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Abstract

Background: Laboratory utilization management describes a process designed to 
increase healthcare value by altering requests for laboratory services. A typical approach 
to monitor and prioritize interventions involves audits of laboratory orders against 
specific	criteria,	defined	as	rule‑based	laboratory	utilization	management.	This	approach	
has	inherent	limitations.	First,	rules	are	inflexible.	They	adapt	poorly	to	the	ambiguity	
of medical decision‑making. Second, rules judge the context of a decision instead of 
the patient outcome allowing an order to simultaneously save a life and break a rule. 
Third, rules can threaten physician autonomy when used in a performance evaluation. 
Methods: We developed an alternative to rule‑based laboratory utilization. The core 
idea comes from a formula used in epidemiology to estimate disease prevalence. The 
equation relates four terms: the prevalence of disease, the proportion of positive tests, 
test	sensitivity	and	test	specificity.	When	applied	to	a	laboratory	utilization	audit,	the	
formula estimates the prevalence of disease (pretest probability [PTP]) in the patients 
tested. The comparison of PTPs among different providers, provider groups, or patient 
cohorts produces an objective evaluation of laboratory requests. We demonstrate 
the	model	 in	a	review	of	tests	 for	enterovirus	(EV)	meningitis.	Results: The model 
identified	subpopulations	within	the	cohort	with	a	low	prevalence	of	disease.	These	low	
prevalence groups shared demographic and seasonal factors known to protect against 
EV	meningitis.	This	suggests	too	many	orders	occurred	from	patients	at	low	risk	for	
EV.	Conclusion: We introduce a new method for laboratory utilization management 
programs to audit laboratory services.

Key words:	 Delivery	 of	 health	 care,	 efficiency,	 guideline	 adherence,	 health	 care,	
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INTRODUCTION

The question can be raised, who benefits from which test, 
when, where, and at what cost?[1] From journals devoted 
to such diverse areas of medical practice including 
emergency medicine to medical education, coagulation, 

quality improvement, and HIV, a continued interest in 
the appropriateness of laboratory testing has existed from 
the 1940s to the present day.[2‑7] Pathologists and others 
who evaluate laboratory test utilization management, 
generally echo a common theme of improving patient 
care and decreasing medical costs.[8‑12]
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The dominant method used to evaluate test utilization 
management involves a retrospective comparison of 
clinical practice guidelines to actual decisions.[7] We 
refer to this method as a rule‑based approach because 
of its reliance on rules such as “patients taking warfarin 
should have at least one prothrombin time/international 
normalized ratio test within 60 days of beginning the 
drug.”[13] Because these rules have minimal ambiguity, 
they translate easily into database queries, which 
eliminate the need for chart review, an opinionated, 
time‑consuming and costly endeavor.[14] In addition 
healthcare administrators, generally find such rules 
easy to implement because of their black‑and‑white 
interpretation, origin in empirical trials, and buy‑in from 
physicians, whose professional societies and expert panels 
participate in their development.

However, rule‑based utilization management has limits, 
primarily due to its inability to monitor utilization in 
the ambiguous gray‑zones of medical decision‑making. 
Rule‑based utilization management does not always 
perfectly reflect recognized guidelines and physicians, 
who at times see the simplicity of rules as overgeneralized 
and unrealistic, may justifiably be reluctant to follow 
strict rules.[15] A limit on the number of well‑researched, 
clear‑cut medical decisions may explain the difficulty 
of rule‑based utilization management programs like the 
Centers for Medicare and Medicaid Services’ Clinical 
Quality Measures, or HEDIS to expand past a few 
hundred rules, even as the lower estimate on the number 
of medical scenarios exceeds this number by multiple 
orders of magnitude.[16]

Rules may become more numerous and complex, but 
the rules‑based approach shares many of the same 
limitations as another long‑standing issue in the 
evaluation of medical decisions, the determination of 
pretest probability (PTP).[17‑22] Both attempt to probe 
the black‑box that is the patient‑physician relationship, 
whose nuances may not easily translate to structured 
fields in a database. A sufficiently advanced rule system 
may obviate the need for an autonomous physician, many 
of whom may have already left medical practice because 
autonomy is key to their job satisfaction.[23] Perhaps more 
importantly, utilization management rules, like pre‑test 
probability, focus on the pretext of a decision rather than 
its outcome. An alternative approach would evaluate the 
outcome of patterns of behavior over time, not a single 
decision formally separated from its complete context.

We sought to create a method for test utilization 
management that shares the strengths of the rule‑based 
approach, namely its empiricism, simplicity and 
avoidance of manual chart review, while ameliorating 
at least some of its limitations, such as its difficulty 
with ambiguous decisions, infringement on provider 
autonomy, and emphasis on the ordering decision rather 
than its outcome.

