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Abstract

In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital
pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency
of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has
shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with
the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to
explore the correspondence between morphological features and gene expression. This review investigates using the most popular
image data, hematoxylin–eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources.
The article focuses on the role that the development of deep learning technology has in assisting doctors’ work and discusses the
opportunities and challenges of AI.
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Introduction
In the era of the precision medicine, the demand for predictive
analytics by doctors has increased. Multiple types of medical data,
such as digital pathology slides, immunohistochemistry (IHC)
images, spatial transcriptome sequencing and medical history
records, are used for big data analysis. Unlashing the power of
medical big data can be succinctly summarized as providing the
most accurate treatments to the right patients at the right time
[1]. Compared to molecular exams, pathology slides are widely
accepted in clinics with their affordability and low technical
requirements. The pathologist is still the gold standard in the diag-
nosis of many diseases (such as cancer) in tissue slides. Hema-
toxylin–eosin stained (H&E) tissue slides show multiple cytoplas-
mic, nuclear and extracellular matrix features, making them an
easily accessible and informative source of data [2–4]. However,
while the pathologists can flexibly adapt to the high morpho-
logical and technical variability of histologic slides, they face the
problem of limited objectivity due to cognitive and visual traps.

Recently, digital pathology has been focusing on quantitative data
management of information generated from digitized specimen
slides [5]. The data analysis procedures mainly include scanning
and stitching traditional glass sections into whole slide images
(WSIs), saving the data, then completing steps such as medical
diagnosis or machine learning analysis by viewing the WSIs. This
process generates a large amount of digital accessible data that
can be easily shared among researchers worldwide, which not
only enriches the learning resources for medical purposes, but
also attracts a large number of computer scientists and creates
a revolution in the field of digital pathology.

Artificial intelligence (AI)-based digital pathology as an emerg-
ing area has shown great promise to increase both the accuracy
and availability of high-quality health care in many medical
fields. Due to the rise in the amount of data, the increase in com-
puting power, and the emergence of new algorithms for machine
learning, the concept of ‘AI’ has been widely used in the fields of
face recognition and autonomous driving since 2012 [6–8]. Deep
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Figure 1. Workflow diagram for doctors, pathologists and computer scientists. Based on a doctor’s request for a pathological examination, the pathologist
prepares sections of the patient’s tissue samples with stains, digitizes the sections and annotates them with WSIs information as ground truth. These
images are combined with relevant electronic clinical information to serve as a training database for AI models that can be shared worldwide, relying
on the Internet. Computer scientists train and test the models based on the ground truth and complete multiple performance testing experiments to
evaluate model value. The entire research process can be explored in categories based on medical tasks, disease types, computer models and computer
tasks. Mature models can provide assistance to the pathologists in clinical diagnosis and treatment [169].

learning algorithms have rapidly become the preferred method
for analyzing medical images [9]. AI-based digital pathology not
only facilitates a more efficient pathology workflow, but also
provides a more comprehensive and personalized view, enabling
pathologists to address the progress of complex diseases. In addi-
tion, a single stained section reveals only little information to the
naked eye, and preparing multiple sections for staining and exam-
ination is more costly [10]. These difficulties provide opportunities
to use AI-assisted systems to give doctors a reduced workload and
improved accuracy of diagnosis and treatment.

Computational techniques in digital pathology
AI is a branch of computer science that attempts to under-
stand the nature of intelligence and construct complex machines
that possess the same characteristics as human intelligence [11].
Humans initially used machine learning to implement AI, design-
ing features by hand to extract patterns from raw data. Traditional
algorithms include Logistic Regression [12], Naive Bayes [13], Deci-
sion Tree [14] and Support Vector Machines (SVM) [15]. However,
it has gradually been found that the performance of simple
machine learning algorithms depends heavily on the selection
and representation of features. To overcome the difficulties of
feature design, machine learning has developed deep learning
techniques. The model is inspired by human neurons and uses
artificial neural networks to simulate the biological functions
of the brain. Compared to the simple architecture of traditional
machine learning models, deep learning models use a hierarchical
structure that allows computers to learn to abstract complex,
data-driven logic by constructing simple concepts without signifi-
cant human intervention in the feature design task. The first layer
of the model is the input layer, and model training is completed
by fitting ground truth in the last layer through techniques such
as back propagation and gradient descent. The performance of the
model relies on the test evaluation of a dataset that does not over-
lap with the training set. Popular models include deep neural net-
works (DNNs), convolutional neural networks (CNNs), recurrent

neural networks (RNNs), etc. [16, 17]. DNNs have the most basic
network architecture, where linear operations are performed one
by one between layer neurons, and then an activation function
is attached to obtain nonlinear features [18]. CNNs have been
frequently used in the field of computer vision. Since the creation
of LeNet [19] in 1998, CNNs have become deeper, more refined
in their structural design, and gradually more detailed in their
research tasks. A series of models, such as ResNet [20], emerged
that can surpass the level of human recognition. Usually, CNNs
are connected with several fully-connected layers after convolu-
tion to map the feature map generated by the convolutional layers
into a fixed-length feature vector. Fully convolutional networks
(FCNs) replace the fully-connected layers with layers of convolu-
tional layers to achieve pixel-level classification of images. CNNs
have been widely used on radiological images, IHC images, and
pathological images [21, 22]. Another type of networks commonly
used to process sequence data are RNNs, which can capture
association information between long-distance samples. RNNs
have greater advantages in fields such as speech recognition and
text prediction and are often applied in the analysis of RNA and
DNA sequences [23, 24].

