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Methamphetamine is a derivative of amphetamines, a highly addictive central stimulant with multiple systemic toxicity including
the brain, heart, liver, lung, and spleen. It has adverse effects such as apoptosis and breakdown of the blood-brain barrier.
Methamphetamine is a fatal and toxic chemical substance, and its lethal mechanism has been widely studied in recent years.
The possible mechanism is that methamphetamine can cause cardiotoxicity and neurotoxicity mainly by inducing oxidative
stress so as to generate heat, eliminate people’s hunger and thirst, and maintain a state of excitement so that people can
continue to exercise. According to many research, there is no doubt that methamphetamine triggers neurotoxicity by inducing
reactive oxygen species (ROS) production and redox imbalance. This review summarized the mechanisms of
methamphetamine-induced neurotoxicity including apoptosis and blood-brain barrier breakdown through oxidative stress and
analyzed several possible antioxidative mechanisms of tert-butylhydroquinone (TBHQ) which is a kind of food additive with
antioxidative effects. As a nuclear factor E2-related factor 2 (Nrf2) agonist, TBHQ may inhibit neurotoxicity caused by oxidative
stress through the following three mechanisms: the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, the
astrocytes activation, and the glutathione pathway. The mechanism about methamphetamine’s toxic effects and its antioxidative
therapeutic drugs would become a research hotspot in this field and has very important research significance.

1. Introduction

According to data from 2018, the global seizures of metham-
phetamine reached 228 tons and increased by 23% compared
with the previous years. Methamphetamine abuse has been
in the first place among amphetamine-type stimulants. Dur-
ing the period 2014-2018, global seizures of methamphet-
amine accounted for 71% of the total amphetamine-type
stimulants, followed by amphetamine with 21% [1]. There-
fore, related studies on the prevention and treatment of
methamphetamine addiction have become increasingly
important. Brain hyperthermia is an important death cause
of methamphetamine. Toxic doses of methamphetamine
can cause hyperthermia, and high core temperature can
cause a large amount of dopamine loss in the brain. Experi-
ments showed that hyperthermia was one of the causes of
methamphetamine neurotoxicity [2–4]. Methamphetamine

induces dose-dependent brain hyperthermia. Compared
with the core of the body, the brain warms up faster and to
a higher degree [5, 6]. At an ambient temperature of 23°C,
9mg/kg methamphetamine made brain temperature
(nucleus accumbens) and muscle temperature (temporal
muscle) increased to 38:92 ± 0:34°C and 37:92 ± 0:32°C,
respectively [7]. Brain hyperthermia may play a role in
destroying neural cells, causing brain edema, increasing the
permeability of the blood-brain barrier, and eventually lead
to apoptosis and the blood-brain barrier breakdown [8]. Fish
were exposed to a suitable temperature (25 ± 1°C) and a high
temperature (32 ± 1°C). The study found that under high
temperature, the concentration of antisuperoxide anion free
radicals and the activity of superoxide dismutase (SOD) were
significantly reduced, proving that hyperthermia caused oxi-
dative stress [9]. Another study found that the ROS and reac-
tive nitrogen (RNS) levels in oysters exposed to a high
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temperature (32°C) were significantly increased, and the inci-
dence of apoptosis was significantly increased [10]. The con-
crete results were that the contents of protein carbonyl (an
indicator of ROS) were increased 11.7 times, the intensity
of nitrotyrosine protein (an indicator of RNS) was increased
3.5 times, and the activity of the apoptosis indicator caspase-
3/7 was increased 5 times [10]. A scholar randomly selected
96 methamphetamine abusers to measure the plasma iron-
reducing ability and the serum malondialdehyde (MDA)
content to assess the total antioxidant capacity and lipid per-
oxidation status in the body [11]. The statistical analysis
showed that the total antioxidant capacity in the metham-
phetamine group (0:31 ± 0:04 μmol/L) was significantly
lower than the control group (0:46 ± 0:05 μmol/L), and the
level of MDA in the methamphetamine group
(4:38 ± 5:05 μmol/L) was significantly higher than the con-
trol group (1:72 ± 2:04μmol/L) [11]. The scholar’s research
showed that abuse of methamphetamine enhanced the level
of oxidative stress and lipid peroxidation in the body. The
neurotoxicity of methamphetamine is mainly produced by
inducing oxidative stress, so antioxidation is of great signifi-
cance in the prevention and treatment of methamphetamine
toxicity. This review briefly explains the neurotoxicity of
methamphetamine from apoptosis and blood-brain barrier
breakdown, and summarizes the possible antioxidative
mechanism of TBHQ from three perspectives. At present,
there are only a few related literatures about the effects of
TBHQ on methamphetamine, and this review is expected
to open up new ideas for the prevention and treatment of
methamphetamine neurotoxicity.

