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Abstract 
 
Amino acid insertions and deletions (indels) are among the most common protein mutations and 
necessitate changes to a protein’s backbone geometry. Examining how indels affect protein folding 
stability (and especially how indels can increase stability) can help reveal the role of backbone 
energetics on stability and introduce new protein engineering strategies. Tsuboyama et al. 
measured folding stability for 57,698 single amino acid insertion or deletion mutants in 405 small 
domains, and this analysis identified 103 stabilizing mutants (∆∆Gunfolding > 1 kcal/mol). Here, we 
use computational modeling to analyze structural and energetic changes for these stabilizing indel 
mutants. We find that stabilizing indel mutations tend to have local structural effects and that 
stabilizing deletions (but less so insertions) are often found in regions of high backbone strain. We 
also find that stabilizing indels are typically correctly classified as stabilizing by the Rosetta energy 
function (which explicitly models backbone energetics), but not by an inverse folding (ESM-IF)-
based analysis (Cagiada et al. 2024) which predicts absolute stability (∆Gunfolding).  
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Introduction 
 
Amino acid insertion and deletion (indel) mutations are among the most common sources of 
variation in proteins (1–3). Although the indel mutation rate varies by species and indel length (4, 
5), indel mutations are frequently implicated in diseases, such as the CFTR delF508 variant in 
cystic fibrosis (6) and the APP delE693 variant in Alzheimer’s disease (7–9). Unlike missense 
mutations, indels necessitate a change to a protein’s backbone, often causing more dramatic 
structural and energetic effects. While indel mutations are widely considered highly deleterious to 
protein folding and function (10–12), indels can also improve a protein’s activity and access 
sequence, structure, and functional space outside of the range allowed by point mutations (13–17).  
 
Despite the prevalence of indels and their potential to accelerate protein engineering, the 
biophysics of indels are rarely studied and remain challenging to predict. Large-scale experimental 
techniques of mutational effects such as deep mutational scanning (DMS) and multiplex assays of 
variant effect (MAVEs) have primarily focused on the systematic characterization of amino acid 
substitutions (18, 19), although some recent studies have included indels (8, 10, 16, 20–29). 
Smaller scale indel mutagenesis studies have shown that indels are typically highly deleterious 
(10, 21, 28) and are more tolerated in loops and termini compared to secondary structure elements 
such as ɑ-helices and β-strands (2, 10, 21, 26, 30). Although these studies provide important 
insights regarding indels, the energetic effects remain challenging to predict, in part due to few 
examples of tolerated indel mutations (31, 32). In 2024, Topolska et al. found that only 1% of indel 
mutants improved protein abundance compared to the wild-type protein (10). Moreover, in 2013 
Dagan et al. identified a six-residue deletion in human muscle acylphosphatase that stabilized the 
enzyme by 4.3 kcal/mol (33). While stabilizing indel mutations are exceedingly rare, 
understanding these mutations can reveal the role of backbone energetics in determining protein 
folding stability. This would allow us to predict biological variant effects and ultimately leverage 
indel mutagenesis for protein engineering. 
 
In 2023, Tsuboyama et al. measured the folding stabilities for thousands of small protein domains 
using their novel cDNA proteolysis method, including measurements for 57,698 single deletion 
and Ala or Gly insertion mutants (34). From these large-scale data, we identified 103 highly 
stabilizing indel mutations (ΔΔGunfolding > 1 kcal/mol) in both natural and de novo designed proteins 
and investigated the structural and energetic effects of these mutations using a combination of 
computational techniques. ColabFold modeling revealed that stabilizing indels had primarily local 
effects on protein structure, and Rosetta analysis indicated that stabilizing deletions, but less so 
insertions, are commonly found in regions of high backbone strain. We also found that the Rosetta 
energy function outperforms the Cagiada ESM-IF analysis (35) (which does not explicitly model 
backbone energetics) in successfully classifying these stabilizing mutants. Finally, we identify 
favorable indel mutations that are common throughout the WW domain and SH3 domain families 
and describe the energetic basis of these favorable mutations. Along with our findings, these 103 
stabilizing mutants can serve as an informative dataset to evaluate computational methods at 
predicting mutant effects on folding stability. 
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Results & Discussion  
 