Recently, the application scenarios of AI on digital pathology
have gradually expanded. A generalized workflow (Figure 1) has
been widely used on a variety of topics and organs, introducing the
latest techniques in classification, segmentation, and detection
in the field of computer vision. The main research involves
auxiliary functions, focused on image quality enhancement, cell
identification, tissue typing, data storing, as well as direct
applications, such as diagnosis, patient stratification, prognosis,
treatment response, survival prediction and biomarker discovery.
Several AI-related studies focus on investigating the inter-
pretability of algorithms [25, 26] or building clinical application
platforms [27], making it possible to select and stratify patients
for treatment. With genetic sequencing databases becoming
more refined, combination of digital pathology images and
molecular datasets has led to breakthroughs in molecular biology
[28, 29].
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Methods
We investigate the application of AI to pathology images with
center on H&E images. Manual feature extraction requires a priori
knowledge from pathologists, usually for specific cancers or tissue
types. Deep learning addresses the challenge of extracting image
features that cannot be manually understood and finding image
features that can be generalized. To investigate these techniques,
we performed a manual screening on the US National Library
of Medicine PubMed database (PubMed) for highly cited peer-
reviewed articles published in English between January 2017 and
September 2021. Search terms include medical (WSI, H&E) and AI
(AI, deep learning, supervised learning, semi-supervised learning,
weakly supervised learning, unsupervised learning, multitask).
The results of the search contained 6707 articles. The selection
process consisted of three steps: 1) Only research articles were
retained, excluding types such as reviews, comments, etc. 2) Based
on titles and abstracts, articles with at least one keyword in each
of the medical and AI groups were retained, while avoiding purely
medical experimental articles or computer technology research
articles. 3) Papers that are not related to pathology images are
excluded since abbreviations such as ‘AI’, ‘WSI’ and ‘H&E’ are eas-
ily confused with keywords such as aluminum. Only AI articles,
where H&E images were the main subject of study, were retained.
Therefore, a total of 155 articles are discussed in the main body of
this paper. Sample articles are discussed for each type of article
as a demonstration in Table 1 [28–30].

Applications in unimodal digital pathology
It is a time-consuming and cumbersome process for pathologists
to find a predefined region of interest and conduct with an accu-
rate diagnose under time constraints. Besides, inter- and intra-
observer variability for the exact same slide may occur among the
experienced pathologists. Many efforts were made to overcome
the challenges with traditional pathology methods. Technological
advances have recently paved the way for the development of
digital pathology-based methods for quantitative assessments,
namely WSIs scanning and AI–based models, to assist with
extracting information beyond pathologists’ visual perception.
Pathology images and corresponding clinical information (such as
cancer grading or cancer types) are mostly used for unimodal
research [31]. The label for modeling results purely from clinical
records without other complex wet experiments. Unimodal
research with simple and clear goal is very suitable for AI-
based models in clinical applications and translations (Figure 2).
However, it is necessary to compare AI-based models’ predictions
with the analyses that pathologists produce to reveal potential
interpretation discrepancies and accuracy of algorithms. The
development and integration of digital pathology and AI-
based models provide substantive advantages over traditional
methods, enabling spatial analysis while generating highly
precise, unbiased and consistent readouts that can be accessed
remotely by pathologists.

Information preparation for digital diagnosis and
treatment
H&E images highlight the morphological features of the nucleus
and cytoplasm mainly by the pH distinction of the stains. Pathol-
ogists need plenty of exercises in their daily work to become
proficient at slides analysis [32, 33]. When visualizing H&E images
on the computer, there are problems, such as inconsistent staining
shades and poor photographic quality due to manual errors. There
are also problems in the algorithmic computation stage, where the

size of the image is too large for commonly used algorithms. Many
studies have been devoted to solving the difficulties associated
with image data [34–37]. Therefore, the selecting the part of the
image that contains morphological information is an important
data pre-processing process.

The use of automated tools to differentiate cells/tissues can
reduce manual work [38–43]. In computer vision, the mainstream
segmentation network consists of encoder and decoder, which
input an image and output a label mask of the same size. Trans-
ferring the model to the field of digital pathology, the segmen-
tation of tissues or glands of a single cancer can generally be
accomplished only due to the limitation of annotation [44–47].
The processing of pathology images as shown in Figure 2 usually
refers to the cut-off approach in natural images, where square
images are fed into a neural network. However, the cells are not
only arranged in a square order, but also others, as the morphology
changes with the type, organ and developmental stage, and some
information is always lost when slicing the patches. Cells that
are in contact or overlapping make the automatic segmentation
task even more difficult [48]. The identification of cell nuclei
during the analysis can often be centered on a single pixel, while
extending the focus to the tissue requires the aid of the super-
pixel idea. Each superpixel combines adjacent pixels containing
a single tissue type to fit the edges between tissues as irregular
polygons [49, 50]. This interactive annotation system developed
by Lee et al. [51] returns the less confident parts to the doctors
for secondary review, thus optimizing the model in segmenting
tumor-infiltrating lymphocytes (TILs), saving significant time in
clinical applications.