2. Methamphetamine and Neurotoxicity

Methamphetamine can induce hyperthermia, thereby
increasing the level of oxidative stress at the dopamine termi-
nal and ultimately causing neurotoxicity [12–14]. The hyper-
thermic reaction induced by methamphetamine can affect
the oxidation process of dopamine from the following two
aspects: (1) In the autooxidation process of dopamine, free
iron and other transition metals play an inducing role [15].
Methamphetamine can promote the release of free iron by
inducing a hyperthermic reaction [16] and ultimately
increase the autooxidation level of dopamine. (2) During
the enzymatic oxidative degradation of dopamine, hyper-
thermia may cause enzyme activation [12], thereby accelerat-
ing the enzyme reaction process and accelerating the
degradation of dopamine. The oxidation products of dopa-
mine include dopamine quinone and free radicals [12]. The
production of free radicals is a key factor in inducing meth-
amphetamine neurotoxicity. A large amount of ROS causes
oxidative stress damage to various cells in the central nervous
system so as to trigger neurotoxicity [17–19]. Excessive nitric
oxide (NO) causes neurotoxicity by affecting the normal
energy supply of mitochondria [20]. The formation of NO
and superoxide (O2

-) and the peroxynitrite (ONOO-) synthe-
sized by both trigger long-term neurotoxicity by affecting the
outflow of glutamate, increasing the concentration of extra-
cellular glutamate, and excessively stimulating glutamate
receptors [21]. The neurotoxicity induced by methamphet-

amine can be reflected in two aspects: apoptosis and blood-
brain barrier breakdown.

2.1. Methamphetamine and Apoptosis. Methamphetamine
causes damage to mitochondria in the brain, thereby leading
to apoptosis and a series of other neurotoxicities. Oxidative
stress is an important link between mitochondrial damage
and methamphetamine-induced neurotoxicity. Studies
showed that methamphetamine interfered with mitochon-
drial energy metabolism by inhibiting the Krebs cycle and
electron transport chain to ultimately cause neurotoxicity
[22–24]. After methamphetamine administration, the activ-
ity of electron transport chain complex IV (cytochrome oxi-
dase) decreased [25]. Other studies showed that a large
amount of methamphetamine in a short time significantly
reduced the activity of electron transport chain complex II
(succinate dehydrogenase) [26–28]. The mechanism of inhi-
biting the electron transport chain complex is mainly due to
the large amount of ROS and RNS produced by intensive oxi-
dative stress after methamphetamine exposure. ROS and
RNS directly act on the electron transport chain complex,
reducing their activity. At the same time, the inhibition on
the electron transport chain complex increases the leakage
of electrons and produces O2

- to form a positive feedback
loop [29]. The damaged mitochondria are subsequently
degraded by autophagy [30]. Many studies showed that
methamphetamine-induced mitochondrial damage
enhanced susceptibility to proapoptosis [22, 31–33]. Meth-
amphetamine exposure causes intensive oxidative stress,
and the produced ROS and RNS can block the electron trans-
port chain of mitochondria so that the energy metabolism of
mitochondria is interfered to cause the damage of mitochon-
dria. Mitochondria damage induces neurotoxicity such as
apoptosis. Therefore, oxidative stress and ROS are important
factors for methamphetamine-induced apoptosis. In addi-
tion, PUMA, PKCδ, miRNA, and lncRNA also seem to be
involved in the process of methamphetamine-induced neu-
rocyte apoptosis [29].

