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Abstract

The importance of the N-terminal region (NTR) in the oligomerization and chaperone-like

activity of the Drosophila melanogaster small nuclear heat shock protein DmHsp27 was

investigated by mutagenesis using size exclusion chromatography and native gel electro-

phoresis. Mutation of two sites of phosphorylation in the N-terminal region, S58 and S75, did

not affect the oligomerization equilibrium or the intracellular localization of DmHsp27 when

transfected into mammalian cells. Deletion or mutation of specific residues within the NTR

region delineated a motif (FGFG) important for the oligomeric structure and chaperone-like

activity of this sHsp. While deletion of the full N-terminal region, resulted in total loss of chap-

erone-like activity, removal of the (FGFG) at position 29 to 32 or single mutation of F29A/Y,

G30R and G32R enhanced oligomerization and chaperoning capacity under non-heat

shock conditions in the insulin assay suggesting the importance of this site for chaperone

activity. Unlike mammalian sHsps DmHsp27 heat activation leads to enhanced association

of oligomers to form large structures of approximately 1100 kDa. A new mechanism of ther-

mal activation for DmHsp27 is presented.

Introduction

The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress

proteins found in all domains of life [1–5]. They are up-regulated in response to a variety of

stresses that negatively impact protein homeostasis. sHsps have a low molecular weight in the

range of 12–43 kDa and are able to form large oligomeric complexes with very dynamic qua-

ternary structure [6–10].

Small Hsps contain a tripartite architecture composed of a conserved α-crystallin domain

(ACD) flanked by variable N-terminal region (NTR) and C-terminal extension (CTE) [11–

13]. The NTR is highly variable in length and composition and has been partially modeled;

it does not show continuous electron density suggesting a certain level of structural disorder
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[6–8, 14, 15]. Indeed predictions suggest that the NTR contains some sequence bias common

for intrinsically disordered proteins [16]. In vertebrate and plant sHsps this region has previ-

ously been described as a determinant of chaperone activity, substrate specificity and is essen-

tial for assembly of the higher order oligomers. [17–20]. The lack of sequence conservation

and structure of the NTR in sHsps gives rise to the question as to whether it has a conserved

functional role [21].

Phosphorylation of human sHsps has been reported to regulate their structure and function

[22–27]. These sites of phosphorylation are located in the NTR suggesting that the phosphory-

lation primarily affects N-terminal contacts in the oligomer [20, 24]. Non-mammalian sHsps

can also be phosphorylated: phosphorylated species of Drosophila melanogaster DmHsp27,

DmHsp26, CG14207, maize Hsp22 and yeast Hsp26 have been described [28–32]. However,

we ignore the phosphorylation effect of non-mammalian sHsps on their structure and activity

[11].

Drosophila melanogaster Hsp27 (DmHsp27) is a nuclear-localized sHsp [33–35]. In addition

to its up-regulation in response to stress, DmHsp27 also shows tissue- and stage-specific expres-

sion patterns during development [36]. We previously showed that, unlike metazoan sHsps,

DmHsp27 forms two populations of large oligomers (725 and 540 kDa) that are able to prevent

substrate aggregation [35]. Here we investigate the importance of the NTR in DmHsp27. We

show that, unlike mammalian sHsps, phosphorylation of N-terminal serines in DmHsp27 does

not affect the oligomeric state nor the intracellular localization of the protein.

In addition to phosphorylation sites, the NTR contains some sequences that are conserved.

Deletion of a conserved FGFG motif (position F29 to G32) results in formation of large oligo-

mers and an increase in chaperone-like activity at non-stress (non-activating) temperature

using insulin as a chaperone assay. We further determined the effects of single point mutations

within the FGFG motif on oligomeric structure and chaperone-like activity. Mutation of phe-

nylalanine 29 to an alanine or tyrosine (F29A or F29Y) and glycine 30 or 32 to arginine (G30R

or G32R) affects oligomerization and display a better chaperone-like activity than the wild-type

protein in non-heat shock condition using insulin. Surprisingly, heat activation of DmHsp27

leads to enhanced association to form large size oligomers of approximately 1100 kDa suggest a

new mechanism of thermal activation for DmHsp27.

Results

Effect of Serine phosphorylation on oligomeric structure and localization

of DmHsp27

The NTR of vertebrate and plant sHsps has previously been described as a determinant of

chaperoning activity and substrate specificity [17, 18]. At least, in vertebrate sHsps, post-transla-

tional modifications such as phosphorylation of serine residues found in the NTR are believed to

affect the association/dissociation equilibrium of sHsps oligomers and lead to chaperone function

activation [23, 37–39].

