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Abstract

The classification performance of Kraken was evaluated in terms of sensitivity and

specificity when using short and long 16S rRNA sequences. A total of 440,738

sequences from bacteria with complete taxonomic classifications were downloaded

from the high quality ribosomal RNA database SILVA. Amplicons produced

(86,371 sequences; 1450 bp) by virtual PCR with primers covering the V1–V9
region of the 16S-rRNA gene were used as reference. Virtual PCŔs of internal

fragments V3–V4, V4–V5 and V3–V5 were performed. A total of 81,523, 82,334

and 82,998 amplicons were obtained for regions V3–V4, V4–V5 and V3–V5
respectively. Differences in depth of taxonomic classification were detected among

the internal fragments. For instance, sensitivity and specificity of sequences

classified up to subspecies level were higher when the largest internal fraction

(V3–V5) was used (54.0 and 74.6% respectively), compared to V3–V4 (45.1 and

66.7%) and V4–V5 (41.8 and 64.6%) fragments. Similar pattern was detected for

sequences classified up to more superficial taxonomic categories (i.e. family, order,

class . . . ). Results also demonstrate that internal fragments lost specificity and

some could be misclassified at the deepest taxonomic levels (i.e. species or

subspecies). It is concluded that the larger V3–V5 fragment could be considered
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for massive high throughput sequencing reducing the loss of sensitivity and

sensibility.

Keywords: Biological sciences, Microbiology, Bioinformatics, Genetics

1. Introduction

Research aimed to study microbial communities using 16S rRNA gene sequences

must be based on accurate taxonomy classifications. Next generation sequencing

(NGS) technologies emerged at the end of the last decade as the most powerful and

promising tool for the study and classification of prokaryotic communities thriving

in any of the diverse natural environments. These technologies led to a decreased

cost per megabase and as consequence, an increase in the number and diversity of

sequenced genes and genomes (Goodwin et al., 2016). Several platforms such as

Roche GS20, Roche 454, Applied Biosystems 3730xl and GS-FLX, Applied

Biosystems Ion Torrent, Illumina Mi Seq and HiSeq, and others have been

developed and improved during the last decade.

However, current NGS platforms work with high-throughput short-read sequences

(300 bp max in each sense) and therefore consider only a fraction of the 16S rRNA.

Universal primers targeting internal conserved regions have been designed to

elucidate the bacterial profile of a given sample; however, no primer is truly

universal and the coverage of these primers depends on the environment;

furthermore, regions of the rRNA gene differ in taxonomic informativeness

(Soergel et al., 2012). Thus, selected primers are required to be not only highly

accurate, but to amplify those regions containing greater information than the

others (Martínez-Porchas and Vargas-Albores, 2015). Therefore, current methods

used for taxonomy classification have to be adapted to the capabilities of the NGS

technologies; i.e. considering shorter sequences and using internal primers.

Novel algorithms have been created to study these short sequences including k-

mers. Herein, Wood and Salzberg (2014) designed a novel computational program

(Kraken) based on ultrafast-metagenomic sequence classification using exact

alignments and its use is being extended rapidly (Flygare et al., 2016; Lindgreen

et al., 2016; Lu et al., 2016; Susilawati et al., 2016; Valenzuela-González et al.,

2016, Yang et al., 2016a; Yang et al., 2016b). This tool assigns taxonomic labels to

noisy sets of DNA sequences and has demonstrated greater speed and sensitivity

than state-of-the-art tools. For instance, Valenzuela-González et al. (2016),

demonstrated that Kraken not only analyzes short DNA sequences, but has an

acceptable classification performance analyzing long Sanger-sequenced samples

compared to the Ribosomal Database Project classifier (RDP classifier).

Kraken performs alignments of short and large sequences, mapping each sequence

to the lowest ancestor, forming subtrees and assigning specific weight to each node
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(equal to the number of sequences associated with the node’s taxon). Despite using
exact alignments avoids the generation of chimeric subtrees, there is still a very

small probability to have chimeras causing false classifications. Furthermore,

Soergel et al. (2012) asserted that taxonomic classifications using short reads

should be treated with skepticism. Current NGS technologies are aimed at the

generation of longer read lengths (up to 5 kbp) (Steinbock and Radenovic, 2015)

and thus to improve classification sensitivity; however, the use of short reads is still

the most economically viable strategy and therefore it is of paramount relevance to

evaluate how much information is sacrificed when using short sequences instead of

the complete 16S rRNA gene. Considering the above information, the aim of this

study was to evaluate the classification performance of Kraken in terms of

sensitivity and specificity when using short and long 16S rRNA sequences

generated in silico from the robust rRNA database SILVA release 123.