2.2. Methamphetamine and Blood-Brain Barrier Breakdown.
The blood-brain barrier is a barrier between plasma and
brain cells, and its role is to prevent certain substances from
entering the brain tissue from the blood. The innermost layer
of the blood-brain barrier is vascular endothelial cells. The
two endothelial cells rely on tight junction proteins to con-
nect and closely overlap each other. There are some pericytes
outside the endothelial cells. The outer side of the endothelial
cells and pericytes is covered by a basement membrane. The
outermost layer of the blood-brain barrier consists of astro-
cytic end-feet. Among these structures, closely overlapping
endothelial cells are the most important structure of the
blood-brain barrier. Tight junction proteins include clau-
din-5, ZO-1, and occludin. Methamphetamine disrupts the
tight overlap of the endothelium by downregulating or redis-
tributing these tight junction proteins, thereby increasing
endothelial permeability and making the blood-brain barrier
collapse. Endothelial cells are very sensitive to the redox
imbalance induced by methamphetamine, and endothelial
cells produce ROS through oxidative stress [34]. There are
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many reasons for methamphetamine to cause oxidative
stress. Methamphetamine downregulates glutamate-cysteine
ligase (GCL) [35]. GCL is the rate-limiting enzyme for the
synthesis of the antioxidant glutathione [36]. Methamphet-
amine can also affect the outflow of glutamate, increasing
the concentration of extracellular glutamate [21]. Glutamate
is one of the raw materials of glutathione, and it combines
glycine and cysteine to form glutathione [37]. The outflow
of glutamate reduces its intracellular concentration, thereby
reducing the content of glutathione. Methamphetamine
reduces the concentration of glutathione through the above
two factors, which causes redox imbalance and ROS produc-
tion. Methamphetamine can also induce oxidative stress
through other two pathways, activating NADPH oxidase or
making astrocytes overactivated. Oxidative stress and ROS
can cause intracellular protein thiol oxidation [38], which
can activate nonmuscle myosin light chain kinase
(nmMLCK) [39]. The activation of nmMLCK causes the
phosphorylation of claudin-5 and occludin, makes them lose
their functions, weakens the connection between endothelial
cells, and reduces the barrier function [40]. After metham-
phetamine administration, the blood-brain barrier is eventu-
ally destroyed by the series of effects mentioned above.

3. TBHQ and Antioxidative Stress

TBHQ is a food antioxidant. Many research showed that
TBHQ reduced the level of oxidative stress in mammals
[35, 41–43]. Antioxidant response elements are mainly medi-
ated by Nrf2 and can participate in the transcriptional regu-
lation process of phase II detoxification enzymes and
antioxidant proteins, including quinone oxidoreductase, glu-
tathione S-transferase (GST), and GCL. [44]. Nrf2 is one of
the key factors to prevent excessive oxidative stress in brain
cells. TBHQ, as an Nrf2 agonist [45], mainly plays a role in
inhibiting oxidative stress in the brain through the following
mechanisms: On one hand, Nrf2 is responsible for activating
transcription in response to oxidative stress. In the presence
of a large number of stimuli, Nrf2 moves from the cytoplasm
to the nucleus, and in turn combines with antioxidant
response elements [46], so TBHQ can play an antioxidative
stress role by activating Nrf2. On the other hand, antioxidant
response elements/electrophile response elements are acti-
vated transcription by TBHQ, and the increased gene expres-
sion caused by this process can also prevent excessive
oxidative stress [47]. Research data showed that TBHQ
increased the levels of glutathione and GCL in astrocytes
and neurons, while in astrocytes, the increase in both was
greater [48]. In astrocytes, after treatment with 20μM
TBHQ, glutathione levels were increased by 50% and GCL
activity increased by 150%. However, in neurons, when
treated with 20μM TBHQ, glutathione levels only increased
by 20%, and GCL activity only increased by 40% [48]. This
phenomenon may be due to TBHQ activating Nrf2, and the
Nrf2 pathway has been shown to regulate glutathione metab-
olism [49]. In addition, another study showed that TBHQ
moderately increased the number of astrocytes in the brain,
and in the central nervous system, astrocytes played an
extremely important role in antioxidative stress [50].

