute Table 1)
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RPL10: a ribosomal protein-coding gene that has been found to

be over-expressed in breast cancer tumours (Nagai et al., 2004).

Although Hs458148 could also match other genes, its expression

values in this dataset are highly correlated (Pearson’s coefficient:

0.63) with two other probes exclusively matching RPL10.

4.4 Model validity and computation time

Although our goal is primarily not to create a predictor, but to

gather input feature combinations (with promising synthetic le-

thality properties, in the case of cancer studies), we could still

confirm that the model estimates produced by our method were

sound and consistent with previous methods. Separating the ori-

ginal dataset in a training (75%), model-selection (12.5%) and

test (12.5%) subsets and running nested cross-validation (100

iterations at the training level, each evaluated over 100 partition-

ing of the model-selection and evaluation subsets), we were able

to compare the average log partial likelihood for both our algo-

rithm and that of Park and Hastie (2007) (who use a ‘1-penalized
path-following algorithm that only selects single variables, here-

after referred to as single-variable algorithm or single-variable

model), both on the test subset.
Using the breast cancer survival data from Van De Vijver et al.

(2002), our algorithm gave a mean log partial likelihood of

�121.00 (SD: 27.56) compared with �117.10 (SD: 26.85) for

the single-variable algorithm by Park and Hastie (2007), both

significantly (P52:2e� 16) higher than the null model

(�123.28, SD: 27.88), where no variables are used. With both

algorithms, a large variance in the cross-validated results and

overall middling performances are to be expected due to the

small sizes of training, model-selection and testing subsets

along with the typically high level of noise in microarray data.

However, as the validation of the results in section 4.2 shows,

there is still enough signal to detect meaningful covariates.
Additionally, we ran our algorithm on a randomized version

of the breast cancer data, where survival data had been shuffled

so as to no longer match its particular gene expression data.

Using the same experimental set-up as described in 4.1, the al-

gorithm produced only two significant interactions (P50:05):
one of which only occurred once (and therefore would not be

selected under normal conditions), whereas the other, with a

P-value of 0.03, was no longer significant after Bonferroni cor-

rection (correction factor: 36) for multiple-hypotheses testing.

This is to be contrasted with the multiple Bonferroni-significant

interactions found in regular data (see section 4.2).

Computing time, although consistently longer for our algo-

rithm was still within reasonable distance of the single-variable

version: with similar termination conditions and the same input

data, a single run of our path-following algorithm took on aver-

age 55 min (281 s� 83 s) on a quad-core 3.2GHz CPU, com-

pared with a little under a minute for Park and Hastie (2007)

(36 s� 6 s).

5 CONCLUSION

In this article, we presented an algorithm to follow the regular-

ization path of any ‘1-regularized linear model fitting, using

combinatorial interactions as covariates. Although the path-fol-

lowing method has been applied to microarray data in the past

(Park and Hastie, 2007), it was until now only able to deal with

single-valued features, ignoring possible higher-order effect of

gene interactions.
Our method makes uses of existing frequent itemset mining

techniques and novel imports from fractional programming to

avoid the intractability issues of combinatorial input and pro-

duce a regression model of accuracy and run time comparable

with the linear case. By running multiple iterations of the algo-

rithm on subsampled datasets, we can produce ordered lists of

candidate interactions with strong predicting power.

The interactions found by applying our method to cancer

study survival data include many genes that could not be

found through linear models, yet show up in literature as

strongly tied to these conditions, confirming the crucial import-

ance of taking interaction effects into account to detect some of

the weaker signal in gene expression data. Although most sig-

nificant interactions found by our method on experimental data

were limited to two or three genes, there are no theoretical limi-

tations to the size of interactions that can be searched, at no

particularly higher computational cost, setting this method

apart from other recent work on penalized selection of inter-

actions in high-dimensional data (Bien et al., 2012).
The strong noise inherent to gene expression microarray likely

prevents the detection of weaker signals between more than three

genes, making it an attractive prospect to work with less noisy

types of data where larger interactions might be detectable. In the

future, we plan to extend our field of application to a wider range

of biomedical data, such as the identification of SNP interactions

(Schwender and Ickstadt, 2008), as well as leverage our model’s

ability to deal with heterogeneous input, for example by

Table 2. Interaction results for Oberthuer et al. (2006)

Gene combination LR test P-value Logrank P-value No. of occurrences Test logrank P-value Single-variable rank

up.BC046178 * up.Hs458148.20 0.0131 2.16e-07 36 0.01003018 NA 67

dn.THC1529413 * up.Hs172998.2 0.0199 0.00142 20 0.3228081 NA NA

dn.I_3233919 * up.USP1 0.0164 0.00561 61 0.2413684 NA 89

dn.U92981 * dn.SLC14A2 0.0147 0.0369 9 0.1264266 NA NA

Note: Selected feature combinations, ranked by Kaplan–Meier P-value. Bonferroni-significant Kaplan–Meier test P-values are in bold (m¼ 48). Total variables found with

single-variable model: 474. Using same notations as Table 1.
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including a wide range of clinical data in addition to the large-
scale numeric data.
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