METHODS

Method Explanation
Our approach to test utilization management closely 
follows medical decision‑making theory.[24] In medical 
decision making the optimal strategy when faced with 
a diagnostic dilemma is to choose the option with the 
highest utility: nonintervention, test, or treatment. The 
PTP of disease in the patient under evaluation informs 
the choice. Figure 1 shows a prototypical example of the 
utility curve for each choice across a range of PTP. At 
low PTP, the patient has a low probability of disease, 
and nonintervention maximizes utility. The patient 
likely has the disease at high PTP and will benefit most 
from treatment. The patient's disease state has the 
most uncertainty and the test has the greatest expected 
utility between the extreme values of PTP. Along the 
continuum of PTP the three decisions (nonintervention, 
test, and treat) form two points of equivalent 
utility (nonintervention‑test and test‑treat). We define 
these two cutoff points as PTPLow and PTPHigh [Figure 1].

The physician’s estimate of the patient probability 
of disease (PTPEst) compared to PTPLow and PTPHigh 
determines their choice. The decision to not intervene 
(PTPEst < PTPLow), test (PTPLow	≤	PTPEst	≤	PTPHigh), and 
treat (PTPHigh < PTPEst) becomes as simple as evaluating 
an inequality. Our model takes an identical approach 
by defining the appropriate use of a test as an estimate 
of PTP between PTPLow and PTPHigh. If we obtain the 
constant values of PTPLow and PTPHigh from cost‑efficacy 
analysis, an estimate of the physician’s PTP PTPEst would 
allows us to determine their decision‑making strategy.

To determine the value of PTPEst in the patient 

Figure 1: Deciding to test, a graph of pretest probability (PTP) 
versus expected utility. Utility curves for treatment, test, and 
nonintervention are shown as gray solid lines. The dotted line 
represents the maximum utility of the available choices. The cutoff 
PTPs were labeled PTPLow and PTPHigh. PTP: Pretest probability, 
EU: Expected utility
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population tested, whose value falls between PTPLow and 
PTPHigh for appropriate testing, we defer to the Rogan 
and Gladen equation.[25] The Rogan and Gladen equation 
provides an unbiased estimate of the prevalence of disease 
as a function of three parameters: The proportion of tests 
indicating disease (t), the sensitivity of the test (α) and 
its specificity (β).[25] The variance of PTPEst relates to the 
sample size (N).[25] Thus, as the sample size approaches 
a large number, PTPEst approaches the expected value of 
the true PTP.

b
a b a b
t +   –  t ( – t)

= , =
+  – N (  +  – )

Est Est 2
1 1

PTP Var(PT )P
1 1

Although the original paper does not mention a 
connection between the Rogan and Gladen equation 
and Bayes theorem, they can be demonstrated to be 
mathematically equivalent [Appendix 1].

Method Application
Our model relies on cost‑efficacy analysis to determine 
the PTP values (PTPLow, PTPHigh) for decision making. 
It is applicable whenever a reasonable cost efficacy 
analysis estimate is available. In its most general 
application one would evaluate the testing practices for 
an entire institution by determining if test outcomes are 
consistent with PTPs in the cost effective range. Actual 
PTPs and expected cost‑effective ideal ranges would be 
reported as feedback to ordering providers. This feedback 
does not specify which specific ordering actions were 
noncompliant, but instead provides general feedback 
relating test orders to the results of those tests, allowing 
clinicians to re‑calibrate their internal PTPs.

There are several logical alternative applications of this 
method. Instead of stratifying the test results by ordering 
provider, they could be stratified by other variables, 
including disease risk factors or patient care setting 
with different PTP cutoffs for each group. For example, 
a provider who works in a clinic and an intensive care 
unit could receive separate feedback for each setting. 
For comparisons with smaller test volumes, the estimate 
of PTP is not biased because it normalizes test volume 
by using the positive rate (number of positives/total). 
However, the variance of PTPEst decreases with increasing 
sample size, which makes the conclusion of appropriate 
or inappropriate utilization management more robust 
with large samples.

As physicians or health systems incorporate feedback 
about PTP in the context of their risk aversion strategies 
and situation‑specific exposure to clinical scenarios, this 
feedback will inform their future decision making strategy 
without assigning blame to a specific clinical decision. 
Our model does not attempt to quantify the specific 
factors involved in the decision‑making, but rather infers 
the provider’s decision‑making strategy from the estimate 
of PTP. In summary, we present a Bayesian approach 

to test utilization management that relates closely to 
decision‑making theory.