NADPH, also known as quinone oxidoreductase 1 (NQO1),
can accelerate quinone excretion by reducing quinone to
hydroquinone; however, in the absence of this enzyme, qui-
none is reduced to hemihydroquinone, which generates
ROS through redox. NADPH oxidase system is one of the
sources of ROS [34]. Nrf2 may resist oxidative stress by
downregulating or inhibiting the expression of NADPH oxi-
dase. Therefore, TBHQ plays an antioxidative role by activat-
ing Nrf2.

3.1. TBHQ against Oxidative Stress through NADPH Oxidase
System. TBHQ exerts an antioxidative stress effect through
the NADPH oxidase system, and the mechanism is shown
in Figure 1. NADPH oxidase family includes 7 isoforms of
NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2.
NADPH oxidase is a membrane protein, mainly responsible
for the transmission of electrons, transferring electrons to
molecular oxygen, generating ROS and O2

-[51]. All NADPH
oxidase isoforms act as catalysts, transferring two electrons
from NADPH to molecular oxygen through its FAD domain
and two heme repair groups [51, 52]. NOX1, NOX2, NOX3,
and NOX5 produce O2

-, and NOX4, DUOX1, and DUOX2
release hydrogen peroxide [51, 53, 54]. NADPH oxidase
can be stimulated and activated by many factors and subse-
quently produces a large amount of ROS, including drug fac-
tors (e.g., methamphetamine), hormones, and environmental
factors (e.g., noise stimulation). NOX2 is highly expressed in
the cells of the central nervous system, including cerebrovas-
cular endothelial cells. Endothelial NOX2 has low activity
before being activated (i.e., under physiological conditions),
and overexpressed NOX2 after activation can cause endothe-
lial cells to produce a large amount of ROS, resulting in the
occurrence of oxidative stress. It was found that ROS derived
from NOX2 caused severe oxidative damage to neurocytes
and cerebrovascular endothelium [55]. NOX2 deficiency pre-
vents brain oxidative stress, reverses the production of cere-
brovascular O2

-, and reverses the functional damage of
endothelial cells, making it tend to normalize [56]. NOX4
also plays a very important role in the regulation of oxidative
stress [57]. The increased expression of NOX4 in the brain
leads to increased production of ROS, which not only causes
excessive consumption of endogenous antioxidase in the
brain but also reduces its activity, thereby weakening the
brain’s ability to scavenge ROS. Excessive ROS may also
cause oxidation of proteins and fats, cause damage to DNA,
and affect energy metabolism, thereby eventually inducing
neuronal death and apoptosis in the brain [58]. SOD scav-
enges oxygen free radicals and blocks the pathological chain
reaction. It is an important defending enzyme, and its activity
has become a key index for measuring the scavenging ability
of oxygen free radicals [58, 59]. Oxygen free radicals attack
cells and produce large amounts of lipid peroxides, including
MDA, and MDA can be used as an important index to indi-
rectly reflect changes in free radical content [58, 60]. A study
found that upregulating NOX4 increased oxygen free radi-
cals, decreased the SOD expression, and increased the
MDA expression [58].