When multiple special stains (such as periodic acid-Schiff or
Masson’s trichrome) are required, the diagnosis and treatment
processes become time-consuming and expensive. The stain
transformation method in computational staining techniques
provides doctors with additional diagnostic information beyond
H&E images without laboratory operations [52–56]. With regards
to the region-of-interest analysis, virtual staining can directly
transform label-free tissue images into high-quality stained
digital pathological images. Zhang et al. [57] demonstrated that
a single neural network can achieve H&E, Jones’ silver staining
and Masson’s trichrome staining of micro-structured on a single
autofluorescence image. This method avoids destructing the
specimens, completes operations that are not feasible in the
laboratory, and achieves staining normalization.

In the grading of cancer, the metastasis of lymph nodes deter-
mines the seriousness of the disease and the next step of treat-
ment [58, 59]. Algorithms can follow the process of finding lymph
nodes first and then looking for metastatic sites in practice [60].
When expecting to outperform human performance, additional
attention is paid to the size difference between micro- and macro-
metastases in detection, employing dense scans to avoid missing
tiny metastases [61].

Translating the complex sequencing process into simple clas-
sification problems in H&E images, as opposed to improving
the ability to understand the images, brings new opportunities
for oncology patients [62]. For example, consensus molecular
subtypes (CMSs) of colorectal cancer are difficult to distinguish
even after completing RNA analysis, and optimizing the results
of molecular typing is important to guide treatment. As is known,
cancer is good at evading immune destruction, but not all patients
need immunotherapy or have the condition to complete genetic
testing. In studies on immune checkpoint inhibitors (ICIs), tumor
mutational burden (TMB) and microsatellite instability (MSI) are
shown to be important biomarkers. The researchers assisted in
the selection of treatment options by classifying H&E images
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Figure 2. Description of a unimodal generalized framework for AI application on digital pathology images. After the raw data collected at the hospital
are annotated by pathologists, computer scientists complete the patches cut and enhance the data. The processed data are fed into a model pre-trained
by ImageNet to achieve transfer learning of natural images to digital pathology images. The computer scientists train the model to fit the annotations
and test the generalization of the model on an extra dataset that is also pre-processed. Finally, the model analysis results are used for statistical analysis
as well as visual interpretation to explore their biological significance [169, 204].

as high- or low-value divisions [63, 64]. Analysis of TMB val-
ues with clinicopathologic features demonstrated that TILs, a
morphologic feature that can be observed on pathologic slides,
is an independent predictor that correlates tumor morphology
with genomic alterations. Most of the MSI-related studies involve
gastrointestinal cancers. The access to research data has become
more extensive and contributed to the design of more complex
deep learning models. With the different models, not only are
the performances of the model themselves measured, but also
the data source differences, preparation differences, and perfor-
mance on different subclasses of diseases are investigated [65, 66].
Benefiting from advances in deep learning Ref. [67] referencing
the idea of Ref. [65], the first step of the tissue classification
task was refined to select mucin and colorectal adenocarcinoma
epithelium tiles that are more relevant to MSI for prediction, and
the performance was improved.

AI attempts to replace manual diagnosis
Efficient diagnosis of complex diseases can provide an important
basis for patient recovery and clinical development, and many
AI tools that have been developed to replace manual operations,
thus saving time and money [68]. Initially, the diagnostic task was
considered as a binary task as either having cancer and being
healthy, and high accuracy rates have been achieved in algorith-
mic experiments with supervised learning [69]. In fact, cancer is
a highly heterogeneous disease requiring more detailed subtype
diagnosis. Deeper and more structurally complex models were
created to accomplish this need [70, 71]. More questions followed
and people started to explore whether the models could actually

be used in a clinical setting and whether valuable knowledge was
actually learned in the process of model prediction.

As shown in Figure 2, the pathologists first draw tumor/nor-
mal/other class regions on the WSIs and then slice the WSIs into
patches that fit the size of the image model. The researchers train
the model to learn the mapping relationship between patches
and labels, and in this process, the model achieves abstraction
of features. Then, in the testing phase, the same predictions
are made for patches of unknown images, which are integrated
into the results of slicing. The integration operation can be
implemented with statistical analysis, machine learning or neural
networks [72–78]. Based on the seriousness of the disease, Yang
et al. [73] innovated the two-stage threshold-based tumor-first
aggregation method according to the severity of the type. The
indicators on public the cancer genome atlas (TCGA) data even
exceeds the internal cohort, demonstrating the portability of the
model. Across all covered cancers, the Gleason score exacerbates
the challenges posed by intraclass similarity and interclass
variability between multiple classes [79, 80]. Unlike one label per
image, the diagnosis of prostate cancer requires a clear definition
of the proportion of each pattern in a single picture [81]. Bulten
et al. [56] innovated a semi-automated labeling method, making a
model that realizes the simple task of training on the pure Gleason
score first, then training it on the complete mixed Gleason sample
dataset.

