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Abstract
People infected with malaria may receive less mosquito bites when they are treated in
well-equipped hospitals or follow doctors’ advice for reducing exposure tomosquitoes
at home. This quarantine-like intervention measure is especially feasible in countries
and areas approaching malaria elimination. Motivated by mathematical models with
quarantine for directly transmitted diseases, we develop a mosquito-borne disease
model where imperfect quarantine is considered to mitigate the disease transmission
from infected humans to susceptiblemosquitoes. The basic reproduction numberR0 is
computed and themodel equilibria and their stabilities are analyzedwhen the incidence
rate is standard or bilinear. In particular, the model system may undergo a subcritical
(backward) bifurcation at R0 = 1 when standard incidence is adopted, whereas the
disease-free equilibrium is globally asymptotically stable as R0 ≤ 1 and the unique
endemic equilibrium is locally asymptotically stable as R0 > 1 when the infection
incidence is bilinear. Numerical simulations suggest that the quarantine strategy can
play an important role in decreasing malaria transmission. The success of quarantine
mainly relies on the reduction of bites on quarantined individuals.

Keywords Malaria · Quarantine · Basic reproduction number · Standard incidence ·
Bilinear incidence · Backward bifurcation

Mathematics Subject Classification 37N25 · 34D20 · 92D30

1 Introduction

Malaria is a life-threatening infectious disease caused by Plasmodium parasites that
are transmitted to humans through the bites of infected female Anophelesmosquitoes.
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P. falciparum, P. malariae, P. ovale, P. vivax and P. knowlesi are five known species
of human malaria parasites among which P. falciparum is responsible for the vast
majority of malaria cases and deaths worldwide. The data released by the World
Health Organization (WHO) indicates that there were about 228 million malaria cases
including 405,000 deaths in 2018 (World Health Organization 2019). No dramatic
reduction inmalaria incidence rate in the periodof 2015–2018.Over 40%of theworld’s
population in more than 80 countries and areas is still at risk of contracting malaria.
Nowadays malaria is preventable, treatable and curable. Reducing the contacts of
peoplewithmosquitoes is the core strategy to prevent and control the spread ofmalaria.
A number of precautions such as decreasing mosquito breeding sites, sleeping under
insecticide-treated nets and indoor residual spraying with insecticides, are used for
reducing malaria vectors and their bites. The artemisinin-based combination therapies
are recommended byWHO as the fist-line treatments for uncomplicated P. falciparum
malaria (World Health Organization 2015). So far there is only one approved malaria
vaccine (RTS, S) with a relatively low efficacy, but requiring four injections (RTS, S
Clinical Trials Partnership et al. 2011).

Mathematical models towards an understanding of the transmission dynamics of
malaria have a history of over 100 years. The earliest model was proposed by Ross in
1911 who was awarded the Nobel Prize in Physiology or Medicine in 1902 for being
the discoverer of the life cycle of malarial parasite (Ross 1911). Macdonald extended
Ross’ basic model by considering superinfection and developed the entomological
theory and the quantitative theory of malaria control (Macdonald 1957). The so-called
Ross–Macdonald model captures the essential feature of malaria transmission and the
modeling framework has been widely adopted to study the epidemiology of malaria
and other mosquito-borne or even vector-borne diseases (Reiner et al. 2013). Dietz
et al. (1974) and Aron (1988) conducted a modeling study on acquired immunity
for whom has ever suffered from malaria. Aron and May (1982) formed an SIRS
model with constant infection rate to fit data on age-prevalence curves. Ngwa and
Shu (2000) established a compartmental model with an SEIRS pattern for humans
and an SEI pattern for mosquitoes. Their model was later extended by Chitnis et al.
(2006) through including constant immigration of susceptible humans and generaliz-
ing mosquito biting rate. Hasibeder and Dye (1988) and Gao et al. (2019) showed
that nonhomogeneous mixing between humans and mosquitoes leads to a higher
basic reproduction number using Lagrangian and Eulerian approaches, respectively.
Ruan et al. (2008) proposed a delayed Ross–Macdonald model in consideration of
the incubation periods of parasites within both humans and mosquitoes. Abu-Raddad
et al. (2006) and Mukandavire et al. (2009) studied the influence of the interaction
between HIV and malaria in a community. Differences in susceptibility, exposed-
ness and infectivity between non-immune and semi-immune human hosts for malaria
transmission were investigated by Ducrot et al. (2009). Chamchod and Britton (2011)
introduced a vector-bias model with vital dynamics to account for the greater attrac-
tiveness of infectious humans to mosquitoes. A theoretical model for evaluating the
effectiveness of malaria control using genetically modified mosquitoes was devel-
oped and analyzed by Diaz et al. (2011). In addition, environmental changes (Li
et al. 2002; Parham and Michael 2010), seasonal human migration (Gao et al. 2014b)
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and drug resistance (Koella and Antia 2003) were also considered in malaria mod-
els.

Quarantine is a public health control strategy in containing infectious diseases by
separating exposed or sick persons from the healthy population. As early as the 14th
century, ships arriving in Venice from areas infected with plague were required to
wait forty days before landing. The essential of quarantine is to prevent infectious
individuals from contacting with susceptible individuals. This measure is effective
even for newly emerging infectious diseases caused by unidentified infectious agents.
Quarantine has been widely used in the control of COVID-19, SARS, Ebola, Bubonic
plague, measles, tuberculosis, H7N9, typhoid fever, etc. Many studies have shown
the effectiveness of quarantine for controlling and eliminating infectious diseases.
Feng and Thieme (1995) formulated a perfect quarantine model where a propor-
tion of infected people stay at home and do not infect anybody and showed that
the model can give rise to sustained oscillations. Hethcote et al. (2002) analyzed
six types of SIQS and SIQR models to explore which one can produce periodic
solutions. Gumel et al. (2004) used models to examine the effectiveness of quaran-
tine and isolation on the control of SARS outbreaks. Tang et al. (2012) proposed
a dynamic model to evaluate the influence of campus quarantine for curbing the
H1N1 outbreak in the Chinese city of Xi’an during the 2009 H1N1 pandemic. Pandey
et al. (2014) developed a compartmental model for Ebola transmission to assess the
effectiveness of non-pharmaceutical interventions (e.g., quarantine, case isolation,
and sanitary burial practices) for curtailing the epidemic in Liberia. Erdem et al.
(2017) studied the impact of imperfect quarantine on the dynamics of an SIR-type
model.