Example Method Application
We sought to observe the appropriate or inappropriate 
utilization of a diagnostic test when applied to a cohort 
stratified by disease risk. This allowed us to analyze 
how the decision to test varied by patient risk factors. 
We selected a disease with known risk factors and its 
corresponding diagnostic test. Enterovirus (EV) causes 
seasonal meningitis that primarily affects infants during 
summer and autumn (June to November).[26] A common 
test for its diagnosis is real‑time reverse transcriptase 
polymerase chain reaction (PCR) for EV RNA from 
cerebrospinal fluid (CSF) (EV‑PCR). We obtained the 
test results from a cohort of patients, stratified them by 
age and month of testing, and determined if appropriate 
or inappropriate testing occurred with our model for each 
stratum. We then looked for patterns of utilization across 
the risk‑stratified cohort to qualitatively determine the 
effect of population risk on the physician’s decision to 
test.

Variables: Positive rate and disease risk factors
Two tertiary‑care hospitals (Yale‑New Haven Hospital, 
New Haven CT and the University of Washington Medical 
Center, St. Louis, MO) and one national reference 
laboratory (ARUP laboratories, Salt Lake City, UT) 
retrospectively contributed three data elements for each 
EV‑PCR test performed between 2010 and 2012: The 
test results, patient age at the time of testing, and the 
month of order. Each institution employed a similar test 
methodology. The study used anonymized data and was 
determined to be human subjects exempt at participating 
institutions.

Constants: Low pretest probability, high pretest probability, 
sensitivity, and specificity
We obtained sensitivity, specificity, PTPLow, and PTPHigh 
through a systematic literature review. The review 
searched Medline with “EV [Mesh] NOT polio NOT 
poliovirus + English‑only + Humans‑only + Journal 
categories: Core clinical journals.” An author (RH) 
screened the resulting publications in two steps, first 
by title and abstract then by full text, to identify 
cost‑efficacy studies with PTPLow, PTPHigh, sensitivity and 
specificity.

Analysis
We analyzed the data according to our model in steps. 
First, we stratified the test results by patient age and 
month of the order. The categories for age were < 1, 1, 
2, 3–10, 11–20, 21–30, 31–40, 41–50, and > 50 years. We 
arrived at these age categories by modification of an age 
interval published by the Center for Disease Control on 
EV.[26] Second, we calculated the PTP (PTPEst) for each 
stratum. Third, we compared PTPEst to cost‑effectiveness 
recommendations for testing (PTPLow, PTPHigh). We 
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labeled as appropriate utilization each stratum with 
PTPEst between PTPLow and PTPHigh. Otherwise, the 
stratum received the label of inappropriate utilization. 
We performed the analysis separately for each individual 
site and again with data combined from all three sites.

Sensitivity analysis
To explore the robustness of the outcome, we repeated 
the analysis after modifying the test performance and 
cohort stratification. We altered the performance of the 
test by an increase in both sensitivity and specificity, 
and, in a separate trial, decease in both sensitivity and 
specificity. We also changed the data stratification by 
aggregating by season instead of month, and again by 
aggregating age at different intervals: <1, 1–4, 5–9, 
10–19,	20–44,	≥45	years.[26]

RESULTS

Constants: Low Pretest Probability, High Pretest 
Probability, Sensitivity and Specificity
To identify the constants required by our model, we 
screened the 642 publications returned by our Medline 
search. We filtered the publications to 14 with the title 
and abstract review. We found one cost efficacy study 
after full‑text review.[27] The study assessed the use 
of EV‑PCR in infants with fever and CSF pleocytosis 
admitted from an emergency department. It estimated 
sensitivity at 95%, specificity at 99%, and the PTPLow to 
exist between 5.9% (PTPLow1) and 12.8% (PTPLow2). It did 
not provide a value for PTPHigh.

Comparison to Recommendations
We collected 16,648 samples from Yale‑New 
Haven (n = 1197), University of Washington Medical 
Center (n = 1000) and ARUP laboratories (n = 14451). 
ARUP samples originated from 608 different hospitals 
and clinics across the United States. After stratifying 
the samples by age and season, we calculated the 
utilization management metrics of volume, positive 
rate, and PTPEst as shown in Table 1. We label each 
strata as overuse (PTPEst < PTPLow1 = 5.9%), equivocal 
(5.9% = PTPLow1	 ≤	 PTPEst	 ≤	 PTPLow2 = 12.8%), or not 
overuse (12.8% = PTPLow2 < PTPEst) in Figure 2. Overall 
we observed testing with overuse or equivocal benefit in 
81 of the 108 stratum (70.8% of total tests).

Testing for EV occurred in low risk groups including 
people age 21 or older and the months of December to 
May. People 21 or older represented 58.2% of total tests, 
had a positive rate of 3.9%, a PTPEst of 3.1%, and 44 of 
their 48 stratum (54.2% of total tests) received a label of 
overuse or equivocal. