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ABSTRACT

Ribosome profiling spectra bear rich information on
translation control and dynamics. Yet, due to tech-
nical biases in library generation, extracting quan-
titative measures of discrete translation events has
remained elusive. Using maximum likelihood statis-
tics and data set from Escherichia coli we develop
a robust method for neutralizing technical biases
(e.g. base specific RNase preferences in ribosome-
protected mRNA fragments (RPF) generation), which
allows for correct estimation of translation times
at single codon resolution. Furthermore, we vali-
dated the method with available datasets from E. coli
treated with antibiotic to inhibit isoleucyl-tRNA syn-
thetase, and two datasets from Saccharomyces cere-
visiae treated with two RNases with distinct cleavage
signatures. We demonstrate that our approach ac-
counts for RNase cleavage preferences and provides
bias-corrected translation times estimates. Our ap-
proach provides a solution to the long-standing prob-
lem of extracting reliable information about peptide
elongation times from highly noisy and technically
biased ribosome profiling spectra.

INTRODUCTION

Ribosome profiling (or Ribo-Seq) couples cell-wide profil-
ing of the positions of translating ribosomes on messen-
ger (mRNA) at single codon resolution (1) with deep se-
quencing (2) and has provided new insights into regulation
of protein synthesis across species (reviewed in (3–5)). The
approach requires rapid arrest of mRNA translation fol-
lowed by isolation of intact mRNA-ribosome complexes,
nuclease digestion of unprotected mRNA and generation
of a deep-sequencing library from the ribosome-protected
mRNA fragments (RPFs) (2). Interpretation of the RPFs
in terms of elongation times at single codon resolution re-
quires (i) ribosomal arrest to be faster than the single pep-

tide elongation steps, (ii) precise estimation of the distance
of the ribosomal A site (that is the ribosomal site accept-
ing aminoacyl-tRNA-elongation factor complex) from the
5′- or 3′-ends of RPFs, (iii) neutralization of sequence-
dependent biases in the experimental protocol (i.e. nucle-
ase cleavage, amplification in the library preparation) (3,6).
Fulfillment of these criteria enables determining translation
time for any particular codon in the transcriptome.

Codon resolution of the RPF spectra is generally higher
in eukaryotes than in bacteria. In eukaryotes, RNase I is
the nuclease of choice and it cleaves precisely at ribosome
boundaries (7). RNase I is inhibited by the bacterial ri-
bosome (8), thus micrococcal nuclease (MNase, S7 nucle-
ase) is most widely applied in generating bacterial Ribo-
Seq libraries. MNase, however, cleaves with base-dependent
specificity, preferably before A and U (9). Systematic analy-
sis reveals that the MNase generated RPFs have more vari-
able lengths at their 5′- than at their 3′-ends (7,10). Conse-
quently, using the more precise MNase cleavage at the 3′-
end to infer the A-site codon position improves the resolu-
tion of bacterial ribosome profiling sets (6,7), yet the bias in
RPF generation due to the nucleotide-dependent specificity
of the MNase persists.

An additional source of bias in the Ribo-Seq libraries
is the local RPF sequence composition including high
propensity for secondary structure formation for some
RNA fragments which can interfere with the reverse tran-
scription priming and/or with the adaptor ligation (11,12).
Attempts at considering the systematic biases across Ribo-
Seq libraries (13) or using smoothing algorithms to reduce
data variance in the presence of the inherent heterogeneous
noise of the ribosome profiling data sets (14,15) significantly
improve the ability to distinguish genuine ribosome pausing
from technical artifacts introduced by the library construc-
tion. Yet, a simple and robust method for neutralizing tech-
nical biases and extracting factors that determine the large
sequence context dependent variations in translation speed
even at identical ribosomal A-site codons is missing.

In the present work, we develop a model that accounts
for the local codon context-dependent variation of peptide
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elongation times and RPF generation/processing biases. In
total, we use 915 context-defining parameters, which are es-
timated by fitting the model-predicted RPF spectra to the
experimental, transcriptome-wide RPF spectra using non-
linear regression with maximum likelihood (ML) statistics.
We also consider ribosome profiling spectra at single nu-
cleotide resolution with homogenous fragment size to iden-
tify and neutralize RPF generation/processing biases near
the 5′- and 3′-fragment ends. Our results suggest that an in-
ner local context of five codons, including those at the A, P
and E sites, accounts for the ribosomal dwell time on each
A-site codon of the transcriptome. This determination of
the peptide elongation times provides a basis for a detailed
understanding of the dynamics of protein synthesis in living
cells.

MATERIALS AND METHODS

Ribo-Seq library generation

Escherichia coli B strain AS19 was grown in LB medium
until the culture reached an OD600 of 0.5. Cells were har-
vested by flash freezing and libraries from biological repli-
cates were prepared for ribosome profiling by direct liga-
tion of the platform-specific sequences or adapters as de-
scribed (16). Sequenced RPFs were quality trimmed us-
ing fastx-toolkit (0.0.13.2; quality threshold: 20), sequenc-
ing adapters were cut using cutadapt (1.8.3); minimal over-
lap: (1 nt) and uniquely mapped to the E. coli genome
(strain MG1655, version U00096.3, NCBI) using Bowtie
(1.2.2) with parameters -l 16 -n 1 -e 50 -m 1––strata––best
y. The RPF counts for each ORF were normalized per total
mapped reads per million (RPM) (17) and calibrated to the
A site using the 3′-ends of the RPFs as described earlier (18).
The data sets generated in this study are accessible under the
accession number GSE145571. Furthermore, we analyzed
in the same way the following data sets: GSM3358136 and
GSM3358137 for Ribo-Seq libraries of E. coli MG1655 cul-
tured in MOPS complete synthetic media containing all 20
amino acids with no treatment or treated for 10 min with
200 �M mupirocin, respectively, and collected by filtration
(6), and GSM2186726 and GSM2186728 for S. cerevisiae
libraries in which the RPFs were generated using MNase
and RNase A, respectively (19).

Modeling strategy for Ribo-Seq spectra

Each RPF is assigned to a codon position j of the open
reading frame from gene i, ORFi. The detected number of
RPFs, cexp

i j , often colloquially referred to as ‘RPF counts’,
reflects the number of ribosomes with this particular codon
in A site at the moment of flash-freezing of the cells as
well as biases in the nuclease digestion of mRNA and
in the further amplification/processing to DNA libraries
(3,9,11,12,14,20). The expected value λi j of the stochastic
integer cexp

i j at any A-site codon position (i,j) we write as:

λi j = cRPF · νi · τi j · γ B
i j . (1)

Here, cRPF is the same constant for all A-site positions
(i,j), νi is the global frequency of translation initiation of
an ORF of type i in the cell population and proportional

to the ORFi expression level, τi j is the expected peptide
elongation cycle time, γ B

i j is a ‘bias’ factor that depends on
the context of codon j in ORFi and reflects the extent of
digestion/processing/ amplification biases in Ribo-Seq li-
brary preparation. We note that cRPF constant reflects the
depth of Ribo-Seq library. Its numeric value depends on the
number of translating ribosomes in the cell population used
for library preparation and also on the efficiencies of liga-
tion, RPF amplification and sequencing.

Each elongation time τi j in Equation (1) is the product
of a time calibration factor τ e and a parameter γ T

i j that, like
γ B

i j , depends on the context of codon j but is proportional to
the peptide elongation cycle time: τi j = τ eγ T

i j . Accordingly,
we re-write Equation (1) as:

λi j = cRPF · νi · τ e · γ T
i j · γ B

i j = ϕi · γi j . (2)

Here, parameter ϕi = cRPFνiτe is proportional to global
frequency of translation initiation νi of ORFi and γi j is de-
fined by γi j = γ T

i j · γ B
i j . The expected value of RPF counts,

λi j , contains two factors of great physiological relevance,
namely the protein expression level νi from gene i and the
expected peptide elongation cycle time τi j = τ eγ T

i j at A-site
codon j in transcript i. The major methodological task is,
therefore, to elicit reliable estimates of the expected values,
ϕi , proportional to νi , and τi j for all codons (i, j) from the
experimental sets of the sampled cexp

i j values and known
growth rate, μ, of the bacterial culture. When cexp

i j is much
larger than 1, it provides a reliable estimate of λi j but for
small cexp

i j values its statistical nature must be accounted for
by the probability P(cexp

i j ) that the number of RPF counts
from A-site codon (i,j) is cexp

i j . The RPF counts cexp
i j are ob-

tained from ligated RNA fragments with copy numbers am-
plified by PCR and greatly reduced in the sequencing proce-
dure. The probability distributions for RNA fragments after
ligation are of Poisson type (Supplementary Text), the dis-
tributions of DNA fragments after amplification are burst-
like (21) and the distributions of sequenced DNA fragments
PNA(cexp

i j |λi j , v = A · q) are of Neyman type A. At small val-
ues v = A · q, where A is the PCR copy number amplifica-
tion factor and q is the fraction of the amplified library that
has been finally sequenced, the Neyman type A distribution
is close to Poisson but with variance equal to the expected
value (λi j ) multiplied by a constant factor 1 + A · q (Supple-
mentary Text). Under our experimental conditions the A · q
product is smaller than 1, and for the simplicity in what fol-
lows, we assume the copy number distribution for any (i,j)
fragment to be of Poisson type:

Po(cexp
i j |λi j ) =

(
λi j

)cexp
i j

cexp
i j !

e−λi j (3)

We ascribe a log-likelihood function L for the whole tran-
scriptome based on all Po(cexp

i j |λi j ) probabilities:

L = loge

⎛
⎝∏

i, j

Po(cexp
i j |λi j )

⎞
⎠ . (4)
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Figure 1. Local and global codon contexts for a ribosome translating an
ORF of type i. Global A-site parameter j corresponds to the local A-site
parameter p = pA = 8. Global parameter j’ corresponds to the local pa-
rameter p through j’ = j-pA+p, where p varies from 1 to pL= 15, so that P
and E site correspond to p= 7 and p = 6, respectively.

In what follows we develop a model for the λi j values in
Equation 1 built on the hypothesis that each γi j in Equa-
tion (2) is determined by a local context of the current A-
site codon j in ORFi and that this context is composed of pL,
codons with the A site at its near middle position (Figure 1).
For clarity, below we make explicit three distinct description
levels of parameters in our approach: directly experimental
(e.g. cexp

i j ), modelled (e.g. c mod
i j ) and expected (e.g. λi j ) val-

ues of key parameters. For ease of identification, we also use
the Latin letters for the first two categories and Greek letters
for the third one (Table 1).

Ribo-seq spectral modeling at single codon resolution

To obtain estimates for all λi j values (Eq. 1 or 2), we intro-
duce model RPF counts, c mod

i j composed of a factor f mod
i

for gene i, estimating ϕi multiplied by a local context factor
g mod

i j , estimating γi j in Equation (2):

c mod
i j = f mod

i · g mod
i j . (5)

Each local codon context position (p) among the total
number pL of context defining positions contributes with a
factor zp,c to the value of g mod

i j :

g mod
i j =

pL∏
p=1

zp,seqi ( j+p−pA). (6)

Each factor zp,c is determined by the identity (c) of each
one of the 64 possible codons at each position p (Figure 1).
Index seqi ( j + p − pA) identifies the codon at local posi-
tion p, corresponding to global codon position j + p −pA
in ORFi sequence (Figure 1). We fit the model RPF counts,
c mod

i j , to the experimental RPF counts, cexp
i j , in the inner

ORFs regions, by adjusting the pL × 61 context factors zp,c
to maximize a Poisson-based likelihood function (Equation
4). If not stated otherwise, we use pL = 15, so that a to-
tal of 915 (15 × 61 = 915) factors zp,c estimate all g mod

i j -
values in all potential contexts, where 61 is the number of
sense codons. The E. coli transcriptome may contain up
to 1.8 × 106 distinct contexts (about 6000 ORFs and 300
codons per ORF), and the ultimate number of contexts
for which g mod

i j could be predicted by the model is 6115 ≈
1027. In the next section, we describe how model parame-

ters are derived from experimental data by maximizing a
transcriptome-wide log likelihood function.

Ribo-seq spectral modeling with maximum likelihood (ML)
estimation of local codon context parameters

To extract model parameters f mod
i (Equation 5) and zp,c

(Equation 6) from Ribo-Seq datasets, we assume that each
cexp

i j value is sampled from a Poisson distribution with
expected value λi j (Equation 3), the latter estimated by
the model parameter c mod

i j (Equations 5 and 6). The log-
likelihood function L for the RPF spectrum takes the simple
form (see also Equation 4):

L = ln
∏
i, j

Po(cexp
i j |c mod

i j )

=
∑

i

∑ j=li −pL+pA

j=pA
(−c mod

i j + cexp
i j ln c mod

i j − ln(cexp
i j !)).

(7)

Here, the j-summations for each ORFi are confined to
an internal ORF region starting at codon pA and end-
ing at codon li − pL + pA with a total number of inter-
nal codons, ni = li − pL, where li is the total number of
ORFi codons. In what follows we use the short hand
notation

∑
j = ∑ j=li −pL+pA

j=pA
for the j-summations in Equa-

tion 7. The maximal value of L (Equation 7) is obtained by
setting its partial derivatives with respect to all f mod

i and
zp,c parameters equal to zero, which leads to the follow-
ing equation system for determination of all zp,c parameters
(see Supplementary Text):

�exp
p,c =

∑
i

f mod
i

∑
j

g mod
i j δc,seqi (p+ j−pA), (8)

where

f mod
i = Cexp

i∑
j g mod

i j

. (9)

Here, δc,s is the ‘Kronecker delta function’ equal to 1 and
0, when c = s and c �= s, respectively; Cexp

i = ∑
j cexp

i j (Ta-
ble 1) and �

exp
p,c is a function that depends on codon type

‘c’ at local position ‘p’ (Figure 1). �
exp
p,c is calculated from

experimental RPF counts cexp
i j (and sequence data) as:

�exp
p,c ≡

∑
i

∑
j
cexp

i j δc,seqi ( j+p−pA). (10)

We note that in the special case p = pA (Figure 1), �
exp
pA,c

is the total number of RPFs in a dataset generated by ribo-
somes with A-site codon of type ‘c’. More generally, �

exp
p,c is

the total number of RPFs for which there is a codon ‘c’ at a
distance p − pA from the A site.

With the help of Equation 6 that relates g mod
i j with

zp,c, Equations (8) and (9) are solved using a Levenberg-
Marquardt type algorithm (21,22) to obtain the table of zp,c
factors (see Supplementary Text). Using the obtained zp,c

factors we compute local context parameters g mod
i j (Equa-

tion 6), and then model RPF counts c mod
i j from Equa-
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Table 1. Meaning of key parameters of the present work

Expected parameters

λi j = cRPF · νi · τi j · γ B
i j = ϕi γi j Expected number of RPF counts from codons at position j in open reading frames

from gene i (ORFi) in cell population
cRPF Constant reflecting the depth of the Ribo-Seq library as determined by the number of

translating ribosomes in the cell population, efficiencies of RPF generation, ligation,
amplification and sequencing.

νi Expected number of initiations on ORFi.
γ B

i j Technical factor, determined by context bias efficiencies of RPF generation, ligation
and amplification for codon j in ORFi.

τi j = γ T
i j · τ e Expected elongation cycle time for codon j of ORFi.

τ e Expected elongation cycle time average for the whole cell population.
γ T

i j Expected codon context dependent elongation cycle time for codon j of ORFi
normalized to τ e.

ϕi = cRPF νi τe Factor proportional to global frequency νi of translation initiation of ORFi.
γi j = γ T

i j · γ B
i j Expected codon context dependent variation of number of RPFs normalized to factor

ϕi and partitioned into elongation cycle time and bias factors.
Experimental parameters
cexp

i j Measured number of RPF counts for A-site codon at position j in ORFi.
Cexp

i = ∑
j cexp

i j Sum of RPF counts for the ‘inner’ region of ORFi containing ni codons.
dexp

i = Cexp
i /ni Mean RPF density in the ‘inner’ ORFi region containing ni codons.

�
exp
p,c ≡ ∑

i
∑

j cexp
i j δc,seqi ( j+p−pA) Sum of cexp

i j over all positions j in all ORFs for which there is a codon of type ‘c’ at
position ‘j+p-pA’ .

sexp
i j = ni · cexp

i j /Cexp
i = cexp

i j /dexp
i RPF score function describing relative variation of cexp

i j along ORFi.
Modell parameters
c mod

i j = f mod
i · g mod

i j Maximum likelihood (ML) estimate of �ij.
g mod

i j = ∏pA
p=1 zp,seqi ( j+p−pA) ML estimate of γi j by a number pL of zp,c factors, each with 64 codon identity

determined values.
zp,c Underlying parameters of our model, determined from the ML fit of all c mod

i j to all

cexp
i j values.

f mod
i = Cexp

i∑
j g mod

i j
ML estimate of ϕi .

C mod
i = ∑

j c mod
i j ML estimate of the sum of model RPF counts for the ‘inner’ region of ORFi. From

the expressions for c mod
i j and f mod

i it follows that C mod
i = Cexp

i .
G mod

i = ∑
i g mod

i j ML estimate of
∑

i γi j .
s mod

i j = ni · c mod
i j /C mod

i =
ni · g mod

i j /G mod
i

RPF score function describing relative variation of c mod
i j along ORFi.

t mod
i j = tegT

i j Model estimate of the expected elongation cycle time τi j for codon j of ORFi.
te Model estimate of time factor τ e ; experimentally determined from the growth rate μ

of cell population.
gT

i j = ∏p2
p=p1

zp,seqi ( j+p−pA) Model estimate of bias-free relative elongation cycle time for codon j of ORFi;
determined by the product zp,c factor for inner position of local context of codon (i,j).

GT
i = ∑

i gT
i j Model estimate of bias-free total time for ORFi translation normalized to te.

T mod
i = ∑

j t mod
i j = teGT

i Model estimate of absolute total time for ORFi translation.
sT

i j = ni · gT
i j /GT

i Pausing score function describing relative variation of bias free translation time t mod
i j

along ORFi.

tions (5) and (9) as:

c mod
i j = Cexp

i

g mod
i j∑

k g mod
ik

. (11)

Instead of comparing experimental (cexp
i j ) and modelled

(c mod
i j ) RPF spectra of the same transcript, it is more con-

venient to compare experimental (sexp
i j ) and modeled (s mod

i j )
RPF scores defined here as:

sexp
i j = ni

cexp
i j∑

k cexp
ik

(12)

and

s mod
i j = ni

c mod
i j∑

k c mod
ik

= ni
g mod

i j∑
k g mod

ik

, (13)

where ni is the total number of internal codons in ORFi.
The average RPF density of a gene:

dexp
i = 1

ni

∑
k

cexp
ik (14)

is often used as a statistical reliability measure of its RPF
coverage profile.

The lower the dexp
i - value, the less informative the pro-

file. For example, when dexp
i < 0.5 RPFs per codon, more

than a half of the cexp
i j values in the gene profile are zeroes

and, hence, contain little information about codon trans-
lation times. We note that similar to j-summations above,
the k-summations in Eqs. 11–14 are from k = pA to k =
li − pL + pA (Figure 1). We also note that experimental
RPF scores sexp

i j are sometimes referred to as ‘normalized
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footprint counts’ (23) or ‘relative enrichment values’ (24)
and describe how much RPF counts for codon j deviate
from a per-codon average value dexp

i in the inner region of a
gene.

The zp,c factors can always be scaled so that for each posi-
tion p = 1, ....pL of the local context we have (Supplemen-
tary Text):

z̄p =
∑

c
wp,czp,c = 1, (15)

where the wp,c weighting factors are calculated as:

wp,c =
∑

i f mod
i ni,p,c∑

i f mod
i ni

, (16)

and ni,p,c is :

ni,p,c =
∑

j
δc,seq(p+ j−pA). (17)

Since f mod
i estimates νi , a parameter proportional to the

expression level of gene i (Equation 1) and ni,p,c (Equation
17) varies little with position p (see Supplementary Text),
each product f mod

i ni,p,c in Equation 16 is proportional to
the frequency with which the ribosome encounters a codon
of a type c in the inner region of ORFi. Hence, each wp,c
confers a statistical weight proportional to the frequency
with which the ribosome encounters a codon of type c in
the transcriptome (Supplementary Text).

We also introduce the ‘sensitivity parameter’ Sp as a mea-
sure of the sensitivity of zp,c to the codon identity c at local
context position p. It is defined as the standard deviation,
σp, from the mean z̄p = 1 (Equation 15) for row p of the
table of zp,c factors:

Sp ≡ σp =
√∑

c
wp,c(zp,c − z̄p)2

, (18)

where the weights wp,c are defined in Equation (16).

Ribo-seq spectral modeling at single nucleotide resolution

In order to estimate the fragment processing bias (γ B
i j ;

Equation 1), we extend our modeling resolution from codon
to nucleotide level. For this, we use the number of RPFs,
cexp,F L

i j , of single length FL with ribosomal A site located
at nucleotide j in ORFi and estimate its expected value, λF L

i j
(compare with Equations 1 and 5) as:

c mod ,F L
i j = f mod ,F L

i · g mod ,F L
i j , (19)

where each parameter g mod ,F L
i j is modeled as product of lo-

cal context z-factors (compare with Equation 6):

g mod ,F L
i j =

pNL∏
p=1

zF L
p,seqi ( j+p−pNA). (20)

Here, index j in Equations (19) and (20) refers to nu-
cleotide j of ORFi, and seqi ( j ) specifies nucleotide base
b (U, C, A or G) at transcriptome position (i,j); zF L

p.b fac-
tors form a pNLx4 table; the local nucleotide position p is

counted from p = 1, via the first nucleotide at A-site posi-
tion p = pNA to the third base of the last codon of the local
context sequence of length pNL (Supplementary Figure S1).

Parameters zF L
p.b are ML estimated by non-linear model

fitting to experimental data assuming Poisson distributed
RPF counts cexp,F L

i, j . The data treatment is formally equiv-
alent to that leading up to Equations. 8 and 9 with param-
eters f mod

i j and �
exp
p,c replaced by f mod ,F L

i j and �
exp,F L
p,b , re-

spectively. Thus:

�
exp,F L
p,b =

∑
i

Cexp
i∑

j g mod ,F L
i j

∑
j

g mod ,F L
i j δb,seqi (p+ j−pNA),

(21)

where δb,s is the Kronecker delta function and �
exp,F L
p,b is

obtained from experimental data cexp,F L
i, j through (compare

with Equation 10) :

�
exp,F L
p,b =

∑
i

∑
j
cexp,F L

i, j δb,seqi ( j+p−pNA). (22)

Assuming x to be the distance from the first A-site nu-
cleotide to the 3′-end of the RPF in nucleotides, it fol-
lows that �F L

pNA+x−F L,b and �F L
pNA+x,b are the numbers of

RPFs of length FL with nucleotide ‘b’ at 5′- and 3′-end, re-
spectively. By applying the same ML procedure as in the
codon-resolution case, we solve Equation 21 to estimate the
zF L

p.b and f mod ,F L
i factors for computing all g mod ,F L

i j and

c mod ,F L
i j parameters. Using formulae analogous to those

in Eqs 12 and 13, one can compute the model nucleotide
RPF scores sexp,F L

i j to compare them with the experimental

scores s mod ,F L
i j for RPF profiles generated from RPFs with

a length of FL nucleotides.

Construction of unbiased Ribo-Seq spectra for estimation of
relative peptide elongation times

To separate the effects of bias and peptide elongation time
variations on the RPF counts, we partition the context de-
pendent factors g mod

i j in Equation 5 into two parts:

g mod
i j = gB

i j g
T
i j , (23)

where (compare with Equation 6):

gB
i j =

p1−1∏
p=1

zp,seqi (p+ j−pA) ·
pL∏

p=p2+1

zp,seqi (p+ j−pA), (24)

and:

gT
i j =

p2∏
p=p1

zp,seqi (p+ j−pA). (25)

As shown in Results, the outer context dependent factors
gB

i j , determined by zp,c factors for outer local context posi-
tions p from 1 to p1–1 and from p2+1 to pL, mainly account
for the nuclease digestions/processing biases (B). The inner
context dependent factors gT

i j , determined by zp,c factors for
inner positions p (from p1 to p2), mainly reflect the variation
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of the peptide elongation time, hence superscript (T) in gT
i j .

We model the bias-free RPF spectrum as:

cT
i j = f mod

i gT
i j . (26)

We also introduce model pausing scores sT
i j to quantify

the relative peptide elongation time as the ribosome moves
along an ORFi (compare with Equations 12 and 13):

sT
i j = ni

gT
i j∑

k gT
ik

. (27)

From the 15 zp,c factors used to model the experimental
cexp

i j values in the dataset we normally use five inner zp,c fac-
tors to obtain bias-corrected model RPF counts cT

i j (Eqs 25,
26). This approach is distinct from using a z̃p,c-parameter
function g̃ mod

i j , defined only by the inner codons of the lo-
cal context in the p-interval from p1 to p2:

g̃ mod
i j =

p2∏
p=p1

z̃p,seqi (p+ j−pA). (28)

When the ML method is used to estimate the inner z̃p,c
parameters in Equation 28 that best account for the whole
RPF spectrum, strong technical biases inherent to cexp

i j spec-
tra distort the z̃p,c factors. This makes the model RPF scores
s̃ mod

i j , defined as:

s̃ mod
i j = ni

g̃ mod
i j∑

k g̃ mod
ik

, (29)

distinct from and inferior to the more accurate elongation
time estimating pause scores sT

i j (Equation 27).

Absolute peptide elongation cycle times from exponential
growth rate

The expected time, τi j , to translate a codon at position j of
gene i in the cell (Equation 1) is estimated by the model time,
t mod
i j , defined by the product of the local context factor gT

i j
(Equation 25) and a time factor te, estimating τ e in Equa-
tion 1:

t mod
i j = tegT

i j . (30)

It follows that the total expected time Ti to translate
ORFi (Table 1) is estimated by:

T mod
i =

∑
j
t mod
i j = teGT

i , (31)

where

GT
i =

∑
j

gT
i j . (32)

We note that the GT
i value estimates relative translation

time of protein i (Table 1). Let Pi be the number of proteins
of a type i in an exponentially growing cell population at a
given time. The rate of copy number increase for proteins of
a type ‘i’ is:

d
dt

Pi = γ PR
ui

T mod
i

. (33)

Here, PR is the current number ribosomes in the popula-
tion, γ the fraction of ribosomes in elongation phase, esti-
mated as 0.8 by Dennis and Bremer (25) and ui is the frac-
tion of elongating ribosomes devoted to synthesis of pro-
tein i. Fraction ui is proportional to the sum, CT

i , of bias-
corrected RPF counts cT

i j for ORFi. Taking Equations 26
and 32 into account one gets for CT

i :

CT
i = f mod

i GT
i , (34)

so that ui = CT
i /CT

tot, where CT
tot = ∑

i CT
i . Using this and

Equations 31 and 34, one can re-write Equation 33 as:

d
dt

Pi = γ PR

CT
tot

CT
i

T mod
i

= γ PR

CT
totte

f mod
i . (35)

Introducing Ptot = ∑
Pi , the sum total of current pro-

tein copies, the exponential growth rate, μ can be defined
as the increase in total protein copy number per time unit
(d Ptot/dt) normalized to Ptot:

μ = 1
Ptot

d Ptot

dt
. (36)

We note that for exponential growth the above definition
of growth rate (Equation 36) is equivalent to its standard
definition (26) as the rate of relative increase in total pro-
tein mass (see Supplementary Text). Taking Equations (34)
and (35) into account, Equation (36) for the growth rate be-
comes:

μ = γ

te

PR

Ptot

1

CT
tot

∑
i

f mod
i = γ

te

f mod
R∑

i GT
i f mod

i

. (37)

Here, we used that during exponential growth and when
the rate of protein degradation is negligible compared to
growth rate, the protein copy numbers Pi are proportional
to our estimates, f mod

i , of the frequencies, νi (Equation
1) of protein i translation initiation, so that the rela-
tion PR/Ptot = f mod

R /
∑

i f mod
i is valid (see Supplemen-

tary Text). From Equation (37) one obtains:

te = γ

μ

1∑
i GT

i ( f mod
i / f mod

R )
, (38)

so that the model time, t mod
i j is

t mod
i j = γ

μ

gT
i j∑

k GT
k ( f mod

k / f mod
R )

. (39)

Note that all parameters in Equations 38 and 39 except
μ and γ can be obtained from the Ribo-seq experiments
themselves. The time factor te in Equation 38 can be inter-
preted as an average per codon elongation time for a partic-
ular growth condition of the cell population, conditional on
our special scaling of zp,c parameters (Equation 15) which
forces gT

i j in Equation (30) to oscillate around 1. Impor-
tantly, despite that both te and gT

i j depend on zp,c scaling,
their product, the model time t mod

i j , is scaling insensitive
and estimates the absolute time τi j of codon (i,j) translation
(see Equation 39).
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Self-consistency of the RPF spectrum modeling

By self-consistent modeling we mean that a parameter es-
timation procedure applied to a dataset simulated using
parameters extracted from the original data, will produce
exactly the same parameter values as determined directly
from the original data. It can be proven that our procedure
of extracting the underlying parameters zp,c is indeed self-
consistent (see also Supplementary Text). To illustrate this,
we first use our ML approach to estimate an original zp,c pa-
rameter table from experimental RPF data, then use Equa-
tions (6) and (11) to simulate an RPF dataset and, finally,
retrieve a new zp,c parameter table from the simulated RPF
dataset. We find that the original and retrieved zp,c parame-
ter tables are virtually identical as illustrated in Supplemen-
tary Figure S2A for A-, P- and E-site positions of zp,c pa-
rameter tables. In contrast, other methods like RUST (14)
are not self-consistent in this sense. Computing the RUST
ratio metafile table to simulate RPF data and then applying
RUST again to retrieve the RUST ratio metafile one finds
that the original and retrieved metafile tables differ signifi-
cantly as illustrated for A-, P- and E-site metafile positions
in Supplementary Figure S2B.

RESULTS

Modeling of Ribo-Seq spectra

There is a clear connection between the expected number,
λi j , of experimentally detected ribosomes with a particular
codon j of ORFi in the A site, and the expected codon trans-
lation time τi j (Equation 1). This connection allows one to
use ribosome profiling for transcriptome-wide kinetic anal-
ysis of mRNA translation, but attainment of reliable kinet-
ics data from ribosome profiling has remained elusive. The
codon coverage within ORFs in the ribosome profiling spec-
tra is highly variable (Figure 2). This is not only due to the
codon context dependent variation of the codon translation
time but also to context-dependent bias in the efficiency of
nuclease dependent RPF generation and subsequent DNA
library preparation steps including reverse transcription,
adaptor ligation and PCR (9,11,12,14,20,24,26,27). Here,
we consider three major causes of codon-to-codon variation
of the experimental (‘exp’) RPF counts cexp

i j at each tran-
scriptome position (i, j) summarized in Equation 1. These
include: (i) codon context-dependent variation in the pep-
tide elongation time, τi j , (ii) bias, γ B

i j , of RPF generation
and processing, and (iii) stochastic fluctuations in the ex-
perimental cexp

i j values. As seen in Equation (2), each τi j

value is the product of a time factor τ e reflecting average
codon translation time under a particular growth condi-
tion and a unit-less parameter γ T

i j that depends on the con-
text of codon j, so that τi j = τ eγ T

i j . Local context depen-
dent variation of γ T

i j that causes the variations in τi j can
be traced to identities of A-, P- and E-site tRNAs, inter-
actions between mRNA codons and the ribosome and/or
interactions of the nascent peptide chain with the riboso-
mal exit tunnel in an amino acid-sequence dependent man-
ner (28–30). The variations of bias factor γ B

i j are also due to
local context dependence of the nuclease digestion and/or
amplification/processing steps in RPF library preparation.

From these, it follows that the variation of the product
γi j = γ T

i j · γ B
i j that reports on variations of expected counts,

λi j (Equation 2), is defined by local sequence context of the
current A-site codon j in ORFi (Figure 1).

We estimated each γi j value by a model (‘mod’) g mod
i j

parameter, which is the product of 15 zp,c factors (Equa-
tion 6). Each zp,c value is determined by the type of codon
(c) at local sequence context position (p) (Figure 1). These
zp,c values were estimated by fitting our model (Equations
5 and 6) to the experimental cexp

i j values of the whole tran-
scriptome. To illustrate the goodness of the fit, we compare
experimental (Equation 12) and model (Equation 13) RPF
scores for single genes with high RPF density. The model-
predicted, s mod

i j , and experimental, sexp
i j , RPF score spectra

show relative codon-to-codon variation of modeled and ex-
perimental RPF counts. They can be remarkably similar at
the single gene level (Figure 3A, B) with Pearson correlation
coefficients, r, in the 0.7–0.8 range, suggesting that the lo-
cal mRNA sequence context accounts for the major part of
the variability of experimental cexp

i j values. Figure 3C shows
that high r-values are frequent for genes with high experi-
mental RPF density. The r -values decrease as an increasing
number of genes with medium and low RPF density are in-
cluded in the comparison – an effect due to the high statis-
tical uncertainty of RPF profiles for genes with low experi-
mental RPF density. In comparison with the RUST method
(14), our method achieves, on average, significantly higher
Pearson correlations between experimental and model RPF
spectra (Supplementary Figure S3).

Ribosomal profiling spectra are ultra-sensitive to codon iden-
tity near ribosome edges

Strikingly, variation of the zp,c factors with codon identity
c is much larger for local codon positions (p) near the lag-
ging (p = 4) and leading (p = 11) ribosome edges than in A
site (p = 8) (Figure 1). Indeed, the z8,c value varies from
0.4 for the UUU (Phe) codon to 1.6 for the AAG (Lys)
codon, while z4,c and z11,c values span significantly larger
ranges from 0.2 for the GGG (Gly) to 2.1 for the AUG
(Met) codon for z4,c and from 0.2 for the UUU (Phe) to 2.2
for the CCA (Pro) codon for z11,c, respectively (Figure 4A).
We have quantified the sensitivity of zp,c to codon identity
c at position p as a weighted standard deviation, Sp, from
the mean along the p-row of the zp,c-factor table (Equation
18). A plot of Sp versus p confirms much higher sensitivity
to codon identity at local codon positions close to ribosome
edges (p = 4 and p = 11) than at ribosomal A, P or E site
(p = 8, 7 or 6, respectively) (Figure 4B).

Nuclease induced bias in Ribo-Seq spectra from E. coli

To dissect the origins of enhanced codon sensitivity of zp,c
factors at positions near ribosome edges (Figure 4), we ana-
lyzed Ribo-Seq spectra also at single nucleotide resolution.
Bacterial Ribo-Seq libraries are commonly constructed by
first mapping the 3′-ends of RPFs to genomic nucleotide
sequences (6,7). RPF coverage profiles at single nucleotide
resolution are then obtained by counting the number c̃exp

i j of
RPFs assigned to nucleotide j of gene i. The c̃exp

i j -values are
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Figure 2. Ribosome profiling spectrum for gene rpsQ. RPF counts (cexp
i j -values) are plotted versus codon position j of the rpsQ transcript encoding riboso-

mal protein S17. The horizontal line represents the average number of RPFs per codon (dexp
i = 61.5) for the inner transcript region from jS = 8 to jE = 77

(see Equation 14 for formal dexp
i definition).

subsequently converted to standard experimental RPF pro-
files at single nucleotide resolution cexp

i, j by the re-assignment
rule cexp

i, j = c̃exp
i, j+x. The premise for this procedure is that the

nucleotide distance (x) from the 3′-end to the first A-site nu-
cleotide of an RPF is constant (6). Fragment length(FL)-
specific profiles, cexp,F L

i, j , are generated from RPFs of the
same length, FL, so that the standard cexp

i, j profiles can also

be obtained by summation of cexp,F L
i, j over all FLs. In bac-

teria, both FL-summed and single FL-specific RPF cover-
age profiles lack the well-defined three-nucleotide periodic-
ity that is observed in yeast or mammalian cells (6,7). We
suggest that this periodicity loss is caused by ‘anomalous’
MNase cleavage at one or two nucleotides downstream of
the ordinary cleavage site at the leading (3′) edge of the ribo-
some. Consequently, the RPF profiles appear as if the trans-
lating ribosome moves one nucleotide at a time. In both,
single-codon resolution (Equation 1) and single-nucleotide
resolution cases, there are expected numbers of RPFs, λF L

i j ,
generated from ribosomes with their A site at nucleotide
number j of ORFi. The local 15-codon context (pL = 15)
with the A-site codon at position pA = 8 (Figure 1) here
corresponds to a local 45-nucleotide sequence (pNL = 45)
with the first A-site nucleotide at position pNA = 22 (Sup-
plementary Figure S1).

We used our maximum likelihood (ML) approach to es-
timate the local context factors zF L

p.b that estimate the nu-
cleotide context dependent variation in λF L

i j as modelled

by c mod ,F L
i j using Equations 19 and 20. Those zF L

p.b factors
calculated for fragment length-specific experimental cover-
age profiles, cexp,F L

i, j , are shown in Figure 5 for FL = 23, 24
and 25 nt. zF L

p.b varied greatly in response to changing nu-
cleotide base identity (b) at positions 10, 9 and 8 for FL =
23 (Figure 5A), FL = 24 (Figure 5B) and FL = 25 nt (Fig-
ure 5C), respectively. At these combinations of nucleotide
positions and lengths the zF L

p.b factors were always relatively
small when b = G or b = C leading to small model (‘mod’)

g mod ,F L
i j and c mod ,F L

i j values (Equations 19 and 20). Local
positions p equal to 10, 9 and 8 correspond to 5′- ends of
the FL = 23, 24 or 25 nts fragments, respectively, implying
low abundance of RPFs with G/C at their 5′-ends. Indeed,
experimental RPFs with an A at their 5’- end are about 60-
fold more abundant than experimental RPFs with a G at
the 5′- end, in line with the previous report on strong pref-
erence of MNase to cleave before an A or a U (9). Notably,
the 5′-peak of the position sensitivity to nucleotide identity
(calculated analogously to Sp in Equation (18)) moves ex-
actly one nucleotide to the right as the fragment length in-
creases by one nucleotide from 22 to 27 nt (Figure 5D). Irre-
spective of fragment length, the 3′-ends of RPFs are always
aligned at local position p = 32, so that MNase cleavage
occurs between positions 32 and 33 in the local nucleotide
context (Figure 5). The zF L

p.b parameters with G or C at local
position p = 33 were much smaller and those with A or U
much larger than 1 (Figure 5), also in line with the obser-
vation that MNase cleaves before A/ U nts (9). The 3′-end
cleavage bias of MNase was strong and yet considerably less
pronounced than the 5′-end cleavage bias. In the local nu-
cleotide region between positions 13 and 29 well inside the
ribosome (Supplementary Figure S1), the zF L

p.b factors were
very similar for different fragment lengths (Figure 5), sug-
gesting insignificant technical bias in the 13–29 region of the
local nucleotide context.

zp,b factors estimated from the standard experimen-
tal RPF coverage profile, cexp

i, j , obtained by summation of

length-specific experimental RPF coverage profiles cexp,F L
i, j

for RPF lengths from 22 to 27 nts, exhibit much reduced
5′-bias but essentially unchanged 3′-bias (Supplementary
Figure S4). The great reduction of the 5′-bias is easily un-
derstood by considering that the summation of length spe-
cific RPF profiles cexp,F L

i, j corresponds roughly to an FL-
averaging of zF L

p.b factors. This also explains why the position
sensitivity profile of zp.c factors at codon resolution (Fig-
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Figure 3. Comparisons of experimental (sexp
i j ; red; Equation 12) and model (s mod

i j ; blue; Equation 13) RPF score spectra at codon resolution for rpsQ (A)
and atpE transcript (B). r, Pearson correlation, r = 0.83 for rpsQ and r = 0.81 for atpE. (C) Frequency density of Pearson correlation coefficient, r, between
sexp

i j and s mod
i j for sets of 161 (red, dexp

i > 5), 337 (light blue, dexp
i > 1.5) and 945 (dark blue, dexp

i > 0.3) transcripts. Note that the transcripts were first
ranked by their dexp-values (Figure 2) and then top-ranked 161, 337 and 945 transcripts were considered.

ure 4B) has a smaller bias at positions close to the lagging
than to the leading edge of the ribosome.

The strong effects of codon identities at position 11 (lead-
ing edge of the ribosome) on z11,c values (Figure 4A) can
now be easily explained by the biases at positions 31, 32
and 33 observed at nucleotide resolution. For example, the
combinations of G or C at positions 31 and 32 with A or U
at position 33 (corresponding to the three nucleotide posi-
tions of codon 11) are expected to result in large z11,c-values,
while U or A at positions 31 and 32 combined with C or G
at position 33 should result in small z11,c-values (see Fig-
ure 5 or Supplementary Figure S4). Indeed, GGU (Gly)
and CCA (Pro) codons have z11,c-values much larger than 1,
while codons UUC (Phe) and AAG (Lys) have z11,c-values
much smaller than 1 (Figure 4A), exactly as predicted from
3′ biases (Supplementary Figure S4). The same analysis ap-

plied to the 5′ biases (Supplementary Figure S4) explains
the strong zp,c codon dependence at the ribosomal lagging
edge positions 3 and 4 (Figure 4).

For the codon resolution data, we conclude that the outer
codon context-dependent zp,c factors for positions p = 1
to p1–1 and from p2+1 to pL (Figure 1) account for the
technical biases in RPF library generation. In contrast, the
inner codon context zp,c factors, for positions p from p1
to p2 mainly reflect the context dependent variation of the
peptide elongation times. With this as a lead we estimated
the zp,c factors for the E. coli AS19 dataset and used the
inner subset of zp,c factors for all positions from p1 = 5
to p2 = 9 to obtain bias-corrected model gT

i j parameters
(Equation 25). A typical example of such bias elimination is
shown in Figure 6A for the E. coli atpE transcript. We con-
tend that the bias-corrected model sT

i j pausing scores (Equa-
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Figure 4. Sensitivity of zp,c factor with codon identity at different local context positions p. (A) Variation of zp,c values with codon identity c for positions
p = 4 (dark blue, lagging ribosome edge), p = 8 (light blue, A site) and p = 11 (red, leading ribosome edge). Codons are ordered as in the genetic code
table. (B) Position sensitivity Sp (Equation 18) versus local context position p (see Figure 1 for position numbering).

tion 27) reflect the bias-free peptide elongation times show-
ing that the ribosome translates mRNA in a much smoother
fashion than the experimental sexp

i j RPF scores might
suggest.

We have also estimated the absolute peptide elongation
time, τi j = τ eγ T

i j , as the product t mod
i j = tegT

i j where te esti-
mates the time factor τ e in Equation 1 (Figure 6B). We note
that our modeling approach allows for determination of the
model gT

i j parameters, and, hence, model pausing scores sT
i j

from the ribosome profiling data alone, but for te calcula-
tion we need to use additional experimental information
provided by the growth rate μ of the bacterial population
(Equation 38).

The local codon context dependent distribution of relative
peptide elongation times

The elimination of the technical bias described in the previ-
ous section enables estimation of authentic peptide elonga-
tion times for any A-site codon j in any ORFi by ‘dividing
out’ the bias dependent local context parameter gB

i j (Equa-
tion 24) from the total context parameter g mod

i j (Equa-
tion 6), which leads to the context parameter gT

i j (Equa-
tion 25) proportional to the A-site codon elongation time
t mod
i j (Equation 30). The frequency densities of g mod

i j and
bias-free gT

i j values for the E. coli transcriptome are dis-

played along with those for their logarithms in Supplemen-
tary Figure S5. The frequency densities of gT

i j and g mod
i j

logarithms are near Gaussian with �-values of 0.61 and
1.2, respectively (Supplementary Figure S5B). From this, we
propose that each rate-limiting elongation step involves the
passage over a standard free energy barrier determined by
the sum of standard free energy contributions determined
by the logarithms of zp,c factors in the local codon con-
text. According to the transition-state theory, the time it
takes to overcome a standard free-energy barrier increases
exponentially with the barrier height (31). In transloca-
tion, the height of the free energy barrier could be the sum
of the free energies of interaction between ribosome and
mRNA throughout the whole inner context region. In pep-
tidyl transfer, the barrier height could be the sum of the
free energies from the identities of codons upstream of the
A-site codon. According to the Central Limit Theorem,
the frequency densities of such free energy sums would be
near-Gaussian, providing a tentative explanation for the
near-Gaussian frequency densities of the logarithm of gT

i j -
values (Supplementary Figure S5B) the exponentiation of
which then leads to a log-normal distribution (Supplemen-
tary Figure S5A). Interestingly, frequency density of a log-
normal distribution is mimicked by the distribution of the
sum of two stochastic variables, one normally and one ex-
ponentially distributed. Possibly, this feature has led to the
previous proposal that there are two-time components in
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Figure 5. Context factors, zF L
p.b displayed for local nucleotide positions 1 to 45 for: (A) FL = 23 nt, (B) FL = 24 nt, (C) FL = 25 nt; p = 22 corresponds to

the first A-site position (Supplementary Figure S1). (D) Position sensitivity profiles for zF L
p.b -parameters calculated from RPF genome coverage with RPF

fragments of lengths ranging from 22 to 27 nts.

peptide elongation, one Gaussian and one exponential (32).
Finally, we note that due to the local context dependent bias
there are more zp,c factors in g mod

i j (Equation 6) than in gT
i j

(Equation 25), leading to a broader near-Gaussian distribu-
tion for the logarithm of g mod

i j than of gT
i j (Supplementary

Figure S5B).

Determinants of fast and slow peptide elongation cycles in E.
coli

The model estimate t mod
i j (Equation 30) of the time that

the ribosome spends translating codon j of ORFi is propor-
tional to gT

i j (Equation 25), a parameter which is estimated
from product of zp,c factors for the inner codons of the lo-
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Figure 6. Pausing score profile and absolute time spectrum for the atpE (ATP synthase subunit C) transcript at single codon resolution. (A) Comparison
of an experimental RPF score profile sexp

i j (red, Equation 12) with the total model RPF score profile s mod
i j (blue, Equation 13) and model pausing score

profile sT
i j (light blue, Equation 27). The pausing score profile is much less jagged ( σ T

i = 0.3) than the total model (σ mod
i = 0.9) and experimental (σ exp

i =
1.1) RPF score profiles. (B) Absolute elongation time spectrum t mod

i j (Equation 39); the horizontal line corresponds to the average per-codon translation
time of the atpE transcript.

cal context around the A site in the p-interval from 5 to 9
(Figure 1). Accordingly, the size of each inner zp,c factor
is a determinant of the peptide elongation time. Under our
experimental E. coli AS19 growth conditions the zp,c val-
ues for Lys codons AAA or AAG pairing to tRNALys in
A (p = 8), P (p = 7) or E site (p = 6) were relatively large
and contributed to slow peptide elongation (Figure 7). A
similar picture holds for Gly codons GGU and GGC, read
by tRNAGly3. In contrast, Ile codons AUC and AUU, Phe
codons UUU and UUC and Val codons GUC and GUU
translated by tRNAIle2, tRNAPhe and tRNAVal2, respec-
tively, exhibited relatively small zp,c values in the A, P and
E site of the local context and contributed to fast peptide
elongation (Figure 7). In most cases, synonymous codons
read by the same tRNA isoacceptor have similar zp,c values
(Figure 7 and Supplementary Figure S6). This, we propose,
reflects similar interactions between the ribosome and the
shared cognate tRNA. Along the same line, inner zp,c fac-
tors of Val codons at the same local position p were different
when read by tRNAVal2 or tRNAVal1 (Figure 7), probably
reflecting different interactions between the ribosome and
the bodies of tRNAVal2 and tRNAVal1.

In the A site, codons for charged AAs, e.g. Lys, Asp
and Glu, and one hydrophobic AA, Val, encoded by the
GUA codon promoted slow peptide elongation (Figure
8A). Codons encoding Gly, Pro and Ala promoted fast or
slow peptide elongation depending on whether they are in
the A or P site of the local context (Figure 8A, B). In the
E site of the local context codons encoding Lys, Glu, Gln
and Asp as well as the Gly codons GGC and GGU (trans-

lated by tRNAGly3) contributed to slow peptide elongation
(Figure 8C). Codons encoding aromatic AAs generally pro-
moted fast elongation when in A, P and E sites of the local
context, with Phe being the fastest for our dataset.

Peptide elongation times in conditions of ternary complex de-
pletion

Next, we considered two published Ribo-Seq datasets, one
generated from E. coli MG 1655 strain following short in-
cubation with mupirocin and the other representing an un-
treated control, grown under otherwise identical conditions
(6). Mupirocin is an inhibitor of isoleucyl-tRNA synthetase
(IleRS) (33), which depletes charged tRNAIle and causes
strong A-site pausing at Ile codons (6). Accordingly, our
analysis of the dataset with mupirocin treatment showed
greatly increased zp,c values for all three Ile codons at A site
which correlated with slow peptide elongation at Ile codons
due to reduced supply of Ile-tRNAIle-containing ternary
complexes (Figure 9A). We noted also that for the major
Ile codons (AUC and AUU) zp,c increased by 13- and 16-
fold, respectively, whereas zp,c for the minor AUA Ile codon
increased 8.5-fold (Figure 9A). Since the concentration of
the minor AUA reading tRNAIle2 is an order of magnitude
lower than the tRNAIle1 concentration pairing to the ma-
jor Ile codon (34), we propose that the mupirocin-induced
relative increase in A-site binding time is much larger for
ternary complex with the major than with the minor isoac-
ceptor (see Discussion for more details). A much higher sen-
sitivity to IleRS inhibition for AUC/AUU than for AUA
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Figure 7. Variation of z-factors with the local codon position around the A site (pA= 8) for selected tRNAs reading synonymous codons. Large and small
zp,c-values contribute to slow and fast peptide elongation, respectively. A complete set of z-factors for all tRNAs is presented in Supplementary Figure S6.

reading is also predicted by the theory of selective charging
of tRNA isoacceptors (35), corroborated for a similar case
of other aminoacyl-tRNA synthetase inhibition (36).

Compared to the untreated E. coli MG1655 cells we
also found that along with the slower Ile codon reading,
mupirocin addition caused a faster Ser/Gly codon decod-
ing (Figure 9B). The relatively slow decoding of Ser and
Gly codons in the control was attributed to quick deple-
tion of Ser- and Gly-tRNAs due to culture filtration be-
fore the Ribo-Seq library preparation (6). Accordingly, we
also detected higher zp,c values at Ser and Gly codons
indicative of slow elongation on these codons in the un-
treated E. coli MG1655 cells (Figure 9B). We speculate that
mupirocin treatment results in a drastic slowing down of
the global translation in the cell, which also reduces Ser
and Gly consumption. Hence, the pools of charged seryl-
tRNAs and glycyl-tRNAs are maintained, thus eliminat-
ing the pausing on Gly and Ser codons (see Discussion for
details).

We have also calculated zF L
p.b factors at nucleotide reso-

lution for the untreated E. coli MG 1655 data set (Supple-
mentary Figure S7A) and compared them with zF L

p.b factors
for our dataset (Figure 5). While the 3′-end bias in zF L

p.b fac-
tors for the same FL was similar for the two data sets, the
5′-end bias was much less pronounced for the E. coli MG
1655 (compare Figure 5A and S7A). Similarly, zp,b factors
estimated from the standard RPF nucleotide coverage pro-
file cexp

i, j for E. coli MG 1655 also had much less pronounced
5′- bias than the corresponding zp.b factors for the E. coli
AS19 data set (Supplementary Figures S7B and S4). We at-
tribute these differences to the much longer incubation with

MNase of 1 hour for E. coli MG1655 (6) vs. 10 min for our
E. coli AS19 during library preparations.

Neutralization of nuclease induced bias in Ribo-seq spectra
from Saccharomyces cerevisiae

To further validate our modeling approach, we considered
two published datasets from the yeast S. cerevisiae (19).
These were prepared with MNase (S7) and RNase A with
distinct cleavage biases: while MNase cuts preferentially
before A and U, RNase A cleaves preferentially after C
and U (19). Here, we applied our nucleotide-resolution ML
approach to quantify the characteristic biases in the two
datasets. For the MNase set we detected much higher zF L

p.b
factor values for A/U compared to C/G nucleotides at po-
sition p = 7 and p = 35 corresponding to the nucleotides
at the 5′- end and the nucleotide after the 3′- RPF end, re-
spectively (Figure 10A). This pattern is very similar to that
in our MNase dataset from E. coli (Figure 5). In contrast,
the zF L

p.b factors for the RNaseA dataset were relatively small
for b = A or G at position p = 6, corresponding to the nu-
cleotide before the 5′- end of the RPF and near zero at po-
sition p = 34 which corresponds its 3′- end (Figure 10 B).
This suggests that the technical biases of the two data sets
are distinct and the differences reflect the cleavage prefer-
ences of the nucleases used to generate the RPF libraries.

We then calculated the codon resolution zp,c factors for
the MNase- and RNase A-treated yeast datasets and used
the inner subset of zp,c factors for positions from p1 = 5 to
p2 = 9 to obtain bias-corrected gT

i j parameters (Equation
25) and sT

i j pausing scores (Equation 27). As expected, both
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Figure 8. Codons ranked according to zp,c values for (A) A-site, (B) P-site and (C) E-site position of local context. Large and small zp,c-values designate
slow and fast peptide elongation, respectively. Codons are ordered in the descending order of zp,c values.

the correlation between the sexp
i j RPF scores (Equation 12)

and between the s mod
i j RPF scores (Equation 13) from the

two data sets obtained with MNase and RNase are weak (r
= 0.3) as exemplified in Figure 11A and B for the YGR027C
transcript (coding for the S25 protein of the 40S ribosomal
subunit). In contrast, the bias-corrected pausing score sT

i j
profiles of YGR027C from the two data sets are strongly
correlated (r = 0.77) with similar features (Figure 11C). The
absolute translation time profiles t mod

i j for YGR027C tran-
script calculated from RNase A and MNase data sets, as-
suming 2 h duplication time of the yeast culture (Equation
36), are also remarkably similar (Figure 11D). This simi-
larity also reflects the varying codon elongation time as the
ribosome moves codon by codon along the YGR027C tran-
script. We obtained very similar results for other transcripts.
Notably, the frequency distribution of the r -values under-
went a large shift from low to high correlation following
neutralization of nuclease-introduced biases (Figure 11E).
We also observed a strong correlation between zS7

p,c and zRA
p,c

values obtained for the MNase (S7) and RNase A datasets
for positions near the A site (Supplementary Figure S8A).
This correlation for the A-site position was r = 0.8 and in-
creased (r = 0.85) when rear codons (i.e. with frequency

< 0.3%) were excluded. This, we suggest, reflects the similar-
ity of the effects of a particular A-site codon on the codon
translation time in both data sets. For P and E sites, the cor-
relation between zS7

p,c and zRA
p,c factors for the P and E sites

was less pronounced (r = 0.7). As expected, the correlation
between zS7

p,c and zRA
p,c factors for positions near the edges

of the yeast ribosome (e.g. positions 3 and 12) is low (r <
0.25), which reflects the distinct sequence preferences of the
nucleases in RPF generation (Supplementary Figure S8B).

We wish to emphasize that to obtain the bias-corrected
pausing scores sT

i j (Equation 27), we used the five inner-
position zp,c values from the fifteen zp,c values account-
ing for the total local A-site context in the modeling of
the experimental cexp

i j datasets. Different bias elimination
method has been developed earlier (20) using neural net-
work modeling to predict the elongation time of the A-site
codon from its short sequence context (that does not in-
clude the edges of the RPFs). To compare these two prin-
cipally different ways of bias elimination, in similarity to
this approach (20), we restricted the context to five codons
around each A-site codon, and, hence excluded the edges
of the RPFs. We then modeled the two Ribo-Seq sets from
S. cerevisiae (19) processed with either MNase or RNase
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Figure 9. zp,c values are affected by E. coli MG 1655 amino acid starvation. (A) Marked stalling at Ile codons following treatment with mupirocin.
Variation of zp,c factors with the local codon position around the A site (pA= 8) for three Ile codons in untreated E. coli MG1655 (left panel) and treated
with mupirocin (right panel). Large zp,c values indicate propensity for slow peptide elongation. (B) Comparison of the A-site zp,c values for untreated E.
coli MG 1655 (red) and E. coli MG 1655 treated with mupirocin (light blue). Codons are ordered as in the genetic code table.

Figure 10. Nucleotide-resolution zF L
p.b -factors calculated from RPF coverage profiles with RPFs with FL = 28 for yeast Ribo-Seq datasets constructed

using MNase (A) and RNase A (B).
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Figure 11. Comparison of experimental RPF scores sexp
i j (A), model RPF scores s mod

i j (B) and pausing scores sT
i j (C) for YGR027C transcript (encoding

ribosomal protein S25, Rps25a) in MNase (red) and RNase A (blue) yeast Ribo-Seq data sets; the Pearson correlation coefficients, r, between the two
data sets are r = 0.32 (A), r = 0.35 (B), r = 0.77 (C) and r = 0.77 (D). (D) Absolute elongation time spectrum (Equation 39) of YGR027C derived from
the MNase (red) and RNase A (blue) Ribo-Seq data set. The mean elongation time per codon for the YGR027C transcript is 80.8 ms and 86.7 ms when
estimated from the RNAse A and MNase datasets, respectively. (E) Frequency distribution of Pearson correlation coefficients, r, between scores for the
same transcripts in yeast datasets prepared with RNase A (RA) and MNase (S7): for experimental scores (light blue, correlation between sexp,RA

i j and

sexp,S7
i j ), model scores (red, correlation between s mod ,RA

i j and s mod ,S7
i j ), ‘five-inner model’ scores (dark blue, correlation between s̃ mod ,RA

i j and s̃ mod ,S7
i j )

and bias-free pausing scores (orange, correlation between sT,RA
i j and sT,S7

i j ). ‘Five-inner model’ refers to modeling each (i,j) A-site context contribution with

5 z̃p,c position parameters (see Equations 28 and 29 for s̃ mod
i j definition).