We identified 103 stabilizing indels in both natural and designed domains 
 
Tsuboyama et al. used cDNA display proteolysis to measure the free energy of unfolding 
(∆Gunfolding) for hundreds of small protein domains, along with point mutations, glycine insertions, 
alanine insertions, and deletions at every position. For example, in the chromodomain of human 
chromobox protein homolog 7 (PDB ID: 2K1B, a component of the PRC1-like complex involved 
in regulating development (34, 36)), deleting any of the five residues highlighted in Figure 1A 
results in a more stable fold. Despite this example of highly stabilizing indel mutations, we find 
that indel mutations are typically more deleterious to a protein’s free energy of unfolding compared 
to substitution mutations (Fig. 1B). This result is consistent with current literature (10, 20). 
 
From a set of 57,698 indel mutants with high-quality stability measurements (34), we identified 
103 indels in 48 wild types that improved the wild-type protein’s global stability by at least 1 
kcal/mol (Fig. 1B). Over 80% of stabilizing indel mutations improve a protein’s stability by less 
than 2 kcal/mol, and there are only three occurrences of indel mutations causing an increase in 
stability greater than 3 kcal/mol (Fig. 1B). Although the proteolysis data indicate that these 
mutations are all stabilizing, the magnitude of the effects may be underestimated owing to the 
limited dynamic range of the cDNA display proteolysis assay (approximately 0-5 kcal/mol) (34). 
 
Stabilizing indels occur in a diverse set of natural and wild-type domains  
 
We identified stabilizing indel mutations across 48 wild-type proteins, including both naturally 
occurring and de novo designed small protein domains (Fig. 1C). More than 75% of wild-type 
proteins with at least one stabilizing indel mutation are natural domains, some of which have 
notable biological functions. One biologically relevant wild type is the CPH domain of human E3 
ubiquitin ligase HECTD1 (3DKM) which is stabilized by deletions in two unique positions (Fig. 
1 C, D). Overall, 25 wild-type domains are stabilized by more than one indel mutation. To 
understand the spatial relationship of stabilizing indels within one wild-type domain, we calculated 
the number of “distinct regions” in which stabilizing mutations were accommodated per wild type. 
We define a distinct region as an indel site with one or more residues separating the next mutation 
site of the same type (insertion or deletion). For proteins with more than one stabilizing indel 
mutation, these mutations tend to occur in adjacent regions in the protein. For example, the de 
novo triple helical bundle HHH_rd1_0598 is stabilized by consecutive insertions at positions 26 
(A or G), 27 (A or G), and 28 (A only, G marginally stabilized the protein by 0.3 kcal/mol) (Fig. 
1D).  More than 60% of wild-type domains with multiple stabilizing deletions and 75% with 
stabilizing insertions have only one distinct region which accommodates stabilizing indels. One 
exception is the G23A mutant of MTH693 (PDB ID: 2K5H, PFAM: NfeD) of the anaerobic 
archaeon M. thermoautotrophicum (mutations were tested in the G23A background because the 
wild-type domain is too stable for the cDNA display proteolysis assay). This domain is stabilized 
by four deletion mutations in three distinct regions. However, all four mutations are found in the 
same extended loop connecting the first and second β-strands (Fig. 1D). 
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Figure 1. A, (left) Deep mutational scanning stability results of 2K1B from the Tsuboyama et al. 
Mega-scale dataset and (right) 2K1B structure highlighting residues that stabilize the protein upon 
deletion. Boxes are colored by ∆Gunfolding, where red indicates a mutant more stable than the wild 
type and blue a mutant less stable. Five stabilizing deletions are highlighted with purple arrows on 
the heatmap, as well as on the wild-type 2K1B ColabFold model. B, (left) Distribution of 
∆∆Gunfolding for all indel and substitution mutants. The purple box includes the 103 stabilizing indel 
mutants. (right) Distribution of ∆∆Gunfolding values for stabilizing indel mutants. C, All stabilizing 
indels organized by their wild-type domains. Insertions are colored in orange and deletions in blue. 
D, Distribution of the number of distinct regions in a wild-type protein that accommodate a 
stabilizing indel for wild types with more than one insertion or deletion. Distinct regions are 
illustrated through ColabFold models of 2K5H_G23A (three distinct regions), HHH_rd1_0598 
(one distinct region), and 2KYB_K55A (two distinct regions).  
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Stabilizing indels cause minimal structural perturbations  
 