2. Materials and methods

2.1. Sequences

A total of 513,309 bacteria sequences were downloaded from the high quality

ribosomal RNA database SILVA (version 123). From these, only 440,738 that had

complete taxonomic classifications (from phylum to species) were used for virtual

PCR. Virtual amplicons with identical sequence were grouped and considered as a

single amplicon.

2.2. Virtual PCR

A homemade PHP script was used to simulate in silico PCR reactions, using

primers for the amplification of the complete 16S rRNA gene (Table 1). Identical

sequences were grouped and the in silico PCR reaction for the amplification of

internal fragments was performed on these unique large sequences (unilarge) using

the corresponding internal primers (Table 1). Primers isoforms were generated by

Table 1. Primers used for the amplification of the complete 16S rRNA gene

(V1–V9) and the internal fractions (V3–V4, V4–V5 and V3–V5).

Name Sequences References

Large
(V1–V9)

Fw: AGAGTTTGATYMTGGCTCAG
Rv: GTCRTAACAAGGTAACC

(Baker et al., 2003; Edwards et al., 1989)

V3–V5 Fw: CCTACGGGNGGCNGCA
Rv: CCGNCNATTNNTTTNAGTTT

(Baker et al., 2003; Perreault et al., 2007)

V4–V5 Fw: GCCAGCAGCCGCGGTAA
Rv: CCGNCNATTNNTTTNAGTTT

(Liu et al., 2007; Reysenbach et al., 1992)

V3–V4 Fw: CCTACGGGNGGCWGCAG
Rv: GACTACHVGGGTATCTAATCC

(Claesson et al., 2010; Muyzer et al., 1993)
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substituting degenerate nucleotides with the corresponding bases. Each isoform

was searched in the gene sequence; if not found, the length of the primer was

reduced, eliminating one nucleotide of the 5′ end. This routine was repeated until a

full match was achieved. Finally, if primer size was less than 12 nucleotides, a

negative result or no reaction was considered. Primer sequences (forward and

reverse) were then excluded from resulting amplicon.

The selection of primers for the virtual amplification of internal segments (Table 1)

was based on previous successful results reported; for instance, primers amplifying

V3–V4 region are commonly used by NGS platforms such as MiSeq Illumina

(Klindworth et al., 2013); primers for V4–V5 were reported by Soergel et al.

(2012) as one of the best set of primers after the evaluation of thousands of

combinations; whereas primers for V3–V5 are commonly used together with

DGGE technology (Perreault et al., 2007; Rettedal et al., 2010).

2.3. Taxonomic classification

The resulting amplicons (without primer sequences) were formatted as FASTq file.

The former large fragments covering the complete 16S rRNA gene were

considered as Sanger-sequenced in both directions, whereas the internal fragments

(V3–V4, V4–V5 and V3–V5) were considered as sequenced in a MiSeq (Illumina,

USA) next generation sequencing platform (2 × 300 cycles). All sequence sets

were analyzed by the Kraken classifier (Wood and Salzberg, 2014) installed at

Illumina BaseSpace app (MiniKraken 20141208) (https://basespace.illumina.com/

apps).

2.4. Classification performance

Classification performance using the different internal fragments (V3–V4, V4–V5
and V3–V5) was estimated considering the classification output registered by the

unilarge sequences as reference. The specificity and sensitivity of the taxonomic

classification obtained by using the different fragments were estimated according

to the method described by Baldi et al. (2000) and adjusted by Diaz et al. (2009),

Krause and Whitaker (2015). Specificity and sensitivity were calculated for the

classification output at the levels of genus, species and subspecies, considering the

sensitivity and specificity obtained in these categories. Herein, the sensitivity (Sni)
for a taxonomic class I was defined as the percentage of fragments from class I

correctly classified and it was computed as follows:

Sni ¼ TPi

Zi

The specificity (Spi) was considered as the proportion of fragments correctly

assigned to a particular lineage, other studies refer as Specificity, using the
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following equation:

Spi ¼
TPi

TPi þ FPi

Let the i-th taxonomic class of taxonomic rank r be denoted as class i. Further, let

Zi be the total number of sequences from class i, assigned by Kraken to Large

sequences. The true positives (TPi) the number of sequences correctly assigned to

class i, the false positives (FPi) the number of sequences from any class j ≠ i that is

wrongly assigned to i.