Although malaria is still a serious threat to public health, the disease burden has
been sharply reduced over the past two decades due to global efforts. A number of
countries are on the road to malaria elimination. However, imported infections pose
the greatest threat for maintaining the elimination status. For example, a National
Malaria Elimination Programme was launched in China in 2010, aiming at achieving
national malaria elimination by 2020 (Ministry of Health of the People’s Republic of
China 2010). Imported cases account for over 98% of the total malaria cases in China
since 2014 (Feng et al. (2018), see Fig. 1). The situation leads to the theme of National
Malaria Day in China since 2015 being “Malaria eradication: preventing imported
cases”. For a malaria-free or low transmission country or region, it is feasible to
quarantine sporadic imported or autochthonous cases to limit the disease transmission
from humans tomosquitoes.Meanwhile, malaria patients get lessmosquito bites when
they receive treatment and health care in hospitals or at homes.

The main purpose of this work is to explore the role of quarantine-like interven-
tion on malaria control and elimination. In Sect. 2, we formulate a Ross–Macdonald
type malaria model with imperfect quarantine. Sections 3 and 4 are devoted to
dynamical behavior analysis of the model with standard and bilinear incidence rates,
respectively. Sensitivity analysis and numerical simulations are given in Sect. 5 to
illustrate the impact of quarantine on malaria control. Finally, we summarize the main
results, address the limitations of the present study and list some future research top-
ics.

123



47 Page 4 of 26 X. Jin et al.

Fig. 1 Indigenous and imported malaria cases in China during 2011–2018 (Color figure online)

2 Model Formulation

In the Ross–Macdonald model for malaria transmission, the total human population
H is split into susceptible humans Sh = H − Ih and infectious humans Ih , and the
total mosquito population V is divided into susceptible mosquitoes Sv = V − Iv and
infectious mosquitoes Iv . The model takes the following form

dIh
dt

= ab
Iv
H

(H − Ih) − γ Ih,

dIv
dt

= ac
Ih
H

(V − Iv) − μIv.
(1)

Here a denotes the number of bites on humans per mosquito per unit time, b is the
probability of transmission of infection from an infectious mosquito to a susceptible
human per bite, c is the probability of transmission of infection from an infectious
human to a susceptible mosquito per bite, γ is the human recovery rate, and μ is
the death rate for mosquitoes. Let m = V /H denote the ratio of mosquito to human
populations. The basic reproduction number of model (1) is defined as

R0 =
√
a2bcm

γμ
.

The model exhibits global threshold dynamics, i.e., the origin is globally asymp-
totically stable (GAS) if R0 ≤ 1 and there is a unique GAS positive equilibrium if
R0 > 1.

People who have malaria usually suffer chill, fever, sweating, and headache, and
may develop severe complications such that they need to seekmedical care in hospitals
or take breaks at homes. Hospital or home stay plus health education campaign could
reduce patient exposure to mosquitoes. In countries approaching malaria elimination,
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Fig. 2 Flow diagram of the malaria model with quarantine (Color figure online)

timely quarantine of detected cases is especially feasible. We thus introduce a com-
partment Qh representing quarantined people who get fewer mosquito bites. Let σ

be the proportion of bites that is reduced via quarantine. Then σ = 1 corresponds to
perfect quarantine, σ = 0 corresponds to no quarantine, and σ ∈ (0, 1) corresponds to
imperfect quarantine. Let Av(Ih, Qh, Iv) be the mosquito biting rate, i.e., the number
of bites per mosquito per unit time, and Ah(Ih, Qh, Iv) be the human biting rate, i.e.,
the number of bites per non-quarantined human per unit time. By the conservation of
bites, we have

AvV = Ah(H − Qh) + (1 − σ)AhQh = Ah(H − σQh).

The forces of infection on humans and mosquitoes are

λh = Ah · Iv
V

· b = AvV

H − σQh
· Iv
V

· b = Av · Iv
H − σQh

· b,

λv = Av · Ah Ih + (1 − σ)AhQh

Ah(H − Qh) + (1 − σ)AhQh
· c = Av · Ih + (1 − σ)Qh

H − σQh
· c,

(2)

respectively. Based on the Ross–Macdonaldmodel (1) and the flow diagram illustrated
in Fig. 2, the transmission dynamics of malaria in the presence of quarantine are
described by the following system

dSh
dt

= −λh Sh + (1 − θ)γ Ih + γ2Qh,

dIh
dt

= λh Sh − (θγ1 + (1 − θ)γ )Ih,

dQh

dt
= θγ1 Ih − γ2Qh, (3)
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dSv

dt
= μV − λvSv − μSv,

dIv
dt

= λvSv − μIv.

Since H = Sh + Ih + Qh and V = Sv + Iv are constant, the model system (3) can be
reduced to a three-dimensional system

dIh
dt

= λh(H − Ih − Qh) − (θγ1 + (1 − θ)γ )Ih,

dQh

dt
= θγ1 Ih − γ2Qh,

dIv
dt

= λv(V − Iv) − μIv.

(4)

The descriptions and ranges for model parameters are summarized in Table 1. In
particular, θ is defined in order that θ̂ of infectious humans are quarantined, that is,

θ̂ = θγ1

θγ1 + (1 − θ)γ
, or θ = θ̂γ

θ̂γ + (1 − θ̂ )γ1
.

The present approach for modeling quarantine follows the very influential work on
Ebola models by Legrand et al. (2007). Throughout the manuscript, we assume that
quarantine does not affect the infectious period, i.e.,

1

γ
= 1

γ1
+ 1

γ2
.

Assume that Av(Ih, Qh, Iv) is continuously differentiable in all state variables. The
model (4) is mathematically and epidemiologically well-posed.

Theorem 1 System (4) has a unique bounded solution for all timewith initial condition
lying in

Ω =
{
(Ih, Qh, Iv) ∈ R

3+ | Ih + Qh ≤ H , Iv ≤ V
}

.

Moreover, the compact set Ω is positively invariant with respect to system (4).

Proof The vector field described by the right-hand sides of (4) is Lipschitz continuous
in Ω , so there exists a unique solution for t ≥ 0. If Ih = 0, then I ′

h ≥ 0. Similar
arguments apply to Qh and Iv . If Iv = V , then I ′

v ≤ 0. If Ih + Qh = H , then
I ′
h + Q′

h ≤ 0. It follows that all solutions of system (4) starting from Ω stay in Ω . ��

3 Model with Standard Incidence

When the mosquito population is small relative to the human population, the blood
source for mosquitoes is abundant. It is reasonable to assume that the mosquito biting
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Table 1 Ranges of the model parameters (time unit is day)

Parameter Description Range Reference

Av Mosquito biting rate 0.1–1 [4, 7]

b Transmission probability from an infectious
mosquito to a susceptible human per bite

0.01–0.8 [4, 6, 7]

c Transmission probability from an infectious
human to a susceptible mosquito per bite

0.072–0.64 [4, 6, 7]

γ −1 Duration of infectiousness in humans 20–200 [1, 7, 8]