We used predicted models to examine the structural trends of stabilizing indel mutations. Mutant 
and wild-type structures were predicted using ColabFold (37) and the top-ranking model was 
selected for analysis. Most mutants (92/103) had high confidence predicted structures (average 
pLDDT > 85) that were similar to the wild-type domain (average Cα RMSD > 5 Å). Among the 
remaining structures, eight had low confidence predictions and three showed large structural 
differences compared to the wild-type sequences. Because machine learning-based structure 
predictions are especially likely to fail on protein variants and de novo designed proteins lacking 
sequence alignments, we focused our further analysis on the 92 domains with confident predictions 
that are similar to the wild-type domain. Using the Dssp algorithm to assign secondary structural 
elements, we found that approximately 55% of stabilizing insertions and deletions occurred in loop 
regions of the protein (Fig. 2A). This is consistent with previous literature indicating higher indel 
tolerance in unstructured protein regions including loops and termini (10, 21). Surprisingly, we 
also found more than 30% of stabilizing indels occur in the middle of helices and strands (Fig. 
2A).  
 
After removing wild type-mutant pairs with an average Cɑ RMSD greater than 5 Å, we 
characterized structural changes associated with stabilizing indel mutations. We find that 
stabilizing indels are predicted to cause minimal changes to the wild-type structure. We aligned 
ColabFold models of wild types and indel mutants using LovoAlign (38) and calculated the 
difference in each Cɑ position between the mutant and wild-type structures. More than 50% of 
wild-type-mutant pairs have two or fewer residues that changed position by more than 2.5Å, and 
approximately 90% had five or fewer residues that changed position by more than 2.5Å (Fig. 2B). 
Moreover, we observe that most large structural changes (Cɑ movement > 2.5Å) occur close in 
sequence to the stabilizing indel (Fig. 2C). In contrast, regions far from the mutation site typically 
are not predicted to undergo large structural changes (Fig. 2C).  
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Figure 2. A, (left) Stabilizing indel mutations by secondary structure assignment. The end of an 
α-helix or β-strand is defined as directly adjacent to a loop residue, and the middle regions 
represent mutations not at the ends of an α-helix or β-strand. For deletions, the secondary structure 
assignments are DSSP classifications of the deleted residue, whereas insertions are the DSSP 
classifications of the inserted residue. (right) An example of an α-middle insertion is shown 
through ColabFold models of wild-type protein r10_490_TrROS_Hall (gray) and mutant InsA33 
(teal). B, Distribution of the residues with Cα movement > 2.5 Å per mutated sequence for 92 wild 
type-mutant pairs modeled by ColabFold and aligned by LovoAlign. C, Distribution of Cα 
movement by separation in sequence from the site of indel mutation.  
 
Rosetta outperforms ESM-IF in predicting mutational effects of stabilizing indels  
 
We benchmarked two computational models, an ESM-IF-based analysis (35) and Rosetta (39, 40), 
at predicting the energetic effects of stabilizing indels. In 2024, Cagiada et. al developed an 
approach to predict stability (∆Gunfolding) based on sequence probabilities for a given backbone 
derived from the inverse folding model ESM-IF (35). First, we used the ESM-IF analysis to predict 
the ∆Gunfolding for each stabilizing indel mutant and its wild type. Then, we calculated the 
∆∆Gunfolding for each mutant-wild type, where a positive value indicates the indel mutant is 
predicted to be stabilizing. By experimental measurements, all 92 indel mutants examined here are 
stabilizing, so positive ∆∆Gunfolding values are correct classifications. However, the ESM-IF 
analysis only predicts stabilizing effects for approximately half of the mutants (Fig. 3A). In the 
original Cagiada et al. model, ∆Gunfolding values are calculated as proportional to the sum of 
likelihoods for each amino acid in the analysis, so the predictions systematically increase with 
protein length. We also tested whether normalizing the predictions by sequence length would 
improve the predictions, but saw only a minimal effect (Fig. 3A).  
 