3. Results

Silva data base (release 123) contains 440,738 non-redundant sequences with

taxonomic description from phylum to species or strain. However, not all of them

were virtually amplified using the primer set for the complete gene. A total of

102,101 amplicons (23%) were obtained; from these, 86,371 resulted to be unique

large fragments with an average size of 1450.3 bp. Considering sequences within

the size range of mean ±2 standard deviations (S.D.) resulted in a homogeneous

group that accounted for 99.1% of the sequences ranging from 1378 to 1522 bp

(1450 ± 1.9 bp; Fig. 1) and covering variable regions V1 to V9. Thereafter virtual

PCR was performed on this group of sequences (85,594) by using primers for the

[(Fig._1)TD$FIG]

Fig. 1. Distribution size of amplicons obtained after virtual PCR of complete 16S rRNA gene (V1–V9).
Amplicons with extreme sizes outside the range of mean ± 2 standard deviations were excluded.
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amplification of segments containing hypervariable regions V3–V4, V4–V5 and

V3–V5 (Table 1).

A total of 81,523 amplicons (95.2%) were obtained with primers for V3–V4
region, whereas 82,998 (96.9%) and 82,334 (96.1%) were detected when using

primers for regions V3–V5 and V4–V5 respectively. Regarding amplicon sizes

produced by V3–V4, V4–V5 and V3–V5 primers with a confidence range of 99%,

these ranged from 393 to 440, 363 to 383 and 515 to 563 bp, respectively.

Significant differences were obtained in the depth of taxonomic classification using

the different regions; for instance, ≥70% of the sequences of the unilarge

amplicons (V1–V9) were assigned up to species level, whereas ≤53% of the

sequences obtained after the amplification of the internal fragments (V3–V4,
V4–V5 or V3–V5) were assigned to species (Fig. 2); however, some discrepancies

(detailed below) were detected regarding the final classification label assigned to

particular sets of internal sequences.

Differences were detected regarding the classification output when using the

different internal fractions. For instance, 45.4% of the internal sequences obtained

for the V3–V4 region received the same classification than their perfect matches of

the unilarge V1–V9 fragments (Table 2); whereas 41.1% and 52.39% of the

sequences obtained for V4–V5 and V3–V5 regions were similarly classified than

their perfect matches of the unilarge fragments (Table 2). Most of these differences

were associated only to a deeper classification level for the unilarge sequences;

however, in few other cases, internal sequences were assigned to different

taxonomic groups.

For instance, 41,685 unilarge sequences (V1–V9) resulted to be classified up to

Subspecies level; however, when used as internal V3–V5 fragments, only 22,520

[(Fig._2)TD$FIG]

Fig. 2. Cumulate proportion of taxonomic levels assigned to each amplicon type (complete gene or

internal fractions) after being submitted to Kraken classifier. Unilarge is the set of sequences depurated

by elimination of redundant amplicons and included in the 99% confidence range.
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(55.6%) sequences received the same classification than the unilarge fragments

(subspecies), whereas 10,308 (25.5%) were similarly classified but to less deep

taxonomic levels (species, or genus, or family, and so on) (Fig. 3). The rest of the

sequences received a different (and erroneous) classification output; for instance,

7,669 (18.9%) sequences obtained after the amplification of the V3–V5 region

were labeled as a different organism (other species, or genus, or family, and so on);

11 of these sequences were inclusively classified up to Subspecies, but to a

different specimen.

Regarding V3–V4 fragments, only 18,801 (46.4%) sequences received the same

classification than the unilarge fragments (subspecies), whereas 12,290 (30.3%)

Table 2. Proportion of sequences of the internal fragments (V3–V4, V4–V5,
V3–V5) that received exactly the same classification than their unilarge (complete

16S) perfect matches. Proportion of sequences with a different classification result

are also showed.

V3–V4 V3–V5 V4–V5

Equal to large 36,973 (45.3%) 43,485 (52.4%) 33,794 (41.0%)

Different to large 44,170 (54.2%) 39,243 (47.3%) 47,542 (57.8%)

No reaction 380 (0.5%) 270 (0.3%) 998 (1.2%)

Total 81,523 82,998 82,334

[(Fig._3)TD$FIG]

Fig. 3. Classification output obtained with the internal fractions (V3–V4, V4–V5, V3–V5) respect to
the complete 16S rRNA gene sequences (V1–V9). Proportion of sequences with same classification

results using either the complete sequence or the internal fragment sequence are labeled as “Equal”;
whereas sequences of internal fractions with similar classification but to more superficial level are

represented as “Less”, and sequences with different taxonomic classification compared to the respective

complete sequence (V1–V9) are named as “Low”.

Article No~e00170

7 http://dx.doi.org/10.1016/j.heliyon.2016.e00170

2405-8440/© 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00170


were similarly classified but to more superficial levels (species, or genus, or

family, and so on) (Fig. 3). The rest of the sequences received a different (and

erroneous) classification output; for instance, 9,400 (23.2%) sequences obtained

after the amplification of the V3–V4 region were labeled as a different organism

(other species, or genus, or family, and so on) of these sequences were inclusively

classified up to Subspecies, but to a different specimen.

For V4–V5 fragments, 39,677 sequences resulted to be perfect matches of V1–V9
fragments. However, when used as internal V4–V5 fragments, only 17,436 (43.9%)

sequences received the same classification than the unilarge fragments (subspe-

cies), whereas 12,684 (32%) were similarly classified but to more superficial levels

(species, or genus, or family, and so on) (Fig. 3). The rest of the sequences received

a different (and erroneous) classification output; for instance, 9,546 (24.1%)

sequences obtained after the amplification of the V4–V5 region were labeled as a

different organism (other species, or genus, or family, and so on); 11 of these

sequences were inclusively classified up to subspecies, but to a different specimen.

The same pattern was observed when the unilarge sequences were classified to

lower taxonomic levels (species, genus, or family) as maximum result; a fraction of

the internal fragments received exactly the same classification than the unilarge

fragments, whereas the rest were similarly classified but to more superficial levels

and others received a completely different classification (different species, or

genus, or family).

Regarding sensitivity and specificity analyses, both indicators exhibited higher

values for the three taxonomic levels (subspecies, species and genus) when the

largest internal fraction (V3–V5) was used, compared to V3–V4 and V4–V5
fragments. Results also demonstrate that internal fragments lost specificity at the

deepest taxonomic level (i.e. species and subspecies). Moreover, V3–V5 fragments

registered the lowest proportion of false positive results, followed by V3–V4 and

V4–V5 fragments respectively (Table 3).

4. Discussion

The overcome of NGS technologies to study microbial communities has

contributed to the study of microbial diversity form a deeper perspective

(Shokralla et al., 2012; van Dijk et al., 2014); these technologies are able to

consider those poorly represented bacteria or differentiating bacteria with very

similar sequences but varying on at least a single nucleotide. However, results

demonstrated that this deeper insight is not necessarily accompanied with greater

sensitivity and/or specificity. In contrast, both features have to be sacrificed when

using current NGS technologies based on short sequences.

The better classification specificity achieved when using the unilarge fragments

(V1–V9) compared to any of the internal fragments (V3–V4, V4–V5 or V3–V5)
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was an expected result, considering that several of the shorter sequences provided

information corresponding to the most superficial taxonomic levels, but lacking

some elements to be classified to more specific levels (species or subspecies).

However, the loss of specificity can be considered as incomplete information, but

that can be analyzed to some extent. For instance, only 54.5% of the largest internal

fragments (V3–V5) received the same classification label than their respective

unilarge matches, suggesting a loss of information or elements that provide identity

to these sequences.