NADPH oxidase is present in cells capable of producing
ROS (including neurons, glial cells, macrophages) in the
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brain and is considered to be an important factor for the gen-
eration of ROS and the maintenance of ROS homeostasis
[61]. The two isoforms NOX2 and NOX4 of the NADPH oxi-
dase system are involved in the process of brain oxidative
damage. The knockout of Nrf2 upregulates ROS of mito-
chondrial origin, and this process involves oxidative phos-
phorylation. Nrf2 can also prevent the oxidation of
mitochondrial fatty acids, and at the same time regulate the
availability of substrates, thereby affecting the cellular bioen-
ergetics [62, 63]. This process involves oxidative phosphory-
lation and ROS production. Nrf2 not only interferes with the
production of ROS in the mitochondria but also affects the
process of ROS production by NADPH oxidase. Experiments
showed that the specific regulation mechanism of Nrf2 was
related to NOX2 and NOX4 of the NADPH oxidase system
[64–66]. The mechanism of Nrf2 acting on NADPH oxidase
is complex, and it may be through direct and indirect regula-
tion through promoter binding and chromatin remodeling
[64]. The expression of NOX2 was upregulated in primary
brain hippocampal glio-neuronal cultures of Nrf2-KO mice,
indicating that Nrf2 negatively regulated NOX2 [64]. A pos-
itive feedback loop is formed between Nrf2 and homeostatic
NOX4. Activated Nrf2 inhibits the NOX4 transcription [65],
and then, homeostatic NOX4 produces hydrogen peroxide
and O2

-, which subsequently oxidize the cysteine sensor,
and the cysteine sensor can activate Nrf2 [66] to form a pos-

itive feedback loop. However, in the absence of Nrf2, NOX4
homeostasis is disrupted, and there is no such feedback loop.
Overexpressed NOX4 consumes antioxidase and increases
ROS production [64]. Therefore, TBHQ, as an Nrf2 agonist,
plays a role in reducing ROS and resisting oxidative stress.