The problem of patch-level annotation also presents an oppor-
tunity for multi-instance learning (MIL) to enter the field of
medical image analysis. To meet the training requirements of
deep learning models, researchers need to prepare a large amount
of data and ensure the accuracy of the annotation through the
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review of multiple pathologists. Weakly supervised learning treats
the whole image as a ‘bag’ and each patch as an ‘instance,’
with multiple instances sharing the labels of the bag. If there
is a positive instance in the bag, the bag is positive; the bag is
only negative if and only if the instances are all negative, so
the algorithm usually chooses the top-level patches that have
the most discriminative power (the highest probability of being
predicted as positive) to infer the slide class in the implementation
process [82–90]. The performance of the model even exceeds
the supervised learning with pixel-by-pixel annotation in specific
cases. Campanella et al. [91] trained CNN models on the oversized
real-world dataset (MSK dataset) of prostate, skin, and breast
cancers and used a RNN to achieve slide-level determination.
When they tested the MIL algorithm trained on the MSK dataset
on the filtered CAMELYON16 dataset, the model AUC decreased
by 7.15%. However, when the supervised learning algorithm was
applied in real-world data, the performance dropped by 20.2%.
This suggests that traditional supervised learning methods do not
adapt to the variability of data.

Researchers have applied various models to test on data from
different sources, [73, 74] aiming to solve AI models generalization
problem on low-level data from multiple centers. However, devi-
ations in the sample population with different staining patterns,
and even microscope scanning specifications, may bring complex
impact on pathological images. Typically, models are trained only
on a single hospital data set, and the embedding features captured
by the model cannot be transferred directly to another hospital
datasets, resulting in low diagnostic accuracy and unable to reach
a universal level of clinical application. Li et al. [92] adopted a
multi-model approach, using an ensemble of 17 globally opti-
mized transfer deep-learning platform with multiple pretrained
CNNs (GOTDP-MP-CNNs) to distinguish between diffuse large B-
cell lymphoma (DLBCL) and non-DLBCL on the data of three
hospitals. The accuracy rate reached nearly 100%, surpassing indi-
vidual CNNs and pathologists. In the cross-hospital tests of A and
C, the accuracy rate increased from 82.09% to 90.50% only with
unifying the image size. This result shows that the AI model can
replace manual work on small data sets after avoiding differences
in the sample preparation process through data preprocessing.

Despite all these metrics that demonstrate the capabilities
of AI, deep learning models have been referred to as black box
algorithms, as it is difficult to explain the working mechanism
within the model to convince people that it is reliable. Researchers
relied on medical knowledge to interpret models in different
views, including the ablation studies [77], splitting pre-processing
process [74], feature clustering [75] and the activation of class
maps [62]. There are also many AI models that have been designed
to increase model interpretability by leveraging the behavior of
pathologists as a reference during the design process. In practice,
pathologists usually zoom in to observe several important can-
cerous sites in the image and rely on image features to make a
diagnosis for the patient [87], resulting in the design of a two-
stage diagnostic algorithm that first detects important locations
in the full image that affect the outcome and later classifies the
locations. BenTaieb et al. [93] used a pyramid-shaped network to
achieve the recognition of image features at different magnifica-
tions.

AI provides new knowledge for post-treatment
analysis
The analysis of patient prognosis, recurrence or survival can guide
the choice of treatment options [94–101]. In particular, the progno-
sis of the post-treatment effect in the early stages of cancer is key

to optimizing clinical interventions. Generic models that directly
use post-treatment metrics as labels are similar to diagnostic
tasks, and researchers can corroborate the results of the models
by analyzing the calculated characteristics in correspondence
with other patient information [102, 103]. Therefore, the studies
that can propose new criteria for clinical discriminations deserve
more attention.

Pathological images reflect the morphological features and
tissue architecture of tumors and contain a wealth of post-
treatment information [104]. Traditional machine learning
approaches apply predefined image features to resolve tissue pat-
terns [105, 106]. On the contrary, deep learning can automatically
identify cellular-level or structural-level patterns from multiple
scales for fusion analysis [107]. For example, image features focus
researchers’ attention on subclasses of a disease or subregions
of an image, highlighting the relevance of class differences for
post-treatment [108, 109]. Researchers measured the validity of
the identified features using molecular expression information
or correlation analysis as a bridge to analysis. Based on the idea
that different molecules are expressed in different regions of the
tumor, Zadeh Shirazi et al. [110] first segmented the pathological
images into eight regions such as infiltrating tumor, and then
correlated the mutation status with the survival rates. Yu et al.
[111] first validated the ability of VGGnet as a backbone network
to extract reasonable image features on simple cancer detection,
grading and transcriptome subtype classification tasks. The
network was then applied to predict the platinum-free interval
(PFI), comparing proteomic and transcriptomic correlation
analysis, combining biological mechanisms with morphological
representation. Skrede et al. [102] developed a prognostic marker
for colorectal cancer that can complete prognostic classification
simply using H&E images. This method adopts a multi-scale MIL
algorithm on a large-scale population.