μ Mortality rate of mosquitoes 0.05–0.33 [1, 7]

γ −1
1 Time from symptom onset to quarantine 2–20 Assumed

γ −1
2 Time from quarantine to recovery

(
1
γ − 1

γ1

)−1
Assumed

m Ratio of mosquitoes to humans 1–10 [2, 3, 5]

θ Coefficient at which a proportion θ̂ of
infectious humans are quarantined

0.1–0.8 Assumed

σ Proportion of reduction of mosquito bites for
quarantined humans

0.2–1 Assumed

The references are: 1- Anderson (1982), 2- Anderson and May (1991), 3- Aron (1988), 4- Chitnis et al.
(2008), 5- Gao et al. (2014a), 6- Gu et al. (2003), 7- Mwanga et al. (2015), 8- Ruan et al. (2008)

rate is constant, denoted by Av = a. Thus, we can rewrite the forces of infection (2)
as

λh = a · Iv
H − σQh

· b and λv = a · Ih + (1 − σ)Qh

H − σQh
· c. (5)

Substituting (5) into (4) gives a standard incidence malaria model

dIh
dt

= ab
Iv

H − σQh
(H − Ih − Qh) − (

θγ1 + (1 − θ)γ
)
Ih,

dQh

dt
= θγ1 Ih − γ2Qh,

dIv
dt

= ac
Ih + (1 − σ)Qh

H − σQh
(V − Iv) − μIv.

(6)

3.1 Basic Reproduction Number

It is clear that system (6) always has a unique disease-free equilibrium (DFE) at
E0 = (0, 0, 0). Following the next generation matrix method (Diekmann et al. 1990;
van den Driessche and Watmough 2002), the new infection and transition matrices
are

F1 =
⎛
⎝ 0 0 ab

0 0 0
acm (1 − σ)acm 0

⎞
⎠ and V1 =

⎛
⎝θγ1 + (1 − θ)γ 0 0

−θγ1 γ2 0
0 0 μ

⎞
⎠ ,
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respectively. The basic reproduction number of model (6) is

R10 = ρ(F1V
−1
1 )=

√
a2bcm(θ(1 − σ)γ1 + γ2)

μγ2(θγ1 + (1 − θ)γ )
=

√
(R10i )2 + (R10q)2

=
√

acm

θγ1 + (1 − θ)γ
· ab

μ
+ θγ1

θγ1 + (1 − θ)γ
· (1 − σ)acm

γ2
· ab

μ
,

where R10i and R10q are the number of secondary cases produced by an infectious
human at non-quarantined and quarantined stages, respectively. It is worth noting that
R10 ≤ R0 with equality if and only if θ = 0 or σ = 0 (no quarantine or it does not
work) and R10 depends on all model parameters.

Theorem 2 For model (6), the disease-free equilibrium E0 is locally asymptotically
stable if R10 < 1 and unstable if R10 > 1. Moreover, E0 is globally asymptotically
stable ifR0 ≤ 1.

Proof The local stability of E0 immediately follows from Theorem 2 in van den
Driessche andWatmough (2002).We next turn to prove the global asymptotic stability
of the disease-free equilibrium as R0 ≤ 1. Using the facts that

ab
Iv

H − σQh
(H − Ih − Qh) ≤ abIv

and

ac
Ih + (1 − σ)Qh

H − σQh
(V − Iv) ≤ ac

Ih + Qh

H
(V − Iv) ≤ ac

Ih + Qh

H
V ,

we have (
dIh
dt

,
dQh

dt
,
dIv
dt

)T

≤ (F − V ) (Ih, Qh, Iv)
T ,

where

F =
⎛
⎝ 0 0 ab

0 0 0
acm acm 0

⎞
⎠ ≥ F1 and V =

⎛
⎝θγ1 + (1 − θ)γ 0 0

−θγ1 γ2 0
0 0 μ

⎞
⎠ = V1.

One can verify by direct calculation that V−1F is a nonnegative and irreducible matrix
and ρ(V−1F) = R0. It follows from the Perron–Frobenius theorem that V−1F has a
positive left eigenvector v associated with R0, i.e.,

vV−1F = R0v.

Since vV−1 is a positive vector, we consider a Lyapunov function

L1 = vV−1 (Ih, Qh, Iv)
T .
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Differentiating L1 along the solutions of (6) gives

L ′
1 = vV−1

(
dIh
dt

,
dQh

dt
,
dIv
dt

)T

≤ vV−1(F − V ) (Ih, Qh, Iv)
T

= (R0 − 1)v (Ih, Qh, Iv)
T .

Denote Γ1 the largest invariant set contained in {(Ih, Qh, Iv) ∈ Ω : L ′
1 = 0}.

(i) R0 < 1. Since v � 0, then L ′
1 = 0 implies that Ih = Qh = Iv = 0. Thus

Γ1 = {E0}.
(ii) R0 = 1. The equality L ′

1 = 0 implies that

(
dIh
dt

,
dQh

dt
,
dIv
dt

)T

= (F − V ) (Ih, Qh, Iv)
T ,

or equivalently,
Iv

H − σQh
(H − Ih − Qh) = Iv,

Ih + (1 − σ)Qh

H − σQh
(V − Iv) = Ih + Qh

H
V .

(7)

We conclude from the first equation of (7) that Iv = 0, or Ih = 0 and (1−σ)Qh =
0. If Iv = 0, then I ′

h = −((1−θ)γ +θγ1)Ih and hence Ih = 0. The second equation
of (6) gives Q′

h = −γ2Qh . Thus Qh = 0 and hence Γ1 = {E0}. If Ih = 0, then
the second and third equations of (6) imply Qh = 0 and Iv = 0, respectively.
Once again we have Γ1 = {E0}.
By LaSalle’s invariance principle (Lasalle 1976), the disease-free equilibrium E0

is globally asymptotically stable with respect to Ω if R0 ≤ 1. ��
Since R10 ≤ R0 ≤ 1 means that the disease becomes extinct in the absence of

quarantine. It is not surprising that under quarantine the disease still dies out ifR0 ≤ 1.
However, based on the analysis below, the disease-free equilibrium E0 can be locally
asymptotically stable but not globally asymptotically stable for system (6) asR10 < 1.

3.2 Endemic Equilibrium

Let E∗ = (I ∗
h , Q∗

h, I
∗
v ) denote an endemic equilibrium of system (6). Solving the

equilibrium equations associated with (6) gives

I ∗
h = γ2λ

∗
h

γ2(θγ1 + (1 − θ)γ ) + (θγ1 + γ2)λ
∗
h
H ,

Q∗
h = θγ1λ

∗
h

γ2(θγ1 + (1 − θ)γ ) + (θγ1 + γ2)λ
∗
h
H ,

I ∗
v = λ∗

v

μ + λ∗
v

V ,

(8)
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where the forces of infection on humans and mosquitoes at E∗ are

λ∗
h = ab

I ∗
v

H − σQ∗
h

and λ∗
v = ac

I ∗
h + (1 − σ)Q∗

h

H − σQ∗
h

, (9)

respectively. By substituting (8) into (9), we eventually obtain a quadratic equation in
terms of λ∗

h as follows

c2(λ
∗
h)

2 + c1λ
∗
h + c0 = 0,

where

c2 = (ac + μ)(θγ1(1 − σ) + γ2)
2H ,

c1 = ((ac + 2μ)γ2(θγ1 + (1 − θ)γ )H − a2bc(θγ1 + γ2)V )(θγ1(1 − σ) + γ2),

c0 = μγ 2
2 (θγ1 + (1 − θ)γ )2(1 − (R10)

2)H .

Obviously, c2 > 0 and the terms c0 and R10 − 1 have opposite signs. Therefore, the
following result is established.

Proposition 1 The model (6) can have up to two endemic equilibria, i.e.,

(i) a unique endemic equilibrium if c0 < 0;
(ii) a unique endemic equilibrium if c1 < 0, and c0 = 0 or c21 − 4c0c2 = 0;
(iii) two endemic equilibria if c0 > 0, c1 < 0 and c21 − 4c0c2 > 0;
(iv) no endemic equilibrium otherwise.

Moreover, differing from the classical Ross–Macdonald model (1), we find that the
phenomenon of backward bifurcation (i.e., the stable disease-free equilibrium coexists
with a stable endemic equilibrium) can occur when quarantine is considered.

Theorem 3 The model (6) undergoes backward bifurcation at R10 = 1 if

ac(θγ1(1 − σ) + γ2) + μ(θγ1(1 − 2σ) + γ2) < 0.

Proof The Jacobian matrix of system (6) at E0 is

J (E0) = F1 − V1 =
⎛
⎝−θγ1 − (1 − θ)γ 0 ab

θγ1 −γ2 0
acm (1 − σ)acm −μ

⎞
⎠ .

We choose the ratio of mosquitoes to humans m = V /H as a bifurcation parameter.
Solving m fromR10 = 1 gives

m∗ = μγ2(θγ1 + (1 − θ)γ )

a2bc(θ(1 − σ)γ1 + γ2)
.

Denote the Jacobian matrix J (E0) at m = m∗ by Jm∗ . It is easy to see that Jm∗ has a
simple zero eigenvalue and all other eigenvalues have negative real parts. Since Jm∗
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is essentially nonnegative and irreducible, it has a positive right eigenvector ω and a
positive left eigenvector ν corresponding to the zero eigenvalue. More specifically,

ω = (ω1, ω2, ω3)
T and ν = (ν1, ν2, ν3),

where

ω1 = ab

θγ1 + (1 − θ)γ
, ω2 = abθγ1

γ2(θγ1 + (1 − θ)γ )
, ω3 = 1,

ν1 = μ

ab
, ν2 = μ(1 − σ)(θγ1 + (1 − θ)γ )

ab(θγ1(1 − σ) + γ2)
, ν3 = 1.

Following the notations and method developed by Castillo-Chavez and Song (2004),
we get

a = −2ab(ac(θγ1(1 − σ) + γ2) + μ(θγ1(1 − 2σ) + γ2))

γ2(θγ1 + (1 − θ)γ )H
,

b = a2bc(θγ1(1 − σ) + γ2)

γ2(θγ1 + (1 − θ)γ )
> 0.

Thus, the proof is complete by applying Theorem 4.1 in Castillo-Chavez and Song
(2004). ��

3.3 Uniform Persistence

We now prove the uniform persistence of the disease when R10 > 1.

Theorem 4 Assume that R10 > 1, then system (6) is uniformly persistent, i.e., there
exists an ε > 0 such that every solution ϕt (x0) = (Ih(t), Qh(t), Iv(t)) of system (6)
with initial value x0 = (Ih(0), Qh(0), Iv(0)) ∈ Ω\{E0} satisfies

lim inf
t→∞ (Ih(t), Qh(t), Iv(t)) > (ε, ε, ε).

Proof Define

Ω̊ = {(Ih, Qh, Iv) ∈ Ω | Ih > 0, Qh > 0, Iv > 0},
∂Ω = Ω\Ω̊ = {(Ih, Qh, Iv) ∈ Ω | Ih = 0 or Qh = 0 or Iv = 0}.

One can easily check thatΩ and Ω̊ are positively invariant, and ∂Ω is relatively closed
in Ω . Since Ω is a compact set, system (6) is point dissipative. Denote

M∂ = {x0 ∈ ∂Ω : ϕt (x0) ∈ ∂Ω for t ≥ 0}.

Clearly, {E0} ⊆ M∂ ⊆ ∂Ω . Meanwhile, for any x0 ∈ ∂Ω\{E0}, by the irreducibility
of system (6), we have ϕt (x0) ∈ Ω̊ for all t > 0. Therefore, x0 /∈ M∂ and M∂ = {E0}.
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We claim thatWs(E0)∩Ω̊ = ∅whereWs(E0) is the stablemanifold of E0. Denote

Mε = ε

⎛
⎜⎜⎜⎝

0 0
2ab

H
0 0 0
ac

H

ac(1 − σ)

H
0

⎞
⎟⎟⎟⎠

and

Jε = F1 − V1 − Mε =

⎛
⎜⎜⎜⎝

−θγ1 − (1 − θ)γ 0
ab(H − 2ε)

H
θγ1 −γ2 0

ac(V − ε)

H

ac(1 − σ)(V − ε)

H
−μ

⎞
⎟⎟⎟⎠ .

Since s(F1 − V1) > 0 if and only if R10 > 1, by the continuity of spectral bound,
there exists a sufficiently small ε1 > 0 such that s(Jε) > 0 for ε ∈ [0, ε1]. We now
show

lim sup
t→∞

‖ϕt (x0) − E0‖2 > ε1, ∀x0 ∈ Ω̊,

where ‖ · ‖2 is the Euclidean norm.
Assume the contrary, for some x0 ∈ Ω̊ , up to a translation, we have

‖ϕt (x0) − E0‖2 = ‖ϕt (x0)‖2 ≤ ε1 for ∀ t ≥ 0

and hence (
dIh
dt

,
dQh

dt
,
dIv
dt

)T

≥ Jε1(Ih, Qh, Iv)
T .

Since Jε1 is irreducible and essentially nonnegative, it has a positive eigenvector asso-
ciated with s(Jε1) > 0. By the standard comparison principle, each component of the
solution ϕt (x0) tends to infinity as t → ∞, this is a contradiction. The claim is proved.

The singleton M∂ = {E0} is an isolated invariant set and acyclic. By Theorem 4.6
in Thieme (1993), we conclude that system (6) is uniformly persistent in Ω̊ whenever
R10 > 1. ��

4 Model with Bilinear Incidence

When the ratio of mosquitoes to humans is large, the odds of successful blood feeding
increases in the number of blood sources (human hosts). Since mosquitoes make less
bites towards individuals who are quarantined, the contact rate between mosquitoes
and humans depends on those available formosquitoes rather than the total human pop-
ulation. Thus, we assume that the mosquito biting rate is proportional to the adjusted
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or effective number of humans that mosquitoes can contact in the environment, i.e.,

Av = ã(Sh + Ih + (1 − σ)Qh) = ã(H − σQh),

where ã is a proportional coefficient. For simplicity, we denote

α = ãb and β = ãc.

The forces of infection (2) can then be written as

λh = α Iv and λv = β(Ih + (1 − σ)Qh). (10)

By substituting (10) into (4), we obtain a bilinear incidence malaria model with quar-
antine

dIh
dt

= α Iv(H − Ih − Qh) − (θγ1 + (1 − θ)γ )Ih,

dQh

dt
= θγ1 Ih − γ2Qh,

dIv
dt

= β(Ih + (1 − σ)Qh)(V − Iv) − μIv.

(11)

4.1 Basic Reproduction Number

Again following the next generationmatrixmethod (van denDriessche andWatmough
2002), the linearization of (11) at the disease-free equilibrium E0 = (0, 0, 0) gives

F2 =
⎛
⎝ 0 0 αH

0 0 0
βV βV (1 − σ) 0

⎞
⎠ and V2 =

⎛
⎝θγ1 + (1 − θ)γ 0 0

−θγ1 γ2 0
0 0 μ

⎞
⎠ .

Then we define the basic reproduction number of model (11) as

R20 = ρ(F2V
−1
2 )=

√
αβHV (θγ1(1 − σ) + γ2)

μγ2(θγ1 + (1 − θ)γ )
=

√
(R20i )2 + (R20q)2

=
√

αV

θγ1 + (1 − θ)γ
· βH

μ
+ θγ1

θγ1 + (1 − θ)γ
· (1 − σ)αV

γ2
· βH

μ
,

whereR20i andR20q represent infections attributed to an infected person during non-
quarantined and quarantined stages, respectively. Note that R20 also depends on all
model parameters.

Theorem 5 For system (11), the disease-free equilibrium E0 is globally asymptotically
stable whenever R20 ≤ 1.
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Proof We can again obtain the local stability of E0 by using Theorem 2 in van den
Driessche and Watmough (2002). Consider a Lyapunov function

L2 = βV (θγ1(1 − σ) + γ2)Ih + βV (θγ1 + (1 − θ)γ )(1 − σ)Qh

+γ2(θγ1 + (1 − θ)γ )Iv

on Ω , then computing the derivative of L2 along solutions of system (11) gives

L ′
2 = βV (θγ1(1 − σ) + γ2)(α Iv(H − Ih − Qh) − (θγ1 + (1 − θ)γ )Ih)

+ βV (1 − σ)(θγ1 + (1 − θ)γ )(θγ1 Ih − γ2Qh)

+ γ2(θγ1 + (1 − θ)γ )(β(Ih + (1 − σ)Qh)(V − Iv) − μIv)

= αβV (θγ1(1 − σ) + γ2)(H − Ih − Qh)Iv − μγ2(θγ1 + (1 − θ)γ )Iv
− βγ2(θγ1 + (1 − θ)γ )(Ih + (1 − σ)Qh)Iv

≤ αβHV (θγ1(1 − σ) + γ2)Iv − μγ2(θγ1 + (1 − θ)γ )Iv

= 1

μγ2(θγ1 + (1 − θ)γ )
((R20)

2 − 1)Iv.

Denote the largest invariant set contained in {(Ih, Qh, Iv) ∈ Ω : L ′
2 = 0} by Γ2.

(i) R20 < 1. Then L ′
2 = 0 if and only if Iv = 0. Following from the first and second

equations of (11), we know Ih = 0 and Qh = 0, respectively. Thus Γ2 = {E0}.
(ii) R20 = 1. L ′

2 = 0 implies that Iv = 0 or Ih = Qh = 0. The first case can proceed
as before. For the second case, the third equation of (11) indicates that Iv = 0.
Hence Γ2 = {E0}.
According to LaSalle’s invariance principle, we find that the disease-free equilib-

rium of model (11) is globally asymptotically stable in Ω . ��

4.2 Endemic Equilibrium

Let E∗∗ = (I ∗∗
h , Q∗∗

h , I ∗∗
v ) denote the endemic equilibrium of model system (11). A

direct but tedious calculation gives

I ∗∗
h = μγ 2

2 (θγ1 + (1 − θ)γ )((R20)
2 − 1)

β(θγ1(1 − σ) + γ2)(αV (θγ1 + γ2) + γ2(θγ1 + (1 − θ)γ ))
,

Q∗∗
h = θγ1

γ2
I ∗∗
h ,

I ∗∗
v = βV (θγ1(1 − σ) + γ2)I ∗∗

h

β(θγ1(1 − σ) + γ2)I ∗∗
h + μγ2

.

Thus there exists a unique endemic equilibrium E∗∗ if and only ifR20 > 1.

Theorem 6 The endemic equilibrium E∗∗ ofmodel (11) is locally asymptotically stable
when it exists.
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Proof The Jacobian matrix of system (11) at the positive equilibrium E∗∗ =
(I ∗∗

h , Q∗∗
h , I ∗∗

v ) is

J (E∗∗)=
⎛
⎝−α I ∗∗

v − θγ1 − (1 − θ)γ −α I ∗∗
v αS∗∗

h
θγ1 −γ2 0
βS∗∗

v β(1 − σ)S∗∗
v −β

(
I ∗∗
h + (1 − σ)Q∗∗

h

) − μ

⎞
⎠ ,

where S∗∗
h = H− I ∗∗

h −Q∗∗
h and S∗∗

v = V − I ∗∗
v . The equilibrium equations of system

(11) are
α I ∗∗

v S∗∗
h = (θγ1 + (1 − θ)γ )I ∗∗

h ,

θγ1 I
∗∗
h = γ2Q

∗∗
h ,

β(I ∗∗
h + (1 − σ)Q∗∗

h )S∗∗
v = μI ∗∗

v ,

which imply that

αβ(θγ1(1 − σ) + γ2)S
∗∗
h S∗∗

v = μγ2(θγ1 + (1 − θ)γ ).