3.2. TBHQ against Oxidative Stress by Regulating Astrocytes.
TBHQ plays an antioxidative stress role by regulating astro-
cytes, and the mechanism is shown in Figure 2. Astrocytes
are an important part of the blood-brain barrier. They secrete
a variety of neuroactive molecules and respond to a variety of
immune regulatory signals to counteract methamphetamine-
induced oxidative stress [67]. The outermost layer of the
blood-brain barrier is covered by astrocytic end-feet. A study
found that in the blood-brain barrier coculture model, the
removal of astrocytes destroyed the tight junctions of the
blood-brain barrier and led to increased permeability [68].
Astrocytes express glutamatergic, GABAergic, adrenergic,
purinergic, serotonergic, muscarinic, and peptidergic recep-
tors [67, 69]. Activated astrocytes release glutamate, prosta-
glandins, ATP and NO, and other neuroactive molecules
[67, 70]. Changes in astrocyte activity directly affect the cen-
tral nervous system [71], and the regulatory mechanism of
astrocytes is complex. Abnormal activity or function of astro-
cytes can promote nervous system damage. Sigma-1 receptor
is closely related to methamphetamine-induced neurotoxic-
ity. Recent studies have found that Sigma-1 receptor antago-
nists can reduce methamphetamine-induced oxidative stress,
cerebral hyperthermia, and behavioral abnormalities [67, 72,
73]. Glial fibrillary acidic protein (GFAP) is an index of astro-
cyte activation. After knocking out the Sigma-1 receptor, it
was found that GFAP expression was abrogated [74]. Both
Sigma-1 receptor antagonists BD1047 and SN79 can block
the overactivation of astrocytes and attenuate the expression
of proinflammatory cytokines after methamphetamine expo-
sure [74–76]. Methamphetamine can regulate the Sigma-1
receptor in astrocytes so as to change astrocyte activity [76].
A study showed that methamphetamine simultaneously
increased the oxidative burden and antioxidative capacity of
astrocytes. This effect may be exerted through abnormal reg-
ulation of mitochondria. Under physiological conditions,
astrocytes protect the central nervous system from damage
by maintaining redox homeostasis and a delicate balance.
Stimulation of methamphetamine can lead to dichotomous
dysregulation of redox. Attenuating methamphetamine-
mediated secondary messenger signaling downstream of the
Sigma-1 receptor can target dysregulation of mitochondrial
regulatory proteins in astrocytes [77]. Heme oxygenase-1
(HO-1) is a phase II antioxidative enzyme, and its expression
level can be regulated by TBHQ and Nrf2. Another study
showed that inducing the activation of Nrf2 and the expres-
sion of HO-1 in astrocytes downregulated the expression of
proinflammatory cytokines and upregulated the antioxida-
tive mechanism [78]. Phosphatidylinositol 3-kinase (PI3K)
is also involved in resisting methamphetamine-induced oxi-
dative stress. PI3K works by activating protein kinase B (also
known as AKT) [79]. PI3K/AKT has been reported as the
upstream signaling pathway of Nrf2 in many papers [79–81].
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Figure 1: NADPH oxidase system and antioxidative stress.
NADPH oxidase system contains NOX2 and NOX4. TBHQ
activates Nrf2, then Nrf2 negatively regulates NOX2, and NOX2
can produce ROS, and Nrf2 can also directly reduce ROS. Under
homeostasis, NOX4 produces hydrogen peroxide and superoxide
which both oxidize cysteine sensor and cysteine sensor activate
Nrf2; then, Nrf2 inhibits the transcription of NOX4, making
NOX4 under homeostasis, forming a positive feedback loop.
However, with upregulation of NOX4, the homeostasis and
feedback loop mentioned above are destroyed, creating a
prooxidative environment; then, ROS and MDA will increase, and
MDA can indirectly reflect ROS. In addition, NOX4 consumes
and inhibits antioxidases including SOD. NADPH: nicotinamide
adenine dinucleotide phosphate; TBHQ: tert-butyl hydroquinone;
Nrf2: nuclear factor E2 related factor 2; ROS: reactive oxygen
species; SOD: superoxide dismutase; MDA: malondialdehyde;
NOX: NADPH oxidase.
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A recent experiment showed that in astrocytes, the Sigma-
1 receptor was activated by the Nrf2/HO-1 signaling pathway,
thereby making astrocytes from inactivation to activation and
then reducing the production of ROS [82]. The activation of
Nrf2 and HO-1 partially mediates the activation of Sigma-1
receptor and its anti-inflammatory and antioxidative effects
[82]. The Sigma-1 receptor is equivalent to a molecular chap-
erone and participates in various mental diseases by interact-
ing with multiple protein or lipid molecules. Knockout or
loss of Sigma-1 receptors may activate the Nrf2/HO-1 signal-
ing pathway. Astrocytes and neurons contain a large number
of Sigma-1 receptors, and their silencing will induce a decrease
in mitochondrial membrane potential and aberrant formation
of mitochondrial aggregates [83–85]. Astrocyte activation and
overactivation show double-edged sword effects in multiple
mental diseases [86]. After methamphetamine administration,
Sigma-1 receptor activates astrocytes through a self-activation
mechanism [76]. Methamphetamine exposure makes astro-
cytes overactivated. Sigma-1 receptor exerts neuroprotective
effects by maintaining homeostasis of astrocytes and neurons
and maintaining the proper and balanced degree of activation
of astrocytes. Knock-out of Sigma-1 receptor leads to the
imbalance of astrocyte populations and enhancement of the
Nrf2 signaling pathway, which can attenuate excessive oxida-
tive stress, promote neuronal survival, and reduce
methamphetamine-induced neurotoxicity [83].