We then used Rosetta, a physics- and knowledge-based model with a score function that explicitly 
calculates backbone energetics (40), to predict energetic changes for all 92 stabilizing indel 
mutants. We scored each protein with Rosetta and normalized total scores by protein length. For 
each predicted structure, we performed 20 relax runs using the Fast relax protocol. We calculated 
scores for each predicted structure by averaging individual score terms from the five lowest-
scoring (by total energy) relaxed structures and normalized protein-level scores by dividing the 
score terms by protein length. Then, we calculated the difference in normalized total energy 
between the wild type and the indel mutant. A negative difference in normalized total energy 
indicates the indel mutant is predicted to be more favorable than its wild type. Rosetta predicts 
stabilizing effects for approximately two-thirds of mutants (Fig. 3B). Rosetta predicts the 
mutational effects of both insertion and deletion mutations equally well when total scores are 
normalized by sequence length (Fig. 3B).  
 
Next, we investigated the agreement between Rosetta and ESM-IF predictions of changes in 
stability and their relationship to experimentally determined ∆∆Gunfolding values. Here, we compare 
ESM-IF ∆∆Gunfolding predictions to normalized Rosetta total scores because normalizing ESM-IF 
by sequence length had a minimal overall effect. Surprisingly, Rosetta and ESM-IF predictions 
showed only weak agreement (Pearson r = -0.23, Fig. 3C). We then divided all mutants into four 
categories according to whether they were predicted to be favorable by Rosetta, ESM-IF, neither, 
or both. We found that mutations favored by Rosetta alone were more experimentally stabilizing 
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than mutations favored by both Rosetta and ESM-IF, and mutations favored by ESM-IF alone 
showed the lowest experimental ∆∆G values (Fig. 3C-D). Overall, these results highlight the 
moderate accuracy of Rosetta at modeling mutations that alter backbone structure, and the 
limitations of inverse folding models at capturing the effects of insertions and deletions.  

 
Figure 3. A,  Distributions of unnormalized (left) and sequence length-normalized (right) 
∆∆Gunfolding values predicted by the Cagiada ESM-IF analysis. Positive (favorable) ∆∆G values 
indicate accurate classifications. B, Distributions of unnormalized (left) and sequence length-
normalized (right) Rosetta total score changes between indel mutant and wild type. Negative ∆ 
Total Energy scores indicate accurate classifications. C, Relationship between ∆∆Gunfolding 
predicted by the Cagiada ESM-IF and the changes in normalized Rosetta total score. Points are 
colored by agreement of the Cagiada ESM-IF analysis and Rosetta. D, Distributions of 
experimental ∆∆Gunfolding for different categories of mutations based on Rosetta and Cagiada ESM-
IF predictions. 
 
Stabilizing deletions (but not insertions) are often found in regions of backbone strain  
 
We sought to understand the energetic effects of stabilizing indels using the Rosetta score function. 
Because indel mutations necessitate a change to a protein’s backbone, we hypothesized that indel 
mutations would occur in wild-type domains with a high degree of backbone strain. Using Rosetta, 
we scored 48 wild-type domains with at least one stabilizing indel mutation as well as 356 other 
wild-type domains in the Tsuboyama et al. dataset (34). We then calculated a backbone score for 
each protein, consisting of the sum of the “rama_prepro” and “p_aa_pp” score terms normalized 
to the length of the protein. The “rama_prepro” term describes the probability of a residue’s torsion 
angles Φ, Ψ given the amino acid identity while “p_aa_pp” refers to the probability of the amino 
acid identity given its torsion angles Φ, Ψ (40). Combined, these terms capture the overall 
favorability of a protein’s torsion angles, where residues with unfavorable angles represent regions 
of backbone strain. A higher backbone score suggests a higher degree of backbone strain. We find 
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that wild-type proteins stabilized by indels do not have a higher degree of backbone strain than 
wild-type proteins not stabilized by indels (mean difference 0.0024 ± 0.027 (95CI computed by 
bootstrapping) Rosetta Energy Units (REU) per residue, Fig. 4A).  
 
Although wild-type domains stabilized by indels were not considerably more strained than other 
wild-type domains, we suspected that stabilizing indels occur in regions of high local backbone 
strain. First, we investigated if sites of favorable deletions had high degrees of backbone strain in 
the wild type. Using our set of wild-type domains with at least one stabilizing indel, we calculated 
a per-residue backbone score (rama_prepro + p_aa_pp). We compared backbone scores at sites 
with favorable deletions to backbone scores at all other sites in the set of 48 wild-type domains 
with at least one stabilizing indel mutation. On average, deleted residues were 0.33 ± 0.14 (95CI) 
REU more strained than other residues. (Fig. 4B). Strand and loop residues showed the largest 
strain; favorably deleted strand residues were 0.50 ± 0.24 (95 CI) REU more strained than other 
strand residues, and favorably deleted loop residues were 0.34 ± 0.18 (95CI) REU more strained 
than other loop residues (Fig. 4B). However, favorably deleted helix residues showed nearly no 
difference in strain (average backbone score difference of 0.11 +/- 0.35 (95CI) REU).  
 
Next, we investigated if stabilizing insertions occurred at strained sites in the wild-type protein. 
Here, we defined the stabilizing insertion site as the two residues in the wild-type protein that flank 
the inserted residue in the indel mutant. To understand if sites of stabilizing insertions are more 
strained than other protein sites, we compared the backbone scores of stabilizing insertion sites to 
all other sites in the 48 wild-type proteins with at least one stabilizing indel. On average, we find 
that sites of stabilizing insertions show no difference in strain compared to other sites (average 
backbone score difference of 0.0024 ± 0.18 (95 CI) REU) (Fig. 4C). Although stabilizing insertion 
sites are not more strained than other sites, we find that stabilizing insertions tend to occur in 
strained strands. On average, strand sites with stabilizing insertions were 0.20 ± 0.16 (95CI) REU 
more strained than other strand sites. In contrast, helix and loop sites with stabilizing insertions 
were not more strained than other sites, with average backbone score differences of 0.0045 ± 0.19 
(95CI) REU and -0.020 ± 0.24 (95CI) REU, respectively (Fig. 4C).  
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Figure 4. A, (left) Distributions of normalized Rosetta backbone scores for wild types stabilized 
by all indels (green), insertions (orange), deletions (blue), and all other wild-type proteins not 
stabilized by indels. (right) Comparison of normalized Rosetta backbone scores for wild types 
stabilized by indels and all other wild types. B, (left) Distributions of Rosetta backbone scores in 
the wild-type structure for deleted residues (orange) and other residues (blue) in 48 wild types 
stabilized by at least one indel mutation. (right) Rosetta backbone scores for deleted and other 
residues by secondary structure assignment. C, (left) Distributions of Rosetta backbone scores in 
the wild-type structure for sites of stabilizing insertions (the two residues flanking the insertion 
site, orange) and other residues (blue) in 48 wild types stabilized by at least one indel mutation. 
(right) Rosetta backbone scores for sites of stabilizing insertions and other residues by secondary 
structure assignment.  
 
Pin1 WW domain is stabilized by loop deletions  
 
The Pin1 WW domain illustrates how deletions can stabilize a domain by relieving backbone 
strain. Pin1 is a peptidyl-prolyl isomerase that isomerizes the phosphorylated Serine/Threonine-
Proline (pSer/Thr-Pro) motif and is involved in numerous essential cellular processes, including 
cell division and differentiation (41). The WW domain of Pin1 is frequently used as a model 
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system in protein folding studies (42–45), including in early mutational scanning experiments 
aimed at understanding stability (46). Our analysis identified deletions in Loop 1 of the Pin1 WW 
domain that are consistently stabilizing across four wild-type background variants (Fig. 5A, B). 
This loop plays a functional role in the WW domain by binding to a phosphorylated substrate (47–
49), which may explain the selection for the wild-type sequence over the stabilized deletion 
variants. Notably, one of the variants identified by cDNA display proteolysis (delR12) was 
previously purified and found to increase the stability of the Pin1 WW domain by 1.0 kcal/mol 
(42). This supports the reliability of the cDNA display proteolysis data, which measured a 1.2 
kcal/mol increase in stability. 
 