The above paper shows that morphological information
can give different forms of complementary evidence to post-
treatment analysis, pushing AI models to ‘renovate’ existing
empirical knowledge. Just as doctors know that different classes
of conditions have different tissue compositions, in practice,
this is still a difficult pattern distribution to determine. Neural
networks can translate the distribution patterns of objectively
complex and rich multicellular environments into quantitative
clinical discriminators with a single value [98, 112]. Wang et al.
[113] proposed the T/MLN for standardizing the N-staging criteria
in gastric cancer. This score was calculated from the tumor
classification area within the segmented lymph node region
and was able to correct the cases diagnosed by doctors. In more
complicated immune infiltration-related studies, it is a strong
prognostic biomarker that relies on manual scoring [114–116].
With the aid of a computer, we can clearly detect immune cells
in the tumor area and derive evaluation indicators of prognostic
value from the number and distribution of cells (such as stromal
TILs density statistics) [96, 117, 118]. This is the necessary research
for clinical application of image features to drive the digital
pathology assistance system to the ground.

Fusion approaches in multimodal digital
pathology
During daily cancer diagnoses and treatments, even if the
evaluation of tissue sections by trained pathologists is the gold
standard, they still need the aid of some biomarker tests. The
advent of high-throughput sequencing technology, the collection
of electronic medical records and the improvement of hospital
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laboratory facilities have given us access to more information. The
multiple information resources have been contributing to a new
multimodal direction for research [119]. Multimodal studies refer
to the processing of information from multiple modalities with
different formation methods and internal structures and learning
the correlations between separated modality datasets. This paper
focuses on the integration of H&E images with nucleic acid data,
additional images and clinical indicators. Nucleic acid data refer
to the specific states detected during genome and transcriptome
sequencing, and these often represent the inherent factors in
the development of disease [120–122]. Additional images refer
to the images generated when the same subject takes different
imaging methods or stains. The paired images can help high-
dimensional feature abstraction posed by H&E oversized images
during deep learning feature extraction [123]. Clinical indicators
are quantitative indicators contained in the patient’s electronic
medical record, such as age, tumor stage, etc. All three types
of data listed can be used to improve the effectiveness of deep
learning algorithms from different perspectives.

The human brain is a high-level organ with the ability to
process complex information, but the computer only completes
computational procedures according to instructions. Two ways
to solve the modal problem are shown in Figure 3. Independent
inputs and outputs with unimodality can help us discover the cor-
respondence between different modal information by running at
high speed. Multiple modalities are used as the input of AI models,
and each modality should be integrated with another. Research in
both directions is addressing an important difficulty—aligning the
features between different modalities [124].

H&E images integration nucleic acid detection
The expression of nucleotides dominates the general patterns of
organismal functioning. In unimodal studies, we commonly use
RNA-seq data as validation metrics to discriminate whether the
model learns the correct image features [98, 125]. The prediction
result map of deep learning extracts human interpretable fea-
tures that correlate with molecular phenotypes and can demon-
strate the effectiveness of deep learning [126].

Unimodal input–output studies that extend the model on sin-
gle pathological images to the fusion of pathological and molec-
ular features guide the clinical system to make fine-grained deci-
sions [127, 128]. It was Valieris et al. [129] who applied the model
design of Campanella et al. [91] to DNA repair deficiency (DRD)
detection. The morphological characteristics of the pathological
pictures contain differential expression of gene methylation [130].
Tavolara et al. [131] used deep learning to predict gene expression,
and then xgboost to classify gene expression as ‘supersusceptible’
or not.

Genetic mutations can cause a variety of cancers [132, 133].
Coudray et al. [134] used the same network to demonstrate that
deep learning models can not only accomplish the classification
of tumors, lung adenocarcinoma and lung squamous cells, but
also predict specific gene mutations. The same problem was
extended to pan-cancer by Noorbakhsh et al. [135] using the
identical basic Inception v3 architecture. The pan-cancer study
focuses on discovering similarities and differences between
genomic and cellular alterations in different tumor types and
finding universal patterns. The problem of less available data
encountered in the above study, Bian et al. [136] proposed a semi-
supervised approach to accomplish data labeling and screening,
and the gene mutation prediction task designed based on this
study achieved good results.

Simultaneous multimodal input of image and molecular infor-
mation can predict survival. The fusion of multimodal data needs
to address the validity of the information of each modal data. In
the field of diffuse glioma survival research, Mobadersany et al.
[137] first applied survival convolutional neural networks (SCNN)
in regions of interest (ROIs), and the model combined CNN and
traditional COX analysis to demonstrate a median c index of 0.754.
After validation, the SCNN model was upgraded by adding isoc-
itrate dehydrogenase (IDH) mutation status and 1p/19q codele-
tion as input to genomic survival convolutional neural network
(GSCNN), the data of the two modalities together undergo fully
connected network and COX analysis, and the index is upgraded
to 0.801, which achieved the performance improvement on a
single model. New techniques have been introduced to optimize
feature alignment engineering across various modality data. The
study by Chen et al. [138] used the co-attention transformer to
achieve survival prediction. The co-attention visualization in the
paper allows for complementary matching of sequence informa-
tion with spatial information. The model’s performance surpasses
the unimodal model as well as the late fusion algorithm.

Multiple digital pathology images combination
Magnetic resonance imaging (MRI) with WSI allows for simulta-
neous analysis of patient prognosis from both macroscopic and
microscopic perspectives. Zhang et al. [139] extracted features
from two scales separately to form a multiscale nomogram and
verified that the features were associated by genetic variation.
When it is necessary to understand the expression of biomarkers,
other specific stains are needed to assist [44, 100, 115, 140–142].
Stain transformation techniques are mentioned in the ‘informa-
tion preparation’ section, and this section discusses the role of
different stains in accomplishing the task.