DmHsp27 is present in up to four isoforms according to the tissue and developmental stage

[40]. It has been reported to be phosphorylated at NTR on at least two serines (S58 and S75)

[30–32]. Whether serine phosphorylation affects the structure of DmHsp27 is an open issue.

To study the effect of serine phosphorylation on the oligomeric structure and localization of

DmHsp27, we constructed phosphomimetic and nonphosphorylatable mutants. To mimic

phosphorylation serine (S) residues (S58 and/or S75) were substituted by aspartic acid (D)

(S58D, S75D and S58/75D). To block phosphorylation, serine (S) residues (S58 and/or S75)

were substituted by nonphosphorylatable alanine (A) (S58A, S75A and S58/75A). The migra-

tion profile of DmHsp27, phosphomimetic and nonphosphorylatable mutants on native gels

The N-terminal region of nuclear DmHsp27
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was compared. As reported previously [35], DmHsp27 forms two populations of oligomers

with apparent molecular weight of 725 and 540 kDa. Phosphomimetic and nonphosphorylata-

ble mutants showed the same populations as wild type DmHsp27 with a light shift for phos-

phomimetic mutants due to the negative charge of aspartic acid (D) (Fig 1A). All mutated

constructs demonstrated the equivalent chaperone-like activity to the wild type protein with

different substrates (Fig 1B and 1C).

It has been reported that phosphorylation of human HspB1 and HspB5 is a mechanism for

nuclear localization in unstressed cells [41]. The role of post-translational modifications on the

cellular localization of DmHsp27 was therefore examined by immunofluorescence after transfec-

tion in HeLa cells. As previously reported [34, 35, 42], phosphomimetic and nonphosphorylata-

ble mutants of DmHsp27 showed a nuclear localization and association with nuclear speckles

similar to the wild type protein. (Fig 1D). These results signify that unlike vertebrate/mammalian

sHsps, the two sites of phosphorylation S58 and S75 do not affect the oligomerization equilib-

rium nor the intracellular localization of DmHsp27.

Further characterization of NTR in DmHsp27

The N-terminal region of sHsps is generally considered as being poorly conserved at the

sequence level. Alignment of NTR of DmHsp27 with some human, murine, fish and Methano-
coccus sHsps shows high conservation of two residues (F29 and G30 in DmHsp27) (Fig 2A).

We next examined the effect of these conserved residues within the NTR on the oligomeric

structure and localization of DmHsp27. A deletion of the first 86 amino acids of the N-Termi-

nal region (Del_Nter), had a striking effect on the oligomeric equilibrium, which showed a

wide band (from 480 to 146 kDa) and one extra band in the region of dimer (Fig 3A). This

mutant failed to prevent heat-induced aggregation of luciferase (Luc) (Fig 3B), citrate synthase

(CS) (Fig 3D), L-malate dehydrogenase (MDH), (Fig 3E) and DTT-induced aggregation of

insulin (Fig 3C). Accordingly, the NTR of DmHsp27, as seen in other sHsps, is essential for

oligomerization and chaperone activity at least for the substrates tested.

To further investigate residues that are important for the oligomeric structure and the chap-

erone-like activity of DmHsp27, we used blast similarity of NTR-DmHsp27. The obtained

sequences all belong to insect sHsps. Alignment of these sequences helped to delineate a con-

served sequence motif (FGXG) from phenylalanine 29 to glycine 32 in DmHsp27 (Fig 2B).

Analysis of a deletion construct eliminating these four residues (del_FGFG) on a native gel,

showed that the absence of this region affected the oligomeric equilibrium forming consider-

ably large oligomers (Fig 3A). The same construct prevented heat aggregation of Luc, CS and

MDH efficiently as DmHsp27 wild type (Fig 3B, 3D and 3E). Surprisingly, in non-heat condi-

tion when using insulin as a substrate, the del_FGFG construct was more efficient in preven-

tion of DTT-induced aggregation of insulin than the WT protein (Fig 3C).