To understand why deletions in Loop 1 stabilize this domain, we analyzed the individual energy 
terms of the Rosetta energy function. As before, we examined the backbone energy at each position 
and found that the stabilizing deletions are located in the most strained region of the wild-type 
domain. For example, S16 has the second-highest backbone score of all residues in the Pin1 WW 
domain (Fig. 5C). In the 2KCF_delS16 mutant, we observe a decrease in backbone score in 
neighboring residues S15 and S13, suggesting that deleting S16 both eliminates a strained residue 
and alleviates strain in nearby loop residues (Fig. 5C). On the domain level, Rosetta predicts the 
deletion mutant to be more favorable than the wild type, and the driving contributors are decreased 
backbone strain and increased electrostatic interactions (Fig. 5D). There are also smaller energetic 
contributions from changes in hydrogen bonding, Van der Waals forces, and side chain 
conformations (Fig. 5D). A previous analysis of mutations in Loop 1 noted that the wild-type loop 
structure (a type-II four-residue turn) is relatively rare, and that deletions can lead to the formation 
of a more common type-I G1 bulge turn, which is the main Loop 1 conformation in the WW 
domain family (42) 

 
Figure 5. A, ColabFold models of four Pin1 WW domain wild-type background variants 2M9I, 
2M8I, 1I6C, and 2KCF, as well as deletion mutant DelS16 2KCF. B, Experimental ∆∆Gunfolding 
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values for five corresponding deleted residues in 2M9I, 2M8I, 1I6C, and 2KCF. Residue 
numbering in 2KCF is used as a reference. C, Per-residue backbone score profiles for 2KCF and 
deletion mutant DelS16 2KCF. Residues 12-16 of 2KCF are highlighted in pink. D, Normalized 
changes in Rosetta score terms between deletion mutant 2KCF DelS16 and wild-type 2KCF.  
 
Gly and Ala insertions can have different effects on protein stability 
 
To better understand how Ala and Gly insertions differentially stabilize domains, we analyzed the 
effects of inserting either residue at 36 sites stabilized by an insertion. We found that Gly is nearly 
always tolerated at sites that are stabilized by an Ala insertion (∆∆G > 0 kcal/mol), but Ala is often 
destabilizing at sites stabilized by a Gly insertion (Fig. 6A). The greater favorability and 
tolerability of Gly may originate from its greater conformational flexibility. At sites with 
stabilizing Ala insertions, ColabFold’s predicted structures typically model inserted Ala and Gly 
residue in the same region of the Ramachandran map (16/18 sites in the same ABEGO bin, Fig. 
6A) (50). However, at sites stabilized by Gly insertions where Ala insertions do not meet our 
stabilizing threshold, ColabFold typically models Ala and Gly insertions to fall in different regions 
of the Ramachandran map (11/18 sites in different ABEGO bins, Fig. 6A). The group of sites 
stabilized by Ala insertions has a significantly higher proportion of ABEGO agreement between 
predicted Ala and Gly insertion conformations compared to sites only stabilized by Gly (Fisher’s 
exact test p = 0.0045). For sites stabilized by Gly insertions where Ala and Gly insertions have 
different predicted ABEGO classifications, ColabFold primarily models the Gly conformation to 
be in the G region (10/11 sites in different ABEGO bins where the Gly conformation is G). This 
suggests that our observed differences between Ala and Gly insertions owe to Glycine’s ability to 
adopt a greater range of backbone conformations.  
 
The ɑ-spectrin SH3 domain A56S mutant (PDB ID: 2CDT) illustrates how Gly insertions can 
stabilize a domain when Ala insertions are not tolerated. ɑ-spectrin is a scaffold protein involved 
in crosslinking the plasma membrane to the actin cytoskeleton and is comprised of multiple 
modular protein domains, including a highly conserved SRC Homology 3 (SH3) domain (51). The 
A56S mutant of this domain was previously studied to understand the folding stability of the 
domain (52). We refer to this mutant as the “wild type” because this sequence was used as the 
background for the deep mutational scan in the Tsuboyama et al. dataset (Fig. 6B). This domain is 
stabilized by the InsG43 mutation (∆∆GGly = 1.0 kcal/mol), but is destabilized by an Alanine 
insertion in the same position (∆∆GAla = -1.2 kcal/mol) (Fig 6A, yellow circle). The stabilizing 
effect of the InsG43 mutant may owe to that mutant’s ability to relieve the strain on N41 and D42. 
In the wild-type sequence, N41 and D42 are located in the positive phi (G) region of the 
Ramachandran map, which is unfavorable (Fig. 6C). The Gly43 insertion (but not the Ala43 
insertion) is predicted to shift these residues to the more favorable negative phi region. This is 
made possible by the inserted Gly43 adopting a positive phi angle (G region), which is not 
predicted for an inserted Ala43 residue.  
 
