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Background. Paraquat (PQ) poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and
pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered.Methods and Findings. We
demonstrated that PQ injuresmitochondria and leads tomtDNA release.ThemtDNAmediated PBMC recruitment and stimulated
the alveolar epithelial cell production of TGF-𝛽1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid
(BALF) were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly
improved survival. Acute lung injurymarkers, such as TNF𝛼, IL-1𝛽, and IL-6, andmarker of fibrosis, collagen I, were downregulated
in parallel with the elimination ofmtDNAbyDNaseI.These data indicate a possiblemechanism for PQ-induced,mtDNA-mediated
lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-
induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial
lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-
induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

1. Introduction

Acute lung injury and subsequent pulmonary fibrosis are a
common clinically critical problemwith extremely highmor-
tality andmorbidity.Multiple reasons, such as environmental
factors, infections, and autoimmune factors, can trigger or
perpetuate this pathophysiological process of aberrant lung
injury and healing, but its precise mechanism is largely
undetermined. Currently, no effective treatment has been
shown to halt or reverse its development or progression [1].

Paraquat (1,1-dimethyl-4,4-bipyridinium dichloride, PQ)
is one of the most widely used nonselective bipyridyl herbi-
cides around the world, particularly in developing countries,
such as China and India. PQ poisoning is a lethal toxicolog-
ical challenge to humans and animals and is characterized
by acute lung injury and irreversible pulmonary fibrosis [2–
5]. No known antidote for PQ has been discovered, and the
treatment options are merely supportive [6]. Thus, exploring

the mechanism of PQ-induced lung injury may help to
develop life-saving treatments for PQ poisoning and serve as
a unique disease model for studying other types of acute lung
injury and pulmonary fibrosis.

It has been demonstrated that PQ is toxic to green
plants by attacking chloroplasts and interfering with vital
photosynthesis [7]. In mammals, mitochondria are the coun-
terpart organelle to chloroplasts. PQ cytotoxicity as a result
of targeting mitochondria was proposed and demonstrated
both in vitro and in vivo several decades ago [8–10], but the
exact mechanism of PQ-induced mitochondrial dysfunction
and, more importantly, how this links to lung injury and
fibrosis are unknown. It is noteworthy that PQ cannot be
detected in the plasma a few hours after ingestion due to
rapid clearance by the kidneys [11].Therefore, a PQ-triggered
but self-sufficient pathway that mediates the subsequent lung
injury and fibrosis is likely. Mitochondria are endosymbionts
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Table 1: Primers used in the experiment.

Genes Forward primer Reverse primer
GAPDH (human) 5󸀠-GCACCGTCAAGGCTGAGAAC-3󸀠 5󸀠-ATGGTGGTGAAGACGCCAGT-3󸀠

Cytochrome B (human) 5󸀠-ATGACCCCAATACGCAAAAT-3󸀠 5󸀠-CGAAGTTTCATCATGCGGAG-3󸀠

𝛼-SMA (human) 5󸀠-GCGTGGCTATTCCTTCGTTACT-3󸀠 5󸀠-GCTACATAACACAGTTTCTCCTTGATG-3󸀠

Vimentin (human) 5󸀠-CCGCCCTAGACGAACTGGGTC-3󸀠 5󸀠-AGGCTGTGGACAGTGGCTTCTG-3󸀠

N-cadherin (human) 5󸀠-CCTCCAGAGTTTACTGCCATGAC-3󸀠 5󸀠-GTAGGATCTCCGCCACTGATTC-3󸀠

E-cadherin (human) 5󸀠-GCCTCCTGAAAAGAGAGTGGAAG-3󸀠 5󸀠-TGGCAGTGTCTCTCCAAATCCG-3󸀠

Tjp-1 (human) 5󸀠-GTCCAGAATCTCGGAAAAGTGCC-3󸀠 5󸀠-CTTTCAGCGCACCATACCAACC-3󸀠

Cytokeratin (human) 5󸀠-AGCAGAATCGGAAGGACGCTGA-3󸀠 5󸀠-ACCTCGCTCTTGCTGGACTGAA-3󸀠

𝛽-actin (mice) 5󸀠-ATGCTCCCCGGGCTGTAT-3󸀠 5󸀠-CATAGGAGTCCTTCTGACCCATT-3󸀠

Cytochrome B (mice) 5󸀠-CCTATCAGCCATCCCATAT-3󸀠 5󸀠-GGAAGAGGAGGTGAACGA-3󸀠

that originated from purple bacteria approximately 1.5 × 109
years ago [12] and are the only organelle of the mammalian
cell except for the nucleus that contains its own DNA, that
is, mitochondrial DNA (mtDNA) [13]. mtDNA contains
a higher frequency of unmethylated cytosine-phosphate-
guanine (CpG) dinucleotides, similar to bacterial DNA,
which can promote innate immune responses through TLR-9
[14, 15]. Circulating mtDNA from tissue injury was recently
found to be essential to mediate the systemic inflammatory
response and target organ damage [16]. Mitochondria have
thus been termed the “Trojan Horse,” capable of triggering
inflammation and forming a vicious circle that results in
profound tissue injury [17].

This study attempted to identify pathways underlying the
role of PQ in mitochondrial dysfunction and mtDNA release
in lung injury. The results may herald new interventions for
treating this fatal toxicological condition. In addition, they
may also suggest new methods for the management of other
forms of acute lung injury and pulmonary fibrosis.

2. Methods

2.1. Reagents and Cell Lines. Paraquat and DNaseI were
purchased fromSigma (St. Louis,MO,USA).Human alveolar
type II-like epithelial A549 cells, human pulmonary fibrob-
last (HFL1) cells, and human pulmonary artery endothelial
cells (HPAECs) were obtained from Cell Bank (Shanghai
Institute of Cell Biology, China). The culture conditions were
adapted from a previous report [18]. The Cell Counting Kit-8
(Dojindo, Japan), the mitochondrial-specific cationic dye JC-
1 (Molecular Probes, OR, USA), human IL-1𝛽, IL-6, TNF-𝛼,
and TGF-𝛽1 ELISA kits (R&D, Minneapolis, MN, USA), and
the Vascular Permeability Kit (Millipore Corporation) were
all used according to the manufacturers’ protocols.

2.2. Measurement of mtDNA and Real-Time PCR. A549 cells
were seeded into sterile, flat-bottom, 6-well plates at 0.5 ×
106 cells/well and grown overnight to 80% confluence. They
were challenged with a control or various concentrations
of PQ. Cell supernatants were harvested and centrifuged
at 800 rpm for 5min to remove cellular debris. mtDNA
was extracted from the supernatants using a QIAamp
DNA Blood Mini Kit (Qiagen, USA). The concentration of
mtDNA was determined using a standard curve generated

by quantitative PCR (qPCR) (construct plasmids (PGM-
T) containing human or mouse mitochondrial CytoB gene
sequences; the primers are provided in Table 1). Total RNA
was extracted using TRIzol reagent (Invitrogen, USA) and
reverse-transcribed using the Prime Script cDNA Synthesis
Kit (Takara, Japan). The primers for 𝛼-SMA, type I collagen,
type III collagen, vimentin, N-cadherin, E-cadherin, TJP-1,
cytokeratin, and 𝛽-actin are also provided in Table 1. qPCR
was performed using SYBR Premix Ex (Takara, Japan) on an
ABI Prism 7900HT system.

2.3. Chemotaxis Assays and Flow Cytometry. PQ-primed
A549 cell supernatants enriched for mtDNA (approximately
104 copies/𝜇L) were treated with or without DNaseI for the
chemotaxis assay. Whole blood samples were obtained from
healthy volunteers. Cells were isolated immediately by a
one-step gradient centrifugation method using Polymorph-
prep reagent according to the described protocol [19]. The
chemotactic responses of PBMCs and PMNs were assessed
by transwell cell culture chambers with polycarbonate filters
with 5 𝜇m pores. The fold chemotaxis index was calculated
by dividing the number of cells migrating in the presence
of supernatants by those migrating toward medium alone.
Anti-CD14-APC, anti-CD3-FITC, and anti-CD19-PE (BD
Biosciences, San Jose, CA) were used to distinguish the
subtypes of the migrated cells by flow cytometry.

2.4. Real-Time Cell Analysis. HPAECs or HFL1 cells were
seeded into 96-well microtiter plates (E plate) at a density
of 5000 cells/well. After cell synchronization, the cells were
treated with different stimuli and monitored. Transendothe-
lial monolayer electrical resistance [20] and the cell index
were measured using the xCELLigence Real-Time Cell Ana-
lyzer (Roche, USA).

2.5. Animals and Study Protocols. C57BL/6Jmice (8–10weeks
of age, 𝑛 = 144), all males, were purchased from the Shanghai
SLAC Laboratory Animal Co. Ltd. (Shanghai, China). The
mice were intraperitoneally injected with PQ (40mg/kg or
25mg/kg, as indicated) or normal saline on day 1. Some
mice were injected intravenously with DNaseI (0.3mg/kg,
3mg/kg, or 30mg/kg) or vehicle on day 0 (one day before
the PQ or sham exposure), day 2, day 5, and day 8. Before
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Figure 1: PQ injures mitochondria and leads to mtDNA release. ((a)-(b)) The mitochondrial membrane potential decreased in A549 cells
(changed from red to green) following a 24 h exposure to various doses of PQ. PQ reduced A549 cell viability (red line) in a dose- (c) and
time-dependent manner ((d), PQ 600 𝜇m) and was correlated with increased mtDNA release (black line) into the supernatant. (e) A549 cells
were incubated with or without (control) 600 𝜇mPQ for 12 h and then washed. Fresh mediumwas added, and the cells were cultured for 12 h.
The supernatant mtDNA level was elevated among PQ-primed cells.

euthanasia, the mice were anesthetized with pentobarbital
(60mg/kg) and subsequently underwent a median thora-
costernotomy, bronchoalveolar lavage, exsanguination via
the inferior vena cava, and removal of both lungs. The left
lung was cut into two pieces, snap-frozen in liquid nitrogen,
and stored at −80∘C until mRNA extraction. The right lung
was immediately fixed in 10% neutral buffered formalin and
embedded in paraffin for hematoxylin and eosin staining
(HE) or Masson’s trichrome staining. Survival experiments
(for each group, 𝑛 = 10) were repeated three times.
Survival curves were calculated by pooling the data of the

three independent experiments.Thebleomycin-induced lung
injury model was generated according to a previous report
[21]. Survival experiment was also carried out accordingly.
A quantitative fibrosis scale (Ashcroft scale) was used [22].
Immunohistochemical staining for 𝛼-SMA was performed
according to the manufacturer’s instructions. The study
protocols were approved by the Animal Care Committees of
Shanghai Jiao Tong University School of Medicine.

2.6. BALF from Patients with Amyopathic Dermatomyositis-
Related Interstitial Lung Disease (CADM-ILD) or Controls.
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Figure 2: PQ-induced mtDNA release can enhance PBMC recruitment. (a) The chemotactic index of PBMCs but not PMNs increased after
incubation with PQ-primed mtDNA-enriched supernatant. (b)The endothelial transwell fluorescein leakage assay displayed no difference in
the presence of either PQ or PQ-primed mtDNA. ((c)-(d)) PQ and PQ-primed mtDNA had no statistical significant impact on endothelial
cell integrity, as assessed with transendothelial monolayer electrical resistance.

BALF was obtained from patients with CADM-ILD (𝑛 = 14)
or patients with pulmonary solitary mass or nodule (𝑛 =
11) as controls. All patients were following a standardized
bronchoscope procedure, and controls’ BALF was recovered
from the contralateral (“normal”) side of the middle lobe.
The study protocol was approved by the institutional review
board of Shanghai Renji Hospital, Shanghai Jiao Tong Uni-
versity School of Medicine, with patients’ informed consent
obtained.