Dissecting the FGFG (29–32) motif

Since deletion of residues FGFG (29–32) induces formation of a large oligomer, we investi-

gated this region more carefully using single point mutations. Specifically, we focused on F29

(present in all sequences examined) and F31 (less conserved), two residues with large side

chains. Phenylalanine in both positions was mutated to an alanine, a smaller amino acid

(F29A and F31A), or to an amino acid (tyrosine) that mimicked the size of the original amino

acid but altered the hydrophobicity (F29Y and F31Y). The highly conserved glycines G30 and

G32 were mutated to alanine (G30A and G32A) and to a positively charged larger amino acid

arginine (G30R and G32R). Mutations in F31 (F31A and F31Y) (Fig 4A) or in G30 and G32

(G30A and G32A) (Fig 4B) had no effect on oligomerization as shown by the presence of two

The N-terminal region of nuclear DmHsp27
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bands like wild type DmHsp27. However, F29A, F29Y, G30R and G32R showed dramatic

changes in oligomeric size as seen for deletion FGFG (29–32) (Fig 4A and 4B).

Fig 1. Phosphorylation effect on oligomerization and localization of DmHsp27. A- Native gradient (4–12%) polyacrylamide gel electrophoresis of recombi-

nant DmHsp27 wild-type, phosphomimetic and nonphosphorylatable serine mutants. Positions of protein markers with molecular weights are shown on the left. B

and C- Preventing aggregation of luciferase and insulin using phosphomimetic and nonphosphorylatable mutants. Data are representative of three independent

experiments with error bars corresponding to the standard error of the mean. D- Intracellular localization of DmHSP27 and its phosphomimetic and nonphos-

phorylatable mutants in transfected Hela cells. Forty-eight hours post-transfection, HeLa cells were fixed, permeabilized, and processed for immunofluorescence

using antibodies against DmHsp27 (green). Nuclei were counterstained with DAPI. Scale bar is 10 μm.

https://doi.org/10.1371/journal.pone.0177821.g001

The N-terminal region of nuclear DmHsp27

PLOS ONE | https://doi.org/10.1371/journal.pone.0177821 May 16, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0177821.g001
https://doi.org/10.1371/journal.pone.0177821


Fig 2. Sequence analysis of the N-terminal region of different sHsp. The alignment was made using Muscle [79]. The

conserved residues are darkly highlighted in the alignment. A- Multiple sequence alignment of the NTR of DmHsp27 with l

The N-terminal region of nuclear DmHsp27

PLOS ONE | https://doi.org/10.1371/journal.pone.0177821 May 16, 2017 5 / 19

https://doi.org/10.1371/journal.pone.0177821


The size estimation by native gel electrophoresis was confirmed using SEC for DmHsp27,

F29A, F29Y, G30R and G32R mutants. As seen in Fig 5, the profile of DmHsp27F29A on

Superose 6 gave two peaks (Fig 5A). The first one eluted at 13 ml and corresponded to a molec-

ular mass of 800 kDa while the second one eluted at 14.6 ml and had a molecular mass of 540

kDa. For this mutant we noted that the peak #1 corresponding to 800 kDa was more abundant

than the peak #2 of 540 kDa. For DmHsp27F29Y the profile on Superpose 6 shows one peak

eluted at 13 ml (800 kDa) and a shoulder after the main peak at 14 ml (Fig 5B). While the

R30G and R32G mutants show a single peak at 11ml corresponding to 1100 kDa (Fig 5C and

5D).

(2)efl from Drosophila melanogaster, human (HspB1, HspB4, HspB5 and HspB6), Mouse (CryAA and CryAB), zebrafish

(CryAA_DANRE and CryAB_DANRE) and Methanococcus maripaludis C6 (Hsp20_METM6). B- Multiple sequence

alignment of the NTR of sHsps obtained using blast similarity of NTR-DmHsp27. Sequence from Drosophila melqnogas-

ter_Hsp27, Drosophila simulans_Hsp27, Drosophila yakuba_Hsp27, Drosophila erecta_Hsp27, Drosophila ananas-

sae_Hsp27, Drosophila persimilis_Hsp27, Drosophila willistoni_Hsp27, Dosophila albomicans_Hsp27, Drosophila

busckii_Hsp27, Drosophila buzzatii_Hsp27, Drosophila sulfurigaster-albostrigata_Hsp27, Drosophila virilis_Hsp27,

Drosophila mojavensis_Hsp27, Drosophila grimshawi_Hsp27, Drosophila repletoides_Hsp27, Bactrocera dorsalis_Hsp20,

Ceratitis capitata_Hsp27, Bactrocera dorsalis_Hsp27, Musca domestica_Hsp27, Stomoxys calcitrans_Hsp27, Lucilia

cuprina_Hsp27, Sarcophaga crassipalpis_Hsp25.