A using “five-inner modeling”, i.e. using only five-inner
z̃p,c values to obtain RPF scores s̃ mod

i j (Equations 28 and
29) and found them different from pausing scores sT

i j . We

then calculated Pearson correlations between s̃ mod ,RA
i j and

s̃ mod ,S7
i j for each transcript i in the two datasets. Clearly, our

‘bias-free method’ leads to much higher correlation between
the zp,c derived sT

i j scores (Figure 11E, orange ‘bias-free’ r-
frequency profile) than the ‘five-inner model’ for the cor-

relation between the z̃p,c-derived s̃ mod
i j scores (Figure 11E,

‘five inner model’, dark blue r-frequency profile). An in-
tuitive explanation for this result is that in the ‘five inner
model’ the five z̃p,c inner-position factors used for the de-
scription of a cexp

i j dataset absorb the experimental biases.
In contrast, using pL = 15 local positions for modeling cexp

i j ,
the experimental biases are absorbed by the outer ten zp,c
factors (Equation 24), thus leaving the five-inner zp,c fac-
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tors bias-free. Thus, the ‘five-inner modelling’ that essen-
tially emulates an earlier approach (20), reduces the preci-
sion of elongation time estimates.

DISCUSSION

Since decades, quantitative studies of protein synthesis with
purified ribosomes and auxiliary translation components
have been performed across species (37,38). In spite of
the insights from these biochemical approaches, there are
considerable differences between the empirical contexts of
cell-free and intracellular mRNA translation. For instance,
in the living cell tightly controlled parallel pathways ex-
ist for the supply of aminoacyl-tRNAs, for ternary com-
plex formation and, furthermore, the translation of A-site
codons takes place in the context of a virtual infinitude of
sets of neighboring codons. Thus, experimental approaches
orthogonal to in vitro biochemistry will deepen our un-
derstanding of how the intracellular kinetic networks of
mRNA translation shape the life sustaining phenotypes of
living cells. In the present work, we join the ongoing and
rapidly growing efforts to establish genome-wide technolo-
gies (3,39) for quantitative studies of mRNA translation.
We provide a framework for parallel estimation of elonga-
tion times of all codons in all local codon contexts of dif-
ferent types of cells. This was made possible by the develop-
ment of novel type of model to be fitted to transcriptome-
wide ribosome profiling data for parameters estimation.
Our model describes the elongation time at each codon of
the transcriptome as a product of 15 independent zp,c fac-
tors, one for each codon position in the local context sur-
rounding the ribosomal A site. The factor for each codon
context position can have one of 61 possible values, depend-
ing on its codon identity and context position. Using a max-
imum likelihood criterion, we obtain the values of 15 × 61
= 915 zp,c factors for 61 sense codons in 15 local context po-
sitions by fitting our model to the experimental RPF spec-
trum. Despite large ruggedness and stochastic fluctuations,
the experimental data are well fitted by the model.

To discriminate between effects of codon context on nu-
clease cleavage preferences on one hand and peptide elon-
gation time variations on the other, we use models with
both single-codon and single-nucleotide resolution. In line
with previous findings (9), we find much higher MNase
activity at A/U compared to G/C nucleotides near the
5′- or 3′-ends of RPFs, leading to strongly skewed frag-
ment creation/processing and biased RPF spectra. At the
same time, the MNase cleavage bias does not propagate
into the inner context on both sides of the A-site codon, a
crucial feature enabling neutralization of technical codon
context-dependent bias. In this way, we derived unbiased
RPF spectra suitable for estimation of codon elongation
times throughout the transcriptome. We observed differ-
ences in the zp,c values for the A site between two different
E. coli strain, MG1655 and AS19 (compare Figures 8A and
9B), implying that our approach can very sensitively detect
elongation time difference at single codon between different
strains, growth medium and conditions.

We have applied our modeling approach to clarify the
effects of mupirocin-induced inhibition of the IleRS ac-
tivity in a bacterial system using a previously published

data set (6). The inhibition decreases the rate of supply
of charged tRNAIle isoacceptors (33) and greatly enhances
values of zp,c parameters for all three Ile codons (AUA,
AUC or AUU) in the A site, suggesting greatly increased
binding time for isoleucyl-tRNAIle-containing ternary com-
plexes. Considering that the total concentration of major
tRNAIle1 isoacceptor is an order of magnitude larger than
that of the minor tRNAIle2 isoacceptor (34) and assuming
nearly 100% charged levels of both tRNAIle isoacceptors
in the absence of the inhibitor, the time for ternary com-
plex binding into the A site is estimated to be an order of
magnitude smaller for AUC/AUU than for AUA codons.
In the inhibitor-less case, the total peptide elongation time
is about 30% longer for AUA than for AUC/AUU codons
(Figure 9B). From these data we suggest that the relative
change in the time for ternary complex binding into the
A site is much larger for AUC/AUU than AUA codons,
meaning that AUA decoding is much less sensitive to Il-
eRS inhibition than AUC/AUU. This further corroborates
the theory of selective charging of tRNA isoacceptors (35),
previously validated by SerRS inhibition in E. coli cells
(36). In fact, our method might be very useful for detec-
tion of ternary complex depletion scenarios in cells. This
optimistic notion receives further support from the obser-
vation that mupirocin, in addition to slowing down trans-
lation at Ile codons, also speeds up translation of Gly and
Ser codons in a codon selective manner. That is, mupirocin
addition reduces considerably the reading times of ma-
jor (GGC/GGU) but not of the minor (GGG/GGA) Gly
codons and reduces the reading times for all Ser codons
(Figure 9). A possible scenario to explain also these codon-
specific patterns is that under experimental conditions used
to obtain the RPF dataset in E. coli MG1655 grown in bal-
anced medium both Gly and Ser codons are weakly starved
for their cognate ternary complex (6) due to deficient in-
tracellular supply of Gly and Ser (40). Mupirocin addition
slows down the overall protein synthesis, thereby removing
the supply bottlenecks of Gly and Ser and pausing at their
codons. We note that the theory of selective charging of tR-
NAs predicts starvation-sensitive reading of GGC/GGU
but not of GGG/GGA codons and starvation sensitivity of
all Ser codons (35), which corroborates the proposed sce-
nario of weak Gly and Ser starvation that is removed by
addition of an IleRS inhibitor.

We have broadened our approach from bacterial sys-
tems to include also eukaryote systems. We compared two
published Ribo-Seq sets from S. cerevisiae (19), derived
from identical yeast populations but processed with dif-
ferent nucleases, either MNase or RNase A. Both RNases
exhibit strong but distinct cleavage preferences leading to
greatly different and virtually uncorrelated experimental
and model reproduced RPF spectra. However, after bias
neutralization model spectra for both RNases become less
rugged and are strikingly similar (Figure 11). This means,
we propose, that our bias-neutralization approach provides
a solution to the long-standing problem of extracting reli-
able quantitative information about individual codon elon-
gation cycle times from greatly rugged, highly noisy and bi-
ased RPF spectra.

Ribosome profiling holds a great promise of detailed in-
sights into the dynamics of protein synthesis in single cells
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and multicellular organisms. The ongoing improvements of
data analysis along with refinements of experimental tech-
niques and the synergy of different and sometimes orthog-
onal approaches will accelerate the development of this
promising field.

DATA AVAILABILITY

The sequencing data for E. coli AS19 generated in this study
have been deposited within Gene Expression Omnibus
(GEO) under accession number GSE145571. Two pub-
lished data sets (6,19) analyzed here too, are available un-
der the accession numbers in the GEO Series with accession
number GSE119104 (GSM3358136 and GSM3358137)
for E. coli MG1655 and GSE 82220 (GSM2186726 and
GSM2186728) for yeast. All scripts and source code for
modeling and calculating the parameters used here are de-
posited in https://github.com/gustafGitHub/RiboTimes.
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