2.7. Statistical Analysis. The data are shown as the mean
± SEM of at least three independent experiments. The
statistical significance between groups was analyzed using
GraphPad Prism v4.0 Software (San Diego, CA, USA). Two-
group comparisons of continuous data were assessed by
either a two-tailed Student’s 𝑡-test or a nonparametric Mann-
Whitney 𝑈 test. ANOVA with a Bonferroni correction was
used formultiple comparisons. Kaplan-Meier survival curves

were calculated. A 𝑃 value less than 0.05 was considered
significant.

3. Results

3.1. PQ Injures Mitochondria and Leads to mtDNA Release.
We first assessed the impact of PQ on mitochondria in
human alveolar type II-like epithelial A549 cells by fluores-
cence staining with the mitochondrial membrane potential-
dependent dye JC-1. The mitochondrial membrane potential
was decreased in the presence of PQ in a concentration-
dependent manner (Figures 1(a) and 1(b)), indicating that the
integrity of the mitochondria was disrupted by PQ. A similar
result was obtained in a CCK8 assay, which demonstrated
a reduction of cell viability and increased mtDNA release
into the cell supernatant in a PQ dose- and time-dependent
manner (Figures 1(c) and 1(d)). To further mimic the rapid
clearance of PQ in vivo, cells were treated with PQ for 12 h
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Figure 3: PQ-primed mtDNA stimulates alveolar epithelial (A549) cell production of TGF-𝛽1. (a) PQ-primed mtDNA did not stimulate
fibroblast (HFL1) proliferation. (b) PQ-primed mtDNA increased A549 cell TGF-𝛽1 expression but had no effect on epithelial-mesenchymal
transition marker expression (c) nor on downregulating epithelial marker expression (d).

(PQ-primed) and then washed. Fresh medium was added,
and the cells were incubated for 12 h. mtDNA release into
the supernatant continued after PQ removal (Figure 1(e)),
which is consistent with an ongoing injury response. PQ-
primed supernatants enriched with mtDNA were used in the
following secondary cultures.

3.2. PQ-InducedmtDNARelease Can Enhance PBMCRecruit-
ment. PQ-induced acute lung injury is characterized by
inflammatory responses. We therefore investigated whether
PQ-primed mtDNA could recruit effector cells. Indeed,
enhanced chemotaxis of PBMCs but not neutrophils was
observed under PQ-primed mtDNA-enriched conditions in
a transwell assay; the effect was abolished when DNaseI was
added to remove the mtDNA (Figure 2(a)). Flow cytome-
try analysis showed no difference in chemotaxis between
PBMC subtypes, including T cells, B cells, NK cells, and
monocytes (data not shown). This is likely to be an active
attraction process instead of passive leaking due to the
breakdown of the endothelial barrier. There was no signif-
icant change in transendothelial permeability as measured
using transendothelial monolayer electrical resistance and

an endothelial transwell fluorescein leakage assay, regardless
of the presence of PQ or PQ-primed mtDNA-containing
supernatants (Figures 2(b), 2(c), and 2(d)).

3.3. mtDNA Stimulates Alveolar Epithelial Cell Production
of TGF-𝛽1. We next evaluated how PQ-induced pulmonary
fibrosis was mediated by mtDNA. We initially investigated
human pulmonary fibroblast (HFL1) cells and observed no
direct proproliferation effect of PQ-primed mtDNA on the
fibroblasts (Figure 3(a)). It was also possible that the recruited
circulating monocytes could be precursors that transform
into fibrocytes [23]. However, the impact of this transforma-
tion could not be observed in the presence of mtDNA or
PQ in a conditioned culture of mouse splenocytes (data not
shown). Epithelial-mesenchymal transition may also occur
and be essential in pulmonary fibrosis. Indeed, PQ-primed
mtDNA stimulated alveolar epithelial cells (A549) to produce
TGF-𝛽1 (Figure 3(b)), although the epithelial-mesenchymal
transition markers 𝛼-SMA, vimentin, and N-cadherin were
not increased. Likewise, real-time PCRdemonstrated that the
epithelial markers E-cadherin, TJP-1, and cytokeratin were
not downregulated (Figures 3(c) and 3(d)). Quite opposite,
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Figure 4: The levels of circulating and BALF mtDNA are elevated in a mouse model of PQ-induced lung injury. ((a)-(b)) C57BL/6 mice
injected with PQ (25mg/kg, i.p., d1 and d3) displayed typical acute lung injury and pulmonary fibrosis compatible with the classic bleomycin
(BLM) model. (c) The time course of mtDNA detection differed in the plasma (bar) and BALF (red line).

E-cadherin was upregulated by PQ for unknown reason, and
this effect is apparently independent of mtDNA. Neverthe-
less, it is conceivable that TGF-𝛽1 acts as a critical factor
driving fibrosis and is upregulated by PQ-primed mtDNA
to further act in the fibrogenic pathway in PQ-induced
pulmonary fibrosis.

3.4. Circulating and BALF mtDNA Are Elevated in a Mouse
Model of PQ-Induced Lung Injury. A PQ-induced lung
injury model was established (25mg/kg PQ intraperitoneally
injected on day 1 and day 3). The model resulted in better
homogeneity in lung pathology compared to the classic
bleomycin (BLM) model, which is intratracheally delivered
(Figures 4(a) and 4(b)).ThemtDNA level was elevated in the
plasma and BALF of mice administered PQ, but the patterns
differed between the two (Figure 4(c)). The mtDNA level
peaked in the BALF at day 7, which is more representative
of acute lung injury that subsequently induces pulmonary
fibrosis.

3.5. DNaseI Protects PQ or Bleomycin-Induced Lung Injury
in Mice and Improves Survival. DNaseI was administered
intravenously 1 day prior to (day 0) exposure to the lethal
dose of PQ (40mg/kg, i.p.) and on days 2, 5, and 8 after
the PQ challenge. DNaseI resulted in significant protec-
tion against PQ poisoning, as demonstrated by up to 70%
survival observed in the DNaseI treatment group com-
pared to the 100% mortality observed in the PQ control
(Figure 5(a)). BALF and circulating mtDNA were elimi-
nated in vivo by DNaseI (Figure 5(b)) in parallel with the
downregulation of acute lung injury markers, including
BALF total protein exudation, TNF𝛼, IL-1𝛽, and IL-6, at
day 3 and marker of fibrosis, collagen I, at day 28 in a
DNaseI dose-dependent manner (Figures 5(c) and 5(d)).
The improved survival was also appreciated in the classic
bleomycin-induced pulmonary fibrosis mice model. 90%
survival was achieved in the DNaseI treatment groups versus
a 50% survival in the bleomycin control group on day 28
(Figure 6(a)).
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Figure 5: DNaseI prevents PQ-induced lung injury in mice and improves survival. (a) C57BL/6 mice (𝑛 = 30 for each group) were
challenged with an acute lethal dose of PQ (40mg/kg, i.p.) or sham exposure on day 1. Some mice were administered DNaseI or vehicle
at the indicated doses on days 0, 2, 5, and 8. (b) DNaseI suppressed the circulating and BALF mtDNA levels in a dose-dependent manner.
((c)-(d)) Downregulation of total protein exudation, TNF𝛼, IL-1𝛽, IL-6, and collagen I in a DNaseI dose-dependent manner.

3.6. mtDNA Were Increased in BALF from Patients with
CADM-ILD. mtDNA in BALF from patients with CADM-
ILD was significantly elevated compared to controls (𝑃 =
0.0002) (Figure 6(b)).