https://doi.org/10.1371/journal.pone.0177821.g002

Fig 3. N-Terminal region is essential for oligomerization and chaperon-like activity. A- Native gradient (4–12%) polyacrylamide gel electrophoresis of

recombinant DmHsp27 and mutants without N-terminal region and after deletion of FGFG motif at 20˚C. B, C, D and E- Prevention of aggregation of

luciferase, insulin, citrate synthase and L-malate dehydrogenase using deletion of N-terminal region or deletion of 29–32 FGFG motif. The standard error

calculated from 3 sets of independent experiments. ** indicates P<0.01; **** indicates P<0.0001.

https://doi.org/10.1371/journal.pone.0177821.g003
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Heat activation of DmHsp27

As reported previously DmHsp27WT can prevent Luc, CS, and MDH heat-induced aggrega-

tion more efficiently than insulin DTT induced aggregation [35] and Fig 4. In the same way all

NTR mutants could efficiently prevent heat-induced aggregation of Luc, CS and, MDH (Fig

Fig 4. Effects of FGFG residues on oligomerization and chaperon-like activity. A and B- Native gradient

(4–12%) polyacrylamide gel electrophoresis of recombinant DmHsp27 and NTR mutants (F29A; F29Y, F31A,

F31Y, G30A, G30R, G32A and G32R) at 20˚C. Positions of standard protein markers are shown on the left.

C, D, E and F- Preventing aggregation of luciferase, insulin, citrate synthase and L-malate dehydrogenase

using NTR mutants (F29A; F29Y, F31A, F31Y, G30A, G30R, G32A and G32R). Data are representatives of

three independent experiments. ** indicates P<0.01; *** indicates P<0.001, **** indicates P<0.0001.

https://doi.org/10.1371/journal.pone.0177821.g004

Fig 5. Size exclusion chromatography analysis of DmHsp27 N-terminal mutants F29A, F29Y, G30R and G32R. Size exclusion chromatography

(SEC) analysis using a superose 6 10/300 GL (GE Life Sciences) column, with IGM (900 kDa), thyroglobulin (669 kDa), ferritin (440 kDa), aldolase (158

kDa), conalbumin (75 kDa) and ovalbumin (43 kDa) Blue dextran (2000 kDa) was used to determine the void volume of the column V0. A- Profile on column

of 300 μg (black line) of DmHsp27F29A compared to 300 μg (dashed line) of DmHsp27. B- Profile on column of 300 μg (black line) of DmHsp27F29Y

compared to 300 μg (dashed line) of DmHsp27. C- Profile on column of 300 μg (black line) of DmHsp27G30R compared to 300 μg (dashed line) of

DmHsp27. D- Profile on column of 300 μg (black line) of DmHsp27G32R compared to 300 μg (dashed line) of DmHsp27.

https://doi.org/10.1371/journal.pone.0177821.g005
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4C, 4E and 4F). No significant differences were shown in chaperone-like activity of DmHsp27

wild type and N-terminal mutants (F29A, F29Y, F31A, F31Y, G30A, G30R, G32A and G32R)

in the heat-induced aggregation of Luc at 42˚C, CS and MDH at 45˚C. However, some differ-

ences in preventing aggregation using reduction of disulfide bond-induced aggregation of

insulin at 20˚C were observed. DmHsp27WT, F31A and F31Y mutants were less efficient.

While, mutants G30R and G32R were the most efficient followed by F29A, F29Y, G30A and

G32A (Fig 4D).

It is possible that DmHsp27 binds more easily to Luc, CS and MDH than to the insulin sub-

strate resulting in a stronger aggregation protection. Alternatively, heat activation of DmHsp27

could lead to a better protection. To test these hypotheses, we performed the insulin chaperone

assay at 42˚C. DmHsp27 and all mutants showed a high capacity to reduce insulin aggregation at

42˚C compared to 20˚C (Fig 6A). At 20˚C DmHsp27WT prevented reduction-induced aggrega-

tion of insulin with 44% efficiency compared to 77.4% efficiency at 42˚C. Mutants G30A and

G32A show slight improvement at 42˚C with (89.3 and 90.7% efficiency respectively) compared

to 68.2 and 72.3% efficiency at 20˚C (Fig 6A). No significant difference shown for F29Y, G30R

and G32R mutants. We therefore compared the oligomeric structure of DmHsp27WT and NTR

mutants on a native gel at 42˚C. The results showed that at 42˚C DmHsp27WT and NTR mutants

formed oligomers of higher molecular weight than those observed at 20˚C (Fig 6B and 6C). Unlike

mammalian sHsps, DmHsp27 heat activation led to formation higher sized oligomers efficient to

suppress aggregation of substrates.