PI3K has both Ser/Thr kinase activity and phos-
phatidylinositol kinase activity [87]. The Ser/Thr kinase
activity of PI3K can activate its downstream target AKT
[79]. PI3K/AKT signaling pathway can phosphorylate
Ser/Thr residues, which is a key for Nrf2 activation [79, 81].
Under hyperoxia conditions, PI3K is inhibited. In the pres-
ence of a large amount of ROS, Nrf2 and its downstream
are inhibited through the PI3K/AKT signaling pathway
[79]. Methamphetamine leads to the overactivation of astro-
cytes and generates ROS, thereby inhibiting the expression of
Nrf2. This process can be reversed by TBHQ. TBHQ reverses
methamphetamine-induced oxidative stress damage by
directly activating the Nrf2/HO-1 signaling pathway and
indirectly regulating Nrf2 through the PI3K-AKT signaling
pathway [79]. Hypoxia-inducible factor-1α (HIF-1α) and
vascular endothelial growth factor (VEGF) are downstream
of the Nrf2/HO-1 signaling pathway. An experimental result
showed that TBHQ activated astrocytes and increased astro-
cytic end-feet coverage by activating the Nrf2/HO-1/VEGF
pathway [88]. The antioxidative stress and neuroprotective
effect of astrocytes are closely related to the degree of activa-
tion. Both inactivated and overactivated astrocytes can
induce dysfunction. TBHQ increases the nuclear accumula-
tion of Nrf2 and at the same time enhances the expression
of antioxidative genes downstream of Nrf2 (including HO-
1 and NQO1), moderately activates astrocytes, and reduces
the production of inflammatory cytokines, thereby reducing
apoptosis and neuronal death [89]. Under physiological con-
ditions, Nrf2 binds to Keap1 to form the Nrf2 Keap1 complex
[90]. Under oxidative stress, Nrf2 is released from Keap1’s
antioxidant response element; in this way, Nrf2 is activated.
Meanwhile, Nrf2 achieves its accumulation in the nucleus
by transferring from the cytoplasm to the nucleus, thereby
playing a series of neuroprotective effects such as antioxida-
tive stress [90, 91]. HO-1 is induced after Nrf2 activation
and is a target gene for antioxidative stress [92, 93]. The
Nrf2/HO-1 signaling pathway is closely related to oxidative
stress in the brain [94–96] and some antioxidants work by
upregulating Nrf2 and HO-1 [97–99]. The HIF-1α/VEGF
pathway may be related to oxidative stress in astrocytes.
The Nrf2/HO-1 signaling pathway may inhibit oxidative
stress in astrocytes by regulating HIF-1α and VEGF [90].
HO-1 is a phase II antioxidative enzyme, and its expression
level can be regulated by TBHQ. TBHQ promotes the trans-
location of Nrf2 to the nucleus, and Nrf2 participates in the
regulation of HO-1 expression. PI3K/AKT signaling pathway
is the upstream of Nrf2, and the protective effect of TBHQ on
methamphetamine-induced neurotoxicity is also closely
related to the activation of PI3K/AKT [79]. TBHQ regulates
Sigma-1 receptors through the Nrf2/HO-1 and PI3K/AKT
signaling pathways, thereby ultimately regulating the activa-
tion state of astrocytes and playing a role in resisting oxida-
tive stress. In astrocytes, TBHQ increases the mRNA and
protein levels of HO-1 by inducing a coordinated interaction
between Nrf2 and c-Jun [100].

3.3. TBHQ against Oxidative Stress via Glutathione Pathway.
TBHQ can also inhibit the oxidative stress of cerebrovascular
endothelial cells and neurocytes via the glutathione pathway,
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Figure 2: Double-edged sword effects of astrocyte activation.
TBHQ activates Nrf2 and then regulates its downstream HO-1,
HIF-1α, and VEGF. This process activates the Sigma-1 receptor,
so that astrocytes become activated from inactivated, and activated
astrocytes can play a role in resisting methamphetamine-induced
oxidative stress. TBHQ can also increase activated astrocytes and
their coverage to reduce ROS. ROS inhibits the PI3K/AKT
signaling pathway. TBHQ, as an Nrf2 agonist, can also indirectly
activate Nrf2 by positively regulating the PI3K/AKT signaling
pathway. Sigma-1 receptor KO or Sigma-1 receptor antagonists
can activate Nrf2 as well as block excessive Sigma-1 receptors,
thereby preventing the overactivation of astrocytes. However,
methamphetamine can induce overactivation of astrocytes. TBHQ:
tert-butyl hydroquinone; Nrf2: nuclear factor E2 related factor 2;
HO-1: heme oxygenase-1; HIF-1α: hypoxia-inducible factor-1α;
VEGF: vascular endothelial growth factor; KO: knockout; ROS:
reactive oxygen species; PI3K: phosphatidylinositol 3-kinase; AKT:
protein kinase B.
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and the mechanism is shown in Figure 3. Glutathione is an
important antioxidant in the body. It is a ROS scavenger, espe-
cially to clear the main form of ROS -O2