4. Discussion

In the current study, we demonstrated that PQ injures
mitochondria, causing subsequent mtDNA release. During
PQ-induced oxidative stress, mitochondria can be a major
source of reactive oxygen species (ROS) production [24–27].
mtDNA, located close to the inner mitochondrial membrane

where ROS are generated, is susceptible to oxidative damage
[28]. In addition, ROSmay also facilitatemtDNA release [29].
However, the mechanism by which PQ targets mitochondria
is still undetermined and requires further investigation. As
an example, Chen and colleagues observed that PQ-induced
Nrf-2, an antioxidative transcriptional factor, in lung alveolar
epithelial cells and Nrf-2 siRNA reversed the PQ-induced
mRNA expression profile in vitro [30]. Paradoxically, in
vivo data suggested that Nrf2−/− mice are more suscepti-
ble to gastric aspiration-induced acute lung injury [31], as
well as to Staphylococcus aureus-induced lung injury [32].
Nevertheless, our data are the first to demonstrate that
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Figure 6: DNaseI improves survival in bleomycin-induced pulmonary fibrosis mice and mtDNA was increased in BALF from CADM-ILD
patients. (a) Improved survival in bleomycin-induced pulmonary fibrosis mice by i.v. administration of DNaseI (𝑛 = 10 for each group). (b)
mtDNA in BALF from patients with CADM-ILD (𝑛 = 14) was significantly elevated compared to controls (𝑛 = 11). Mean and SEM values
were indicated.

mtDNA is the mediator of PQ-induced acute lung injury
and pulmonary fibrosis. mtDNA is a double-stranded, closed
circular molecule of 16,569 nucleotide pairs. As a potent
innate immune system stimulator, Zhang and colleagues
found that circulating mtDNA and formyl peptides can
induce a systemic inflammatory response to injury via TLR9
and other DAMP pattern recognition pathways’ activation
[16]. According to our data, PQ-inducedmtDNA is capable of
mediating the recruitment ofmononuclear cells but not poly-
morphonuclear cells. This chemotaxis process is apparently
independent of endothelial barrier disruption. PQ-induced
mtDNA can also enhance alveolar epithelial cell TGF-𝛽1
production. As one of the key profibrotic molecules, TGF-𝛽1
is elevated in the lung tissue of PQ treated mice according
to our previous data [33], similar to the finding in bleomycin
model [34]. More importantly, the effects of mtDNA in vitro
are all reversible in the presence of DNaseI.

The most interesting finding was the in vivo observation
that the intravenous administration of DNaseI displayed a
striking protective effect against both PQ- and bleomycin-
induced lung injury in mice. It is noteworthy that early
intervention with DNaseI in the acute lung injury phase
is crucial and parallels the timing of the BALF mtDNA
peak in PQ model. In addition to its wide use in molecular
biology research, DNaseI has been approved as a nebulizing
agent for patients with cystic fibrosis [35]. Endogenous
DNaseI deficiency due to a genetic polymorphism in lupus
has been postulated to be responsible for inappropriate
nuclear debris clearance and results in immune system
overload and antinuclear autoantibody generation [36, 37].
However, a phase I trial in SLE patients failed to display
efficacy of the intravenous and subcutaneous administration

of recombinant humanDNaseI, although its safety profilewas
acceptable [38].

Caudrillier and colleagues recently found that the forma-
tion of neutrophil extracellular traps (NETs) is essential to
mediate transfusion-related acute lung injury [39]. DNaseI
and histone-blocking antibodies that inhibit NET formation
are both protective against transfusion-related acute lung
injury in mice. Although the pathogenesis of this acute lung
injury is different from PQ-induced lung injury, a shared
pathway may exist. For example, the possibility that mtDNA
is an important NET component cannot be excluded. It is
also informative that themtDNA level is significantly elevated
in the BALF of patients with CADM-ILD, which is another
lethal autoimmune condition with acute lung injury and
pulmonary fibrosis [40]. There are increasing evidences sug-
gesting that mtDNA is a promising therapeutic target, such
as mtDNA repair enzyme 8-oxoguanine DNA glycosylase 1
andDNA repair enzyme endonuclease III which all displayed
a certain protective effect against different models of lung
injury [41–44]. Taken together, the rationale for initiating
clinical trials onDNaseI for PQ-induced lung injury is sound,
and such attempts to tame the “Trojan Horse” in other forms
of lung injury and pulmonary fibrosis will be breathtaking.
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