The formation of large oligomers induced by elevated temperature are partially reversible

as indicated by native gels (Supplementary S1 Fig). Interestingly, DmHsp27WT and N-termi-

nal mutants decrease oligomeric size after recovery 30 min and 2 hours at 20˚C. It should be

pointed out that for DmHsp27WT, mutants F31A, F31Y, G30A and G32A two populations of

oligomers appears clearly at 2 hours recovery (S1 Fig).

Discussion

In the present work we characterized the role of a conserved motif in the NTR of DmHsp27

on its oligomeric structure and chaperone-like activity. This region is poorly conserved among

sHsps and is involved in chaperoning and oligomerization.

Phosphorylation of serine residues in the NTR has been reported to regulate the chaperone

activity of mammalian sHsps as recently reviewed [11, 23, 43]. A phospho-mimicking mutant

of HspB1 has been found to shift the equilibrium between oligomers and dimers in favor of

the smaller assemblies [39]. Similarly, studies using phosphorylation mimicking variants of

HspB5 reveal an oligomer ensemble mainly consisting of 12-mers, hexamers and dimers [24].

The predominance of these smaller species indicates that the N-terminal contacts in the oligo-

mer are influenced by phosphorylation [11]. While phosphorylation of HspB5 results in an

increase in chaperone activity [24], the situation for HspB1 depends on the model substrate

used [25, 37, 39, 44].

As mammalian sHsps, DmHsp27 can be phosphorylated by unknown kinase(s) on at least

2 serines in NTR (S58 and S75) [30–32]. Here we show that DmHsp27WT, and its serine 58

and 75 phosphomimetic and nonphosphorylatable mutants have the same oligomeric struc-

ture, chaperone-like activity and cellular localization. Thus unlike vertebrate/mammalian

sHsps, phosphorylation of S58 and S75 in the NTR does not affect the oligomerization equilib-

rium nor the nuclear localization of DmHsp27.

Using molecular dynamics simulations Patel et al. [45] showed that the NTR of a sHsp

dimer is flexible/dynamic and presents two major conformational forms designated “open” or

“closed” suggesting that the NTR of the dimer behaves as a structural domain. Complete

The N-terminal region of nuclear DmHsp27
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Fig 6. Study of heat activation of DmHsp27 and its FGFG mutants. A- Prevention of aggregation of insulin using

DmHsp27WT and NTR mutants at 42˚C compared to 20˚C. Data are representative of three independent experi-

ments, error bars resultant the standard error of the mean. B and C- Native gradient (4–12%) polyacrylamide gel

electrophoresis of recombinant DmHsp27 and NTR mutants at 42˚C. Positions of standard protein markers with

known molecular weights are shown on the left. * indicates P<0.05, ** indicates P<0.01; *** indicates P<0.001.

https://doi.org/10.1371/journal.pone.0177821.g006
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deletion of DmHsp27 N-terminal region leads to disruption of oligomerization and loss of

chaperone function. Studies by incorporation of hydrophobic dyes, cross-linking experiments

and analyses by mass spectrometry suggested that substrates bind to segments in the NTR

[46–49]. Decreased of chaperone activity for DmHsp27_Del_N_Term is not linked to dissoci-

ation of oligomeric assembly but to binding role of NTR. As shown for many sHps removal of

N-terminal in many sHsps leads to loss of chaperone function [18, 50–56], suggests a con-

served role of N-terminal in oligomerization and chaperone-like activity.

Although, NTR has been described as poorly conserved, we delineate a conserved motif

phenylalanine 29 to glycine 32 (FGFG) in orthologues of DmHsp27. This motif is equivalent

to the described “the phenylalanine-rich region” in vertebrate sHsps [57]. A larger deletion

that also eliminated this motif in human HspB4 and HspB5 resulted in a decrease of oligo-

meric size and an increase of chaperone-like activity [58]. In the case of DmHsp27 deletion of

the conserved motif from phenylalanine 29 to glycine 32 (FGFG) affected the oligomeric state

differently, with the formation of large oligomers, but resulted in enhancement of chaperone-

like activity in non-thermal conditions using insulin. This suggests that there is at least one

important residue that modulates oligomerization and chaperone-like activity in this region.