Although these predicted changes in backbone geometry may explain the differing effects of 
InsG43 and InsA43, Rosetta’s physics-based model offers a different explanation. Rosetta 
correctly predicts the InsG43 mutant to be more favorable (by total score) than the wild type, and 
the InsA43 mutant to be less favorable than the wild type (Fig. 6D). In analyzing the per-residue 
backbone scores for InsG43, InsA43, and the wild type, we see that Rosetta strongly prefers an 
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inserted glycine in position 43 compared to alanine (Fig. 6E). However, N41 becomes more 
unfavorable in the InsG43 mutant compared to the wild type and InsA43 mutant in backbone score 
(Fig. 6E). Despite this, Rosetta favors InsG43 due to a combination of more favorable side chain 
conformations and interactions, instead of a change in backbone strain (Fig. 6F).  This highlights 
the complexity of interpreting and predicting changes in protein energetics resulting from indel 
mutations. While some indels likely increase folding stability by relieving backbone strain (as 
suggested in the Pin1 WW domain), the case of the α-spectrin SH3 domain illustrates that the 
energetic effects of stabilizing indels cannot solely be explained by backbone strain.  

 
Figure 6. A, Relationship between ∆∆Gunfolding of alanine and glycine insertions for 36 sites 
stabilized by at least one insertion. Points are colored by ABEGO agreement between the alanine 
and glycine insertions in the ColabFold modeled structures. Yellow circle highlights alanine and 
glycine insertions at position 43 in A56S α-spectrin (2CDT). B, ColabFold models of A56S α-
spectrin (2CDT) and insertion mutants InsG43 and InsA43. C, Ramachandran maps of 2CDT and 
insertion mutants InsG43 and InsA43. Residues N41, D42, A43, and G43 are represented as stars. 
D, Mean normalized Rosetta total scores for the five lowest-scoring relaxed structures of 2CDT, 
InsG43, and InsA43. E, Per-residue backbone score profiles for 2CDT, InsG43, and InsA43. 
Residue 43 is highlighted in yellow. F, Normalized changes in Rosetta score terms between 
insertion mutant InsG43 and wild-type 2CDT. The normalized change in Rosetta total score 
between 2CDT and InsG43 is shown by the vertical dashed blue line.  
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Conclusions  
 
We analyzed structural and energetic changes for 103 stabilizing insertion and deletion mutations 
to understand how indels can increase stability and reveal the role of backbone energetics on global 
stability. We found that stabilizing indel mutations tend to have minimal structural perturbations 
and are frequently found in loops, but can also be found in secondary structure elements as well. 
Stabilizing indels are typically correctly classified as stabilizing by the Rosetta energy function, 
but not by the Cagiada et al. model based on ESM-IF (35). Unlike ESM-IF, Rosetta explicitly 
calculates this backbone strain, which may explain why Rosetta is more successful at classifying 
stabilizing indel variants. Using the Rosetta energy function, we discovered that stabilizing 
insertions and deletions are often found in regions of high backbone strain. Finally, we examined 
two case studies of stabilizing indel mutations: the Pin1 WW domain and the ɑ-spectrin SH3 
domain.  
 
Our analysis has several limitations. First, the structures of our indel mutants and wild-type 
domains were predicted using ColabFold, which is informed by evolutionary information of the 
sequence. These predictions may not correctly model sequence variants or proteins with little to 
no evolutionary information. Second, we only evaluated Rosetta and the ESM-IF-based model at 
predicting the mutational effects of stabilizing indels. Whereas we found that Rosetta had fewer 
“false negatives” (i.e. predicting stabilizing indels as destabilizing), both Rosetta and ESM-IF may 
predict “false positives” (predicting destabilizing indels as stabilizing). Third, our backbone strain 
calculations are based on static models that we assume represent energy minima, and our analysis 
does not consider the full conformational ensembles of these domains. Finally, although we 
primarily focus on backbone strain, indels affect protein energetics in complex ways, as illustrated 
by the ɑ-spectrin SH3 domain. In particular, indels of varying lengths and insertions of amino 
acids other than alanine or glycine may affect protein energetics differently from our results.  
 