IHC combines the specificity of the immune response, the visi-
bility of histochemistry, with qualitative, localization and quanti-
tative determination of the corresponding antigen. Manual anal-
ysis of immune tissue environmental characteristics requires
cytokeratin and IHC to identify each tissue and cell. Especially
in complex tumor models, there is an insurmountable difficulty
for humans to accurately calculate the number of each type of
cells in the matrix [96]. Martino et al. [143] used IHC stained pic-
tures as ground truth and extracted cell nuclear related features
using QuPath to predict the expression of protein Ki67. This type
of image is also commonly used to measure the model’s new
biomarker [99, 117, 118] and how well the model scoring results
matches the objective facts [144–146].

To investigate the performance differences of the different
staining schemes on the same model structure and task [147–
151], Jayapandian et al. [152] achieved segmentation of six kid-
ney tissue structures on four stains: H&E, Periodic Acid Schiff
(PAS), trichrome (TRI) and silver (SIL). Besides, one of the practi-
cal applications of the different staining methods is to achieve
patient stratification and to apply multiple images to the diag-
nostic workup, reducing doctors’ workloads. Gehrung et al. [153]
exploited a triage aid system to screen only H&E pictures with
columnar epithelium into the second step of TFF3 staining assess-
ment to select equivocal patients for pathologist to review.

H&E images incorporating multiple modal
information
In clinical settings, data modalities are abundant. When some
patients are admitted to the hospital, the first thing is to improve
the patient demographics in the electronic medical record system.
As a relatively common and easily obtained data modality,
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Figure 3. Description of multimodal generalized ways for AI application on digital pathology images. (A) H&E images are predicted by feature extractor
for gene expression, other stained images, or clinical information to achieve alignment of different kinds of information content. (B) H&E images and
multiple types of data are jointly predicted by feature extractor for the target, and the kinds of feature dimensions need to be aligned in the feature
extraction process [169].

electronic records of clinical patients can be integrated with
pathology images to enhance the reliability of image features
and improve model performance [154, 155]. Brinker et al. [156]
integrated inputs from three perspectives: clinical features,
cellular features and image features, followed by features that
went through a neural network feature extractor to jointly predict
sentinel lymph node status, respectively. Although the results are
not good enough, they provide new ideas for feature extraction. In
[97], Cox regression analysis of the multinucleation index (MuNI)
and clinical characteristics showed a significant improvement in
hazard ratio (HR).

Vast amounts of omics data, bringing about detailed classi-
fication, early diagnosis, and prognosis of the disease, can be

combined with digital pathology image data to extract useful
patterns from these diverse data modalities. Multi-omics data can
interpret image features [145]. Features extracted by deep learning
models based only on pathology images with implicit information
mining based on various types of histology data can help clin-
ical translation for creating new clinical prognostic or grouping
metrics [157]. Alternatively, sequencing data based on pathologi-
cal image information and few important different multi-omics
can support the performance of metrics for practical clinical
applications. In [98], Cox analysis was carried out together with
UICC stage, gender, and age, and it was verified that deep stroma
score is an independent prognostic factor with high value. The
application value of the index is reflected by the comparison with
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the gold standards, including manual annotation estimation and
gene expression, thus confirming a universally available clinical
application of H&E images. When copy-number alterations (CNA)
correspond to transcriptome data with an unsupervised deep
learning network (named CNx), the correlation of their middle
layer activation values with the features can be found.

How to simultaneously input multiple histological data into
a single network and tissue feature dimension alignment are
the primary challenges in multimodal studies. Manual filter-
ing of features is the general approach. Yu et al. [158] com-
bined histopathological, genomic, transcriptomic, proteomic and
clinical information. Firstly, quantitative features were extracted
in the images. Then the images were graded based on clinical
information, and the relationships between the filtered genomic,
proteomic and transcriptomic features, and the pictures were
explored. It was confirmed that there was a strong correlation
between the enriched genes or proteins and tumor differentiation.
When the multi-omics information was put into the COX analysis
collectively, it showed excellent performance that was not avail-
able in separate analysis.

Multi-task learning with H&E images
Multi-task learning means that model features embedding and
sharing for different tasks uncover more biological insights in
different dimensions, such as, WSI, a domain of medical imaging
that contains tissue and cell samples. Several researchers have
applied deep learning on WSIs for various clinical tasks, includ-
ing cell detection, segmentation and classification. Furthermore,
while the similarly between the different tasks maybe difficult to
define formally, some transfer learning methods between source
tasks and target tasks have been shown to help convergence and
reduce overfitting.