We found that the less conserved residue F31 had no effect on quaternary structure nor the

chaperone-like activity of DmHsp27. F29 seems important for formation of the smaller 540

kDa species seen by gel filtration [35], whereby mutation of this residue to either an alanine or

tyrosine resulted in predominantly larger oligomers with molecular weights close to the 800

kDa species. G30R and G32R destabilized the balance to form a single peak corresponding to a

higher oligomer with the highest chaperone-like activity in non-thermal conditions using the

insulin assay.

Previous studies on the structure of Hsp16.9 from wheat [7] and Hsp16.0 from yeast [8]

highlighted the important role of phenylalanines in the N-terminal region in oligomer forma-

tion and chaperone-like activity. Other studies using bovine or murine alphaB-crystallin,

showed that mutation of F24, F27 or F28 decrease the oligomeric size and chaperone-like

activity at elevated temperatures [59–61]. Recently, Heirbaut et al [18] showed that mutants of

the conserved phenylalanine at position 33 to alanine in NTR of HspB6 was less active in insu-

lin and yeast alcohol dehydrogenase aggregation assays and this residue was linked to the self-

association properties of HspB6. F28 in bovine αB-crystallin and F33 in human HspB6, which

are equivalent to F29 in DmHsp27 showed different behavior compared to F29 of DmHsp27.

Interestingly mutation of glycine at position 34 to arginine in the NTR of HspB1 (equivalent to

glycine at position 30 in DmHsp27) has been associated to distal hereditary motor neuropa-

thies [62]. A study by Muranova et al [63] showed that mutant HspB1-G34R forms stable olig-

omers slightly larger than the corresponding oligomers of the HspB1WT and decreased

chaperone-like activity.

There is significant controversy concerning the mode of activation of sHsps. sHsps reveal

temperature-dependent chaperone activity in preventing aggregation of substrate proteins [64,

65]. Most chaperone activity models suggests that sHsps dissociate to small oligomeric forms,

presumably dimers, which re-associate to a new oligomeric form containing the bound sub-

strate [11, 12, 66–68]. However, some sHsps are activated differently. For example, the transi-

tion of Hsp26 from Saccharomyces cerevisiae, in which the transition into a state of increased

substrate binding affinity and chaperone activity occurs through slight conformational

changes without perturbation of the oligomeric state [69]. Another example is plant class II

sHsps, that remain oligomeric but undergo structural rearrangements [70]. HspB1 exhibits

heat-induced self-association, leading to increased oligomeric size, which correlates with

increase in its chaperone-like activity [71]. Hsp22 (HspB8) from rat reveals heat-induced con-

formational changes with increased exposure of hydrophobic surfaces and chaperone-like

The N-terminal region of nuclear DmHsp27

PLOS ONE | https://doi.org/10.1371/journal.pone.0177821 May 16, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0177821


activity [72]. C. elegans Hsp17 forms large sheet-like super-molecular assemblies (SMA) at

high temperatures and only the SMA form exhibits chaperone-like activity in suppressing the

aggregation of non-native substrate proteins [73]. It is clear that not all sHsps are activated by

the same mechanism. In the case of DmHsp27, we observed a partial reversible heat-activation

by induced structural changes that result in formation of higher oligomers of approximately

1100 kDa. DmHsp27WT is more effective as a chaperone at 42˚C than 20˚C using insulin.

This suggests that heat enhances DmHsp27 chaperone-like activity by formation of larger

oligomers.

How heat induces oligomerization of DmHsp27 is still an open question. In general, tem-

perature-dependent conformational change in sHsps increases exposure of hydrophobic sur-

faces leading to increase in the chaperone-like activity by interaction with partially unfolded

proteins through hydrophobic surfaces and prevents their aggregation. Two studies with

alpha-crystallin from bovine lens support this proposition. First Das et al [74] showed expo-

sure of hydrophobic surfaces at high temperature. Second, Smith et al [75] showed that hydro-

phobic regions around the residues 32–37 and 72–75 of αA- and 28–34 of αB-crystallin were

exposed above 30˚C.

In summary, this study characterized DmHsp27 mutant in the N-terminal region and we

suggest a new protection mechanism played by DmHsp27 as molecular chaperone.