The matrix J (E∗∗) can be rewritten as

J (E∗∗) =

⎛
⎜⎜⎜⎜⎝

−(θγ1 + (1 − θ)γ )

(
1 + I ∗∗

h

S∗∗
h

)
−α I ∗∗

v αS∗∗
h

θγ1 −γ2 0

βS∗∗
v β(1 − σ)S∗∗

v −μ

(
1 + I ∗∗

v

S∗∗
v

)
⎞
⎟⎟⎟⎟⎠ .

The characteristic equation of J (E∗∗) is

P2(λ) = (λ + γ2)(λ
2 + b1λ + b0)

+ θγ1

(
α I ∗∗

v

(
λ + μ

(
1 + I ∗∗

v

S∗∗
v

))
− αβ(1 − σ)S∗∗

h S∗∗
v

)
= 0,

where

b1 = (θγ1 + (1 − θ)γ )

(
1 + I ∗∗

h

S∗∗
h

)
+ μ

(
1 + I ∗∗

v

S∗∗
v

)
> μ

(
1 + I ∗∗

v

S∗∗
v

)
,

b0 = μ(θγ1 + (1 − θ)γ )

(
1 + I ∗∗

h

S∗∗
h

) (
1 + I ∗∗

v

S∗∗
v

)
− αβS∗∗

h S∗∗
v

= μ(θγ1 + (1 − θ)γ )

((
1 + I ∗∗

h

S∗∗
h

) (
1 + I ∗∗

v

S∗∗
v

)
− γ2

θγ1(1 − σ) + γ2

)
> 0.

Expanding the characteristic polynomial P2(λ) yields

P2(λ) = λ3 + B2λ
2 + B1λ + B0 = 0,
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where

B2 = b1 + γ2 > 0,

B1 = b0 + b1γ2 + αθγ1 I
∗∗
v > 0,

B0 = b0γ2 + αθγ1

(
μI ∗∗

v

(
1 + I ∗∗

v

S∗∗
v

)
− β(1 − σ)S∗∗

h S∗∗
v

)

= μγ2(θγ1 + (1 − θ)γ )

(
1 + I ∗∗

h

S∗∗
h

) (
1 + I ∗∗

v

S∗∗
v

)
− αβγ2S

∗∗
h S∗∗

v

+ αθγ1

(
μI ∗∗

v

(
1 + I ∗∗

v

S∗∗
v

)
− β(1 − σ)S∗∗

h S∗∗
v

)

> μγ2(θγ1 + (1 − θ)γ )

(
1 + I ∗∗

h

S∗∗
h

) (
1 + I ∗∗

v

S∗∗
v

)
− αβ(θγ1(1 − σ) + γ2)S

∗∗
h S∗∗

v

= μγ2(θγ1 + (1 − θ)γ )

(
1 + I ∗∗

h

S∗∗
h

) (
1 + I ∗∗

v

S∗∗
v

)
− μγ2(θγ1 + (1 − θ)γ )

= μγ2(θγ1 + (1 − θ)γ )

((
1 + I ∗∗

h

S∗∗
h

) (
1 + I ∗∗

v

S∗∗
v

)
− 1

)
> 0

and
B1B2 − B0 = (b0 + b1γ2 + θαγ1 I

∗∗
v )(b1 + γ2) − b0γ2

− θγ1

(
αμI ∗∗

v

(
1 + I ∗∗

v

S∗∗
v

)
− αβ(1 − σ)S∗∗

h S∗∗
v

)

> b1θαγ1 I
∗∗
v − αμθγ1

(
1 + I ∗∗

v

S∗∗
v

)
I ∗∗
v

= θγ1α

(
b1 − μ

(
1 + I ∗∗

v

S∗∗
v

))
I ∗∗
v > 0.

The Routh–Hurwitz criterion implies that all eigenvalues of J (E∗∗) have negative real
parts and hence the endemic equilibrium E∗∗ is locally asymptotically stable. ��

Similar to the proof of Theorem 4, we can show that the disease persists for the
model with bilinear incidence provided that R20 > 1.

Theorem 7 If R20 > 1, then system (11) is uniformly persistent. That is, there exists
a positive constant η such that for all initial conditions x0 = (Ih(0), Qh(0), Iv(0)) ∈
Ω\{E0}, the solution of system (11), denoted by ψt (x0) = (Ih(t), Qh(t), Iv(t)), sat-
isfies

lim inf
t→∞ (Ih(t), Qh(t), Iv(t)) > (η, η, η).

Finally, we establish a sufficient condition under which all nontrivial solutions of
system (11) converge to the unique endemic equilibrium.
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Theorem 8 Assume that R20 > 1. If γ2 − αV + β(2 − σ)η > 0, then the unique
endemic equilibrium E∗∗ for system (11) is globally asymptotically stable inΩ\{E0}.
Proof We use the second additive compound matrix method developed by Li and
Muldowney (1996) to prove the global asymptotic stability of E∗∗. The domain Ω is
simply connected and E∗∗ is the unique equilibrium of system (11) in the interior of
Ω . It follows from the uniform persistence of system (11) that there exists a compact
absorbing set in Ω̊ . The second additive compound matrix of the Jacobian matrix of
system (11) is

J [2] =
⎛
⎝−α Iv − θγ1 − (1 − θ)γ − γ2 0 −α(H − Ih − Qh)

β(1 − σ)(V − Iv) J [2]
22 −α Iv

−β(V − Iv) θγ1 −β
(
Ih + (1 − σ)Qh

) − γ2 − μ

⎞
⎠ ,

where

J [2]
22 = −α Iv − β

(
Ih + (1 − σ)Qh

) − θγ1 − (1 − θ)γ − μ.

Choose a matrix function

A(Ih, Qh, Iv) = diag

{
1,

Ih
Iv

,
Ih
Iv

}
.

Let f denote the vector field described by (11) and A f be the matrix obtained by
replacing each entry of A by its derivative in the direction of f . Then

A f A
−1 = diag

{
0,

I ′
h

Ih
− I ′

v

Iv
,
I ′
h

Ih
− I ′

v

Iv

}
.

and the matrix B = A f A−1 + AJ [2]A−1 can be written in block form

B =
(
B11 B12
B21 B22

)
,

where

B11 = −α Iv − θγ1 − (1 − θ)γ − γ2, B12 =
(
0,−α(H − Ih − Qh)

Iv
Ih

)
,

B21 =
⎛
⎜⎝β(1 − σ)(V − Iv)

Ih
Iv

−β(V − Iv)
Ih
Iv

⎞
⎟⎠ , B22 =

⎛
⎝ I ′

h

Ih
− I ′

v

Iv
+ J [2]

22 −α Iv

θγ1 B22
22

⎞
⎠ ,

and

B22
22 = I ′

h

Ih
− I ′

v

Iv
− β

(
Ih + (1 − σ)Qh

) − γ2 − μ.
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The vector norm ‖ · ‖ in R3 ∼= R

(3
2

)
is chosen as

‖(u, v, w)‖ = sup{‖u‖, ‖v‖ + ‖w‖}.