When extracting image features, we can perform cell seg-
mentation and classification at the same time. One approach is
to share feature extraction and then use different branches for
different tasks. Graham et al. [159] completed the segmentation
and classification of cell nuclei using Hover-Net, which is based on
feature maps calculated from horizontal and vertical distances.
The segmentation task is accomplished by parallel cell nucleus-
to-background distinction branch, and individual cell nucleus
delineation branch. Hover-Net demonstrates superb performance
across diverse datasets. Wang et al. [160] focused on the pixel
depiction of tissue edges and used two branches to complete the
segmentation of tumor tissue and tumor against normal tissue,
respectively; another auxiliary branch was designed to complete
the classification task. Based on the deep learning results, the
graph features are manually extracted to find new biological
meanings. Wang et al. [161] completed the tasks of individual
cells based on features extracted by Mask R-CNN, and the cal-
culated quantitative depiction features set up a new subtyp-
ing criterion for hepatocellular carcinoma images. When having
cell nucleus type labels, the classification task can be imple-
mented simultaneously as an information supplement. Another
approach is to process the segmentation and classification tasks
sequentially. The segmentation task requires pixel-level anno-
tation, while classification requires only image-level annotation
since pixel-level annotation is often both time-consuming and
error-prone. Because the segmentation mask contains the infor-
mation on the classification to some extent, Ciga et al. [162]
first trained the segmentation network using quantity-limited
pixel-labeled images, then connected the classification layer after

the network and borrowed the image level labels to adjust the
segmentation network.

Clinical tasks with digital pathology are adaptive in different
circumstances. To infer various properties of biological samples
through multi-task learning or transfer learning is a big challenge.
From the biological viewpoint, the human body can be viewed
as a cell-tissue-organ level integration, which can be matched to
the various resolution clinical tasks including image-based-only
or image-omics-fusion tasks. In modern clinical medicine, espe-
cially with the diagnosis and treatment of complex diseases such
as cancer, multiple various medical examinations are required,
and they produce different data modalities. Using the different
examination indicators as output, the genotype can be visualized
spatially on the pathology images [163]. Schmauch et al. [144]
implemented the HE2RNA model based on the idea of multilayer
perceptron to study the accuracy of RNA-Seq prediction among 28
cancers. They found that, within the appropriate data selection,
the model was consistent with the objective fact of IHC staining
for gene expression prediction in terms of immunity, etc. They
then transferred the transcriptomic representations learned by
the model to MSI predictions, and the model performance reached
a high improvement over the previous ones in a 3/4 versus 1/4
data division setting, demonstrating the validity of the represen-
tations. The multiclassification generic framework of [82] was
used for cancer of unknown primary to predict whether it is
metastatic and where the origin is. Convolutional features that
concatenate gender features performed well on each point of
origin, each cancer, its subclass, and individual. Top-k calculation
results successfully narrowed down the IHC staining detection to
assist doctors in diagnosis [164].

Opportunities and challenges in AI-based
pathology

With the rise of big data analytics that enables the structuring and
intelligent indexing of data, the current trend in the development
of datasets is very favorable for research efforts, as the use of deep
learning becomes more ubiquitous and practical in digital pathol-
ogy [165–168]. Table 2 lists publicly available datasets of H&E
images [169–192]. AI research motivates computers to simulate
human learning habits, similar to adjusting the solution process
based on the answers to exercises, which allows the model to
capture the connection between data features and various labels
and gain the ability to correctly discriminate known patterns
after a series of adjustments and refinements. In the face of
pathological images, features and labels are presented in different
ways. Features can refer to whole image, tissue and cellular level
image information extracted by the model, as well as clinical and
genetic testing type information of the patient. The labels, on the
other hand, are set according to the target task, with discrete
numbers for classification tasks and pathologists’ annotations on
the images for detection and segmentation tasks.

More effective treatments in modern medicine are in need
of accurate tests tailored for various patients instead of com-
mon one-size-fits-all tests. In conventional treatment, pathologi-
cal sections are simply viewed under a microscope to make initial
conclusions. Results are very dependent on the material quality
and doctors’ skills, which tend to be lacking in areas with poor
medical resources.

As we have discussed in the application of unimodal digital
pathology, computers are attempting to replace manual opera-
tion. AI has different research priorities with different phases
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of medical tasks. The information preparation stage can sim-
plify data processing steps, the diagnosis stage is able to replace
doctors’ task of differential diagnosis, and the post-treatment
stage proposes new criteria to refine treatment goals. AI helps
doctors take digitized sections as inputs directly into the com-
puter. The computer then automatically optimizes images’ qual-
ity and allows algorithms to assist the less experienced doctor
in making a qualitative diagnosis. More accurate results help
patients to gain early access to medical treatments, thus pre-
venting further deterioration in unknown cases. Unimodal digital
pathology makes traditional medical work faster and more accu-
rate.

Unimodal pathology image processing and information extrac-
tion form the basis for multimodal applications. Multimodal
pathology no longer requires the computer to simulate the
behavior of physicians. In other words, it is more reliant on
the complementary information in precision medicine. Genetic
sequencing and special stained images are necessary to confirm
the diagnosis of diseases such as cancer. In addition to resource-
poor regions, the full set of tests is inaccessible to patients
with limited physical and financial conditions. We discuss two
modality fusion approaches in the context of multimodal digital
pathology applications. One is to input pathology images and
output another modality (sequences, images in other formats).
This approach no longer simply summarizes the information
from pathology images, but enables a transformation of the
information. It shows that patients without medical conditions
can also have equal treatment with other indicators. Another way
in which multiple modalities are fed into the computer model at
the same time achieves a correspondence between different data.
For example, the mutation status of each lesion can be seen in
images. This allows precision medicine to be more precise than
just the individual but also the lesion. Both approaches try to
uncover associations between changes in the body in different
dimensions brought about by the disease. AI in multimodal
or multi-task research solves the problem of the mismatching
multiple information sources and inadequate mining of single
information sources.