-[101]. Glutathione is
also the electron donor of glutathione peroxidase (GSH-Px) to
reduce peroxides [102]. First, Nrf2 increases the expression of
GCL [103], which is the rate-limiting enzyme for glutathione
synthesis [36], so Nrf2 increases glutathione synthesis. Second,
Nrf2 can also regulate GSH-Px and glutathione reductase
(GR), and the two enzymes coordinate the regulation of gluta-
thione regeneration. Third, Nrf2 can also positively regulate
GST (ROS detoxification enzyme). Glutathione reduces ROS
through antioxidative stress to resist neurocytes apoptosis
and inhibit blood-brain barrier breakdown. In addition, glu-
tathione can also reverse the process of thiol oxidation to
disulfide in the presence of ROS (reversed by the reduction
of disulfide through sulfhydryl/disulfide exchange) [38],
thereby blocking the activation process of nmMLCK, block-
ing the middle link of blood-brain barrier breakdown,
thereby protecting the blood-brain barrier from being
destroyed. Therefore, the regulation of glutathione-related
enzymes by Nrf2 has extremely important therapeutic signif-
icance for methamphetamine-induced oxidative stress.
TBHQ regulates the above process by activating Nrf2,
thereby reducing methamphetamine-induced neurotoxicity.

4. Concluding Remarks

Methamphetamine addiction and chronic poisoning have
been widely concerned by society. The toxicity of metham-

phetamine mainly includes cardiotoxicity and neurotoxicity,
and its toxicity is closely related to oxidative stress. There are
also scholars who explored the lung toxicity of methamphet-
amine, and they found that its lung toxicity was also related
to oxidative stress [104–106]. TBHQ is a food additive often
used as an antioxidant or preservative. Many studies have
confirmed that TBHQ can activate Nrf2 [43, 45, 46] and
can play the role of antioxidative stress through Nrf2, but
the specific mechanism is not very clear. This review synthe-
sizes many scholars’ research and systematically explains
how TBHQ can resist methamphetamine-induced oxidative
stress from three perspectives, including regulating the
NADPH oxidase system, adjusting astrocytes activation,
and regulating the glutathione pathway. Methamphetamine
induces neurotoxicity including apoptosis and blood-brain
barrier breakdown through oxidative stress. This review also
briefly introduces the mechanisms of methamphetamine-
induced neurotoxicity. Brain hyperthermia is a major cause
of death from methamphetamine, and hyperthermia is one
of the factors that produce excessive ROS and induce oxida-
tive stress. All in all, the redox imbalance induced by meth-
amphetamine is an important reason for its neurotoxicity,
so the prevention and treatment of methamphetamine-
induced neurotoxicity can be started from the aspect of anti-
oxidation. As a food additive, TBHQ has almost no toxic and
side effects. If the antioxidative effect of TBHQ can be used
for the prevention and treatment of methamphetamine tox-
icity, it will provide a new and safer treatment for metham-
phetamine addiction. This review comprehensively and
systematically introduces TBHQ, which is expected to pro-
vide new clues and develop new methods for the detoxifica-
tion treatment of methamphetamine. As the number of
methamphetamine users increases year by year, research
and reviews in this area have increasingly important clinical
significance.
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