Shorter NGS-type sequences (V3–V4, V4–V5) similar to those used in the current

NGS platforms exhibited poorer results. To this respect, other reports have

documented that most of the information is usually contained in the V3–V6 region

for the phylogenetic analysis of most bacterial phyla, while V2 and V8 are the least

reliable regions (Yang et al., 2016a; Yang et al., 2016b). However, sequence

divergence is not distributed evenly along the 16S rRNA gene, leading to

interpretation problems such as over-representation and limited coverage; this

discord may affect analyses of diversity, relative abundance and species richness.

Herein, Kim et al. (2011) evaluated different partial 16S rRNA gene sequence

regions for phylogenetic analysis of microbiomes and concluded that no partial

sequence region could estimate OTU richness or define OTUs as reliably as nearly

full-length genes. Moreover, Guo et al. (2013) asserted that despite the advantages

Table 3. Sensitivity and specificity obtained by the different internal 16S rRNA

gene fractions, considering the complete sequence of the 16S rRNA gene. Results

were calculated considering the number of large sequences classified to subspecies,

species or genus as maximum result.

Sequences Index Subspecies Species Genus

Unilarge Total (Z) 41,685 57,616 68,331

V3–V5 Sensitivity 54.02% 56.41% 67.57%

Specificity 74.62% 86.34% 89.54%

True Positives 22,520 32,501 46,173

False Positives 7,658 5,140 5,395

V4–V5 Sensitivity 41.83% 44.00% 57.27%

Specificity 64.62% 78.86% 83.94%

True Positives 17,436 25,351 39,135

False Positives 9,546 6,795 7,485

V3–V4 Sensitivity 45.10% 48.32% 60.38%

Specificity 66.67% 80.13% 85.11%

True Positives 18,801 27,842 41,255

False Positives 9,400 6,902 7,216

Note: Let Z be the total number of sequences assigned by Kraken to the different taxonomic levels.
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of NGS technologies to achieve a deeper understanding on bacterial diversity for

complex environmental samples, these also introduce blurring due to the relatively

low taxonomic capability of short reads. Therefore, despite these short sequences

may cover an information-rich fraction of the 16S rRNA gene, the classification

outputs have to be interpreted as partial results, probably leading to partial

conclusions.

On the other hand the lack of sensitivity when using short sequences is a worrying

outcome, as this means that a considerable proportion of the results could be

erroneous, and these kinds of errors can affect the overcome conclusions of any

research process. The decrease in specificity could be considered as loss of

information, but the results could at least provide any idea of the bacterial

populations thriving in any environment; however, the loss of sensitivity implies

erroneous results with the consequent misinterpretations. Furthermore, the

considerable proportion of sequences reported as erroneously classified (false

positives) could have a significant impact on the correct analysis of any dataset.

This could be also a greater problem when using other hypervariable regions with

less information richness.

Higher specificity and sensitivity values have been reported in other studies

analyzing short sequences (∼200 bp); however, they used very limited sample

sizes (Ounit et al., 2015; Wood and Salzberg, 2014), while in this study the

sample size was closest to the universe of sequences recorded in databases. In

spite of the low sensitivity and sensitivity achieved with short sequences, these

results cannot be associated to a poor performance of the taxonomic classifier

used in this study. For instance, the Ribosomal Database Project-Classifier

(RDP), has been compared to other classification methods and has been reported

(Lan et al., 2012) as an adequate program for the analysis of short 16S rRNA

gene sequences; however, Valenzuela-González et al. (2016) demonstrated that

deeper classification can be achieved using Kraken compared to RDP, for either

short or long sequences.

The recent comparative study performed by Lindgreen et al. (2016) concluded that

none of the most advanced classifiers can be considered as the best for a complete

sequence analysis. In terms of sensitivity and specificity at genus level all methods

(with their respective algorithms) showed adequate performances (CLARK,

Genometra, GOTTCHA, Kraken, LMAT, MG-RAST, OneCodex); however

CLARK and Kraken resulted to be the best tools in terms of prediction of relative

abundances of bacterial phyla (Lindgreen et al., 2016).

Finally, the larger V3–V5 internal fragment (amplicon size range: 515–563 bp)

which has been commonly used to study bacterial diversity through DGGE, could

be considered as candidate for massive throughput sequencing.
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