Indels can improve a protein’s folding stability by favorably changing its backbone geometry. We 
find that Rosetta more accurately predicts the mutational effects of stabilizing indels than the ESM-
IF analysis. However, Rosetta only correctly classified approximately two-thirds of stabilizing 
mutants, highlighting the need for more accurate models in predicting ∆G and ∆∆G. Because 
stabilizing indels are rare and necessitate changes to backbone geometry, these mutations serve as 
challenging test cases for prediction models. These mutations reveal the limitations of current 
methods and can be used to benchmark future methods. By collecting more data about the 
mutational effects of indels, and developing better predictive models, we can better leverage these 
mutations in protein design efforts.  
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.18.629072doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.18.629072
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgments 
We thank Állan Ferrari for helpful discussions and technical support using LovoAlign and Rosetta. 
We are grateful to members of the Rocklin Lab for their comments and suggestions on this 
manuscript. This research was supported in part through the computational resources and staff 
contributions provided for the Quest high performance computing facility at Northwestern 
University which is jointly supported by the Office of the Provost, the Office for Research, and 
Northwestern University Information Technology. Y.M.G was supported by the Chemistry of Life 
Processes CAURS Undergraduate Research Award and is currently supported by the Shurl and 
Kay Curci Foundation PhD Scholarship. G.J.R. acknowledges support from the National Institutes 
of Health under award number DP2GM140927. 
 
Methods  
 
Dataset 
The Mega-Scale dataset from Tsuboyama et al., 2023 was downloaded from the April 2023 
updated release on Zenodo (https://zenodo.org/records/7992926). We used Dataset 3, which 
reports 607,839 stability measurements of 412 wild-type domains. Unreliable ∆G entries, marked 
with ‘-’, were removed, resulting in a dataset of 57,698 high-quality measurements of single amino 
acid insertion and deletion mutants (indels) of 405 wild types. Seven domains had no indel mutants 
with reliable ∆G entries. From this filtered dataset of indels, 108 stabilizing mutants (∆∆G > 1 
kcal/mol) were selected. Five stabilizing deletion mutants (EHEE_rd1_0101_delR38, 
EHEE_rd1_0101_delR39, EHEE_rd1_0407_delD40, 1SF0_V59K_delK59, and 
1SF0_V59K_delP63) were removed because nearly any substitution or indel mutation at these 
sites was stabilizing, suggesting the improved stability was an artifact of changing a protease 
cleavage site. This filtering yielded a final dataset of 103 stabilizing indel mutants of 48 wild types.  
 
Structure Prediction 
Mutant and wild-type structures were predicted using ColabFold. We ran ColabFold using default 
parameters and selected the top-ranking (lowest average pLDDT) model for analysis. We did not 
generate multiple sequence alignments (MSAs) for designed sequences. Stabilizing mutant and 
wild-type structures with an average pLDDT < 85 and RMSD > 5 Å were excluded from structural 
and energetic analyses, yielding a final set of 92 indel mutants for structural and energetic analyses.  
 
Structural Analysis  
 
The secondary structure of inserted and deleted residues was determined using the Dssp module 
in PyRosetta.  
  
Stabilizing indel mutants and corresponding wild-type predicted structures were aligned using 
LovoAlign (https://m3g.github.io/lovoalign/).  
 
Energetic Analysis  
 
Stability Predictions using the Cagiada ESM-IF Analysis 
92 indel and wild-type ColabFold models were evaluated using the Cagiada ESM-IF analysis 
(https://github.com/KULL-Centre/_2024_cagiada_stability/). Absolute stability predictions 
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(∆Gunfolding) were made using ESM-IF for the indel mutants and wild types. Stability predictions 
were normalized by protein length to account for the length dependence of the Cagiada ESM-IF 
analysis.  
 
Rosetta Scoring 
Predicted structures were relaxed and scored using the Rosetta Fast Relax protocol. 20 relax runs 
were performed for each predicted structure. Scores for each predicted structure were calculated 
by averaging individual score terms from the five lowest-scoring (by total energy) relaxed 
structures. Rosetta protein-level scores were normalized by dividing by protein length. 
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