Material and methods

Cloning, expression and purification of recombinant DmHsp27

The cDNA of wild type DmHsp27 (DmHsp27WT) was cloned using GIBSON ASSEMBLY

(NEB) into bacterial expression vector pETHSUK (a gift from Dr. S.Weeks, [76]) and mamma-

lian expression vector pcDNA3.1(+) at KpnI and XhoI sites by PCR as described in [35]. Muta-

tions were introduced by using suitable oligomers (Table 1) and site-directed mutagenesis

were done using Gibson assembly (NEB) and confirmed by DNA sequencing.

Following the detailed protocol in [35] pETHSUK DmHsp27WT and its N-terminal

mutants were expressed in Escherichia coli BL21 (DE3) pLysS strain (NEB). The protein

expression was induced with isopropyl-β-thiogalactoside (IPTG) (Roche).

The protein purification was accomplished by affinity chromatography using Ni-NTA aga-

rose (Qiagen) column. His-Sumo-tag was digested with Sumo-Hydrolase followed by size

exclusion chromatography (SEC) on Superose 6 10/300 column (GE Lifesciences) as described

earlier [35]. All mutants gave a good yield of pure protein (25 mg/l) and could be concentrated

above 15 mg/ml.

Analysis of the quaternary structure by size exclusion chromatography

SEC was used to analyze the quaternary structure of DmHsp27. 300μg of proteins were loaded

on Superose 6 10/300 column (GE Lifesciences) equilibrated with 20 mM Tris-HCl pH 8, 150

mM NaCl. SEC was achieved at room temperature and eluted at 0.5 ml/min. For estimating

the molecular weight, the column was calibrated with protein markers immunoglobulin M

(IGM) from bovine serum (900 kDa) (Sigma), (thyroglobulin (669 kDa), Ferritin (440 kDa),

Aldolase (158 kDa), Conalbumin (75 kDa), Ovalbumin (43 kDa) and Blue Dextran 2000 to

determine the void volume) (GE Lifesciences) as detailed in [35].

Analysis of the quaternary structure by native gel electrophoresis

For native gel electrophoresis samples were kept at room temperature (20˚C) or heated at

42˚C using a water bath during 10 min and loaded on a gel 4–12% gradient native Tris-Glycine
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gels (Thermo Fisher Scientific). Gels were run at 150 V at room temperature (20˚C) or at 42˚C

(on a water bath) using pre-cast Mini-Cell electrophoresis system (XCell SureLock, Life Tech-

nology). The protein complexes were stained with Coomassie blue immediately after

electrophoresis.

Chaperone-like activity

Luciferase, citrate synthase, L-malate dehydrogenase and insulin were used as substrates to

evaluate the chaperone-like activity as as described in Morrow et al 2006 [77] and Moutaoufik

et al. 2016 [35].

The heat-induced aggregation assay was performed using: luciferase (0.1 μM, Promega) at

42˚C, citrate synthase (0.16 μM; Sigma) and L-malate dehydrogenase (0.65 μM; Roche) at

45˚C in the absence or presence of DmHsp27 or its mutants. Altough, insulin (52 μM, Sigma)

Table 1. Primers sequences used to construct DmHsp27 NTR mutants.

Primer Primer sequences

pETHSUK DmHsp27Fwd 5’-AGATTGGTGGTACCATGTCAATTATACCACTGC-3’

pETHSUK DmHsp27Rev 5’-AGCAGAAGCTTCTTACTTGCTAGTCTCCATTTTC-3’

pcDNA DmHsp27Fwd 5’-AAACTTAAGCTTGGTACATGTCAATTATACCACTGC-3’

pcDNA DmHsp27Rev 5’-CGGGCCCTCTAGACTTACTTGCTAGTCTCCATTTTC-3’

pETHSUK DmHsp27Del-NTRFwd 5’-GAACAGATTGGTGGTACAATGAAAGATGGCTTCCAG-3’

DmHsp27Del29-32Fwd 5'-GGAGGATGACGTCCATGCCCACGATCTGTTCC-3'

DmHsp27Del29-32Rev 5'-GGGCATGGACGTCATCCTCCAGCAAATGCCCCC-3'

DmHsp27F29AFwd 5’-GAGGATGACGCCGGTTTTGGCGTCCATGCCTAT-3’

DmHsp27F29ARev 5'-GACGCCAAAAGCGGCGTCATCCTCCAGC-3'

DmHsp27F29YFwd 5’-GAGGATGACTACGGTTTTGGCGTCCATGCCTAT-3’

DmHsp27F29YRev 5'-GACGCCAAAAGCGTAGTCATCCTCCAGC-3'