The Lozinskiı̆ measure μ(B) with respect to ‖ · ‖ can be estimated as follows

μ(B) ≤ sup{g1, g2},

where

g1 = μ1(B11) + ‖B12‖ and g2 = ‖B21‖ + μ1(B22).

The terms ‖B12‖ and ‖B21‖ are matrix norms with respect to the l1 vector norm, and
μ1 denotes the Lozinskiı̆ measure with respect to the l1 vector norm. Furthermore, we
have

μ1(B11) = − α Iv − θγ1 − (1 − θ)γ − γ2,

‖B12‖ = α(H − Ih − Qh)
Iv
Ih

, ‖B21‖ = β(V − Iv)
Ih
Iv

,

μ1(B22) = I ′
h

Ih
− I ′

v

Iv
− β (Ih + (1 − σ) Qh) − μ

+ max{−α Iv − (1 − θ)γ, α Iv − γ2}.
Applying the first and third equations in (11), we have

g1 = I ′
h

Ih
− α Iv − γ2,

g2 = I ′
h

Ih
− β(1 − σ)Qh

V

Iv
− β Ih + max{−α Iv − (1 − θ)γ, α Iv − γ2}.

If κ = γ2 − αV + β(2 − σ)η > 0, then

1

t

∫ t

0

(
−β(1 − σ)Qh

V

Iv
− β Ih + α Iv − γ2

)
ds

≤ 1

t

∫ t

0
(−β(1 − σ)η − βη + αV − γ2) ds = −κ

and hence

1

t

∫ t

0
μ(B)ds ≤ 1

t

∫ t

0
sup{g1, g2}ds

≤ 1

t
ln

(
Ih(t)

Ih(0)

)
− min{κ, αη + γ2, αη + (1 − θ)γ } < 0,

as t → ∞, for all x0 = (Ih(0), Qh(0), Iv(0)) ∈ Ω̊ . This completes the proof. ��
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Fig. 3 Bifurcation diagram for the I∗h -component of the equilibrium solutions of model (6) versus the total
number of mosquitoes, V . The solid blue line indicates a stable equilibrium point while the red dashed line
represents an unstable equilibrium point (Color figure online)

5 Numerical Results

In this section, we numerically analyze the standard incidence malaria model (6) since
standard incidence rate is more frequently used in modeling mosquito-borne disease
transmission (Chamchod and Britton 2011; Chitnis et al. 2008; Ducrot et al. 2009;
Gao et al. 2014a; Hasibeder and Dye 1988; Ngwa and Shu 2000). The parameter
values are mainly chosen from Anderson and May (1991), Chitnis et al. (2008), Gao
et al. (2014a), Mandal et al. (2011), Mwanga et al. (2015) and the references cited
therein. The default time unit is day. Recall that the infectious period is assumed to be
unaffected by quarantine, i.e., γ −1

1 + γ −1
2 = γ −1.

Example 1 Backward bifurcation To illustrate the bifurcation analysis, we set the val-
ues of model parameters as follows:

a = 0.15, b = 0.32, c = 0.43, H = 10000, μ = 0.19,

γ = 1

55
, γ1 = 1

2
, γ2 = 1

53
, θ = 0.49, σ = 0.89,

and let the total mosquito population V vary from 30,000 to 70,000. The bifurcation
diagram of the component I ∗

h of the endemic equilibrium E∗ against V is shown
in Fig. 3. The model system (6) has two endemic equilibria when V is between
41,482 and 64,260: the equilibrium point with larger I ∗

h is locally asymptotically
stable while the equilibrium point with smaller I ∗

h is unstable. For example, if we
fix V at 50,000, then the corresponding basic reproduction number R10 equals 0.88
and there are two endemic equilibria E∗ ≈ (279, 3628, 1645) and (640, 8314, 8437).
Solution curves of Ih(t) under different initial values are illustrated in Fig. 4. It can
be seen that the disease dies out when the initial number of infections is small and the
disease persists when the initial number of infections is large. In other words, both
the threshold quantity R10 and the initial condition are important in determining the
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Fig. 4 Numerical solutions of system (6) with initial conditions a (Ih(0), Qh(0), Iv(0)) = (50, 20, 80)
and b (Ih(0), Qh(0), Iv(0)) = (2500, 200, 3000). The solution in a tends to the disease-free equilibrium,
but the solution in b approaches an endemic equilibrium (Color figure online)

outcome of disease transmission when backward bifurcation appears. The occurrence
of backward bifurcation means that reducing R10 to less than one cannot guarantee
disease elimination. Furthermore, within the parameter ranges in Table 1, we use
the Latin hypercube sampling (LHS) method to generate 105 random parameter sets
among which 508 scenarios exhibiting backward bifurcation. For these 508 scenarios,
we calculate the corresponding quarantine ratio θ̂ and find that the average quarantine
ratio is approximately 95% with the minimum of 69%. Moreover, if the quarantine is
perfect, i.e., σ = 1, then 5252 scenarios have backward bifurcation with the average
and minimum quarantine ratio being around 95% and 64%, respectively. In reality, it
is very difficult to achieve such a high quarantine ratio and hence backward bifurcation
is less likely to happen for model (6).

Example 2 Impact of quarantine on disease prevalence We consider model (6) with
the following baseline parameter setting:

a = 0.29, b = 0.1, c = 0.3, H = 10000, V = 20000, μ = 0.08,

γ = 1

20
, γ1 = 1

7
, γ2 =

(
1

γ
− 1

γ1

)−1

= 1

13
, θ = 0.2, σ = 0.27.

By keeping two of the three quarantine-related parameters θ, γ1 and σ fixed at the
baseline values and letting the remaining one vary over the range in Table 1, the
curves of the number of non-quarantined infectious humans, I ∗

h , quarantined infectious
humans, Q∗

h , and the total infectious humans, I ∗
h + Q∗

h , at the endemic equilibrium
E∗ versus γ1, θ and σ are plotted in Fig. 5. Both I ∗

h and I ∗
h + Q∗

h are monotone
decreasing with respect to all three parameters. However, Q∗

h decreases in terms of
σ but initially increases then decreases in terms of γ1 and θ . Overall, reducing the
bites on quarantined humans is the most crucial factor in accomplishing a successful
quarantine.