It is evident that advances in the computer vision field con-
tributed to the new diagnostics methods that emerged with the
fusion of pathology images and AI [193]. Researchers have been
extending the applicability of models from several perspectives.
Most approaches transfer pre-trained models on natural images
to their specific research problems. But there are many differ-
ences between the two kinds of images. The objects of interest
in natural images are usually large subjects such as people,
animals and cars, while pathological images are concerned with
tiny objects, such as cell nuclei and tissues. The generality of
the abstract representation of both images in the hidden space
is still problematic. Furthermore, it is not clear how many cells
contained in a single image can show biological significance.
Directly slicing pathology images to the commonly used 224∗224
pixel size may result in information loss. Many studies have used
class activation mapping to visualize model results to prove that
valuable information had been learned; however, some heatmaps
are difficult for pathologists to interpret. Thus, it is more reliable
to do pre-training with public datasets, like TCGA, or cut patches
like cellular connectivity maps and superpixels.

Large orders of magnitude of data from multiple sources also
led to the issue of standards for data processing. Digital pathology
section databases have achieved a wide collection of researchers
in terms of data quantity, but not in terms of quality (class
imbalance, artificial contamination, staining differences, etc.). To

enhance the generalization of the model, validation experiments
on data from multiple sources are necessary. Meanwhile data
batch effects [194] place high demands on data preprocessing
[195]. For addressing the data noise problem, standardized data
preprocessing systems [196, 197] or uniform collection standards
should be proposed accordingly. Otherwise, attention needs to be
paid to the overfitting problem and the development of highly
accurate AI algorithms on small data sets. Another source of noise
is the inconsistency in the data annotation process. Secondary
review among pathologists can reduce errors, but different coun-
tries and hospitals have different classification standards. There is
also the challenge of focusing on multimodal research. Image data
are ultra-high dimensional and sparse in AI models. But other
clinical information can very easily become overwhelming, which
makes it difficult to bring out all useful information [198].

There are also a few issues that may be met during the imple-
mentation of the algorithm. Focusing on the robustness of the
model in testing and false-negative prediction results will help
convince doctors the computer’s effectiveness, promoting its clin-
ical application. In addition, not all hospitals have large GPU
servers to compute the results [199] and scaling down the hard-
ware requirements of the model is a necessary task.

In recent years, the research hotspot of digital pathology has
shifted from unimodal bi-classification to multimodal multitask-
ing, which has brought many benefits to doctors’ daily work. The
automatic detection of identification at the cellular level and
tissue level not only saves time in labeling molecular makers
experiments, but also reduces the probability of misidentification
by physicians in small regions. The direct application to the
diagnosis process is semi- or fully automated by replacing the
pathologist with a model to complete the process of identify-
ing diagnostic results from images and reducing the stress of
repetitive work for the doctors. Diagnosis-related tasks shorten
the time to generate pathology reports, and prognosis-related
tasks bring more opportunities to treat patients correctly and in
a timely manner. The introduction of multimodal data taps into
the association between external phenotypes and internal expres-
sions, broadening the understanding of life. Many studies have
demonstrated the improvements that AI can bring by comparing
the accuracy between doctors and computers or the efficiency of
doctors’ diagnosis with or without computer assistance [79, 200–
203]. Building a universal model for all problems is not realistic.
What AI can do is to reduce the burden on physicians and avoid
the lack of treatment due to the lack of resources.

Conclusion
Digital pathology, combined with artificial intelligence, is one of
the most promising fields for the delivery of precision medicine.
The research problem is gradually switching from the under-
standing of unimodal data to the cooperation of multimodal data.
The integration and evaluation criteria of digital pathology with
electronic medical records, CT, or other clinical data for differ-
ent diseases are urgently needed to be established, as they are
important for the enhancement of the integrated use of medical
information. Effective supporting systems can be produced based
on each step of the complete process of doctors and researchers’
collaboration (scientific problem identification, clinical applica-
tion criteria setting). Many people fear that this will lead to a
regression in doctors’ skills, but, when computers replace basic
repetitive tasks, doctors can have more time to focus on solving
difficult problems. Currently, hospitals still lack the supporting
landing facilities regarding automated pathology diagnosis and
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treatment systems. However, we cannot stop the research on dig-
ital pathology to promote the development of precision medicine.
AI-based digital pathology delivers on detection, quantification,
classification (such as tumor subtype), prognosis (in terms of
combining clinical and genomics information) and prediction.
With multiple modalities fusion analysis, artificial intelligence
approaches will improve quality and efficiency and transforms
pathology data into clinically actionable knowledge, and we can
make all this information accessible to precision medicine.

Key Points

• The availability of digitizing whole-slide images in var-
ious diseases has led to the advent of artificial intelli-
gence (AI) and machine learning tools in digital pathol-
ogy.

• In this review, we critically summarized all kinds of Al-
based computational approaches for digital pathology.

• The review showed the role that deep learning technol-
ogy development has in medical assistance and explored
the opportunities and challenges of AI.
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