DmHsp27G30AFwd 5'-GAGGATGACTTCGCTTTTGGCGTCCATGCC-3'

DmHsp27G30ARev 5'- GAC GCC AAA AGC GAA GTC ATC CTC CAG C -3'

DmHsp27G30RFwd 5'- GAG GAT GAC TTC CGT TTT GGC GTC CAT GCC -3'

DmHsp27G30RRev 5'- GAC GCC AAA ACG GAA GTC ATC CTC CAG C -3'

DmHsp27F31AFwd 5'-GAGGATGACTTCGGTGCTGGCGTCCATGCC-3'

DmHsp27F31ARev 5'-GACGCCAGCACCGAAGTCATCCTCCAGC-3'

DmHsp27F31YFwd 5'-GAGGATGACTTCGGTTATGGCGTCCATGCC-3'

DmHsp27F31YRev 5'-GACGCCATAACCGAAGTCATCCTCCAGC-3'

DmHsp27G32AFwd 5'-GACTTCGGTTTTGCCGTCCATGCCCACG-3'

DmHsp27G32ARev 5'-GGCATGGACGGCAAAACCGAAGTCATCC-3'

DmHsp27G32Rwd 5'-GACTTCGGTTTTCGCGTCCATGCCCACG-3'

DmHsp27G32Rev 5'-GGCATGGACGCGAAAACCGAAGTCATCC-3'

DmHsp27S58AFwd 5’-CGTCGTCGCTATGCGCCGTACGAGAGG-3’

DmHsp27S58ARev 5’-CCTCTCGTACGGCGCATAGCGACGCGACC-3’

DmHsp27S58DFwd 5’-CGTCGTCGCTATGACCCGTACGAGAGG-3’

DmHsp27S58DFwd 5’-CCTCTCGTACGGGTCATAGCGACGCGACC-3’

DmHsp27S75AFwd 5’-CACGTCGCGCGGCGGGAGGTCCAAACG3-’

DmHsp27S75ARev 5’-CGTTTGGACCTCCCGCCGCGCGACGTG-3’

DmHsp27S75DFwd 5’-CACGTCGCGCGGACGGAGGTCCAAACG3-’

DmHsp27S75DRev 5’-CGTTTGGACCTCCGTCCGCGCGACGTG-3’

Fwd: forward.

Rev: reverse.

https://doi.org/10.1371/journal.pone.0177821.t001
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non-Heat-induced aggregation was induced by disulfide bonds reduction at 20˚C. All substrats

were pre-incubated alone or in the presence of DmHsp27 or its mutants and aggregation was

followed by an increase in the optical density at 320 nm on a spectrophotometer with thermo-

stated cells.

Cell culture, transfection conditions and immunofluorescence analyses

Hela cells were maintained in MEM Alpha (Gibco) supplemented with 5% FBS. Cells were

plated in advance at a confluence of 175 000 cells/well (6 well plate) containing glass coverslip

for transfection. Later, cells were incubated for 4 h in OptiMEM (Gibco) containing the plasmid

pcDNA3.1(+)-DmHsp27:Lipofectamine (Invitrogen) complex (1.5 μl Lipofectamine/1.5 μg

DNA), cells were washed with culture medium and incubated for 48 h to express DmHsp27

before immunofluorescence.

Immunofluorescence was performed as described in [35, 78]. Briefly, cells were washed with

PBS and fixed in methanol at − 20 C for 20 min. Cells were blocked in PBS 0.1% Tween20-X

(PBST) containing 5% BSA (PBST-BSA) and were incubated one hour at room temperature

with primary antibody (monoclonal anti-DmHsp27 (2C8E11) [34, 35]) diluted (1/20) in

PBST-BSA. After they, were washed with PBST and were incubated 45 min with secondary anti-

body (goat anti-mouse Alexa 488 (Invitrogen)). Finally, cells were mounted in Vectashield

mounting medium (Vector Laboratories) and examined using fluorescence microscopy (Axio

Observer Z1).

Supporting information

S1 Fig. Partial reversibility after heat activation of DmHsp27 and its FGFG mutants.

Native gradient (4–12%) polyacrylamide gel electrophoresis of recombinant DmHsp27 and

NTR mutants heated at 42˚C for 1h and cooled back at 20˚C for 30 min (A) or 2h (B). Posi-

tions of standard protein markers with known molecular weights are shown on the left.

(TIF)
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