Example 3 Sensitivity analysisSensitivity index is ameasure of the changeof a variable
with a parameter in a system (Chitnis et al. 2008). The normalized forward sensitivity
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Fig. 5 Number of non-quarantined infectious humans, I∗h , quarantined infectious humans, Q∗
h , and the total

infectious humans, I∗h + Q∗
h , at the endemic equilibrium E∗ versus a per capita rate of transition from

symptom onset to quarantine γ1, b adjusted quarantine ratio θ , and c biting reduction ratio σ , respectively
(Color figure online)

index of the basic reproduction number R10 with respect to a parameter p is defined
as

Υ R10
p = ∂R10

∂ p
× p

R10
.

Direct calculations yield

Υ R10
a = 1, Υ

R10
b = Υ R10

c = Υ R10
m = 1

2
, Υ R10

μ = −1

2
,

Υ R10
γ = − (θγ1 + (1 − θ)γ )2 + θσ (γ (γ − 2γ1) − θ(γ − γ1)

2)

2(θγ1 + (1 − θ)γ )(γ + θ(1 − σ)(γ1 − γ ))
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(a) (b)

Fig. 6 Sensitivity indices (SI) and partial rank correlation coefficients (PRCC) ofR10 with respect tomodel
parameters for the standard incidence malaria model (6)

= −1

2
− Υ R10

γ1
> −1

2
,

Υ R10
γ1

= − θσγ γ1

2(θγ1 + (1 − θ)γ )(γ + θ(1 − σ)(γ1 − γ ))
> −1

2
,

Υ
R10
θ = − θσγ γ1

2(θγ1 + (1 − θ)γ )(θγ1(1 − σ) + γ2)
> −1

2
,

Υ R10
σ = − θσγ1

2(θγ1(1 − σ) + γ2)
.

Therefore, R10 is most sensitive to the regular mosquito biting rate a.
Choosing the same set of parameter values as in Example 2 except that a = 0.33 and

σ = 0.5, we use the above formulae to calculate their sensitivity indices (see Fig. 6a).
In this scenario,R10 ismost sensitive tomosquito biting rate, followed by transmission
probabilities, mosquito-to-human ratio, and mosquito mortality rate. Moreover, based
on the parameter ranges in Table 1, we generate 106 random parameter sets with
the LHS method and calculate the partial rank correlation coefficients for R10 to
model parameters (see Fig. 6b). Thus we can draw a similar conclusion through global
sensitivity analysis. It is worth mentioning that the biting reduction ratio, σ , is the
most sensitive parameter among the three quarantine-related parameters. Biologically
speaking, the quarantine effect on initial disease transmission is primarily determined
by the amplitude of reduction in mosquito bites.

6 Discussion

In this paper, we proposed a dynamic model for malaria transmission to investigate
the potential role of quarantine on malaria control and elimination. The human popu-
lation is divided into three classes: susceptible, infectious, and quarantined, while the
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mosquito population is divided into two classes: susceptible and infectious. We ana-
lyzed the dynamical behavior of the model in term of the basic reproduction number.
Specifically, for the model with standard incidence, we obtained a sufficient condition
for the global asymptotic stability of the disease-free equilibrium E0 and showed that
themodel can exhibit both forward and backward bifurcations atR10 = 1. In addition,
the disease is uniformly persistent and there exists a unique endemic equilibriumwhen
R10 > 1. In contrast, the model with bilinear incidence obeys the regular threshold
dynamics. Namely, ifR20 ≤ 1, then the disease dies out; ifR20 > 1, then the disease
persists and the unique endemic equilibrium is locally asymptotically stable. We also
used the second additive compound matrix method to establish the global stability of
the endemic equilibrium under certain condition. Finally, three numerical examples
on the standard incidence model were carried out to further explore the impact of
quarantine on malaria persistence and control. The first example confirmed the occur-
rence of backward bifurcation with biologically acceptable parameter settings. The
efficacies of the change in the three quarantine-related parameters, θ, γ1 and σ , on
reducing malaria cases were compared in the second example. In the last example, we
performed both local and global sensitivity analyses on the basic reproduction number
R10 and found that the most sensitive parameter is the mosquito biting rate. Results
suggest that the most important factor in achieving a successful quarantine for malaria
is to reduce the biting rate of the quarantined people other than to quarantine more
infected people at earlier infection stage. It is therefore very important to provide health
advice (e.g., wear protective clothing and stay in mosquito-free accommodation) and
essential supplies (e.g., insecticide-treated bed nets and mosquito repellent) to malaria
patients such that the possibility of exposure tomosquito bites is dramatically reduced.

The two malaria models with quarantine only differ in incidence rate, but their
dynamical behaviors can be substantially different, which highlights the importance
of choosing the right biting rate or incidence rate function in mathematical modeling
(Yang et al. 2017). Generally speaking, if the ratio of mosquitoes to humans is small,
then it is proper to choose the standard incidence. Otherwise, the bilinear or saturated
incidence rate is a preferred choice (Chitnis et al. 2006).Note that theRoss–Macdonald
model (1) exhibits the global threshold dynamics in terms of R0, so quarantine is a
new mechanism of backward bifurcation in mosquito-borne disease models (Gumel
2012). The quarantine strategy is traditionally used for controlling diseases that are
transmissible from human to human. We must address that quarantine is applicable
to the control and elimination of malaria only if a low transmission region with a
limited number of imported or autochthonous cases is concerned. For mosquito-borne
diseases, we quarantine suspected and confirmed cases not these who have contacts
with patients or have been exposed to malaria parasites with no symptoms. Moreover,
quarantine becomes more practical if fast, low-cost and highly sensitive diagnostic
kits for malaria are available.

To better evaluate the effect of quarantine for malaria control, we need to extend
the current model by incorporating more biological and epidemiological factors. For
example, the extrinsic incubation period in mosquitoes and intrinsic incubation period
in humans, seasonal fluctuations in the mosquito population, acquired immunity in
humans, differential susceptibility and infectivity of humans to malaria infection,
imperfect malaria vaccine, differences in attractiveness to mosquitoes, and spatial

123



47 Page 24 of 26 X. Jin et al.

heterogeneity. Quarantined people who receive better treatment and care may have
a shorter period of infectiousness or a lower parasitemia level. The use of quaran-
tine is less beneficial when there is a high proportion of asymptomatic or subclinical
infections. It is worth mentioning that modeling quarantine and/or isolation under
exponential distribution assumption (EDA) may result in biased outcomes in under-
standing dynamic behaviors and assessing controlmeasures (Feng et al. 2007).Models
that make no contradiction in terms of the basic reproduction number, endemic
equilibrium, infectious period and other epidemiological characteristics, but remain
mathematically tractable are most desirable. Non-exponential distribution assump-
tions such as gamma distribution assumption (GDA) may yield an improvement on
the model under EDA (Feng et al. 2007, 2016). The framework of the current work
can be adopted to the study of the prevention and control of other mosquito-borne or
vector-borne diseases, especially these having a relatively short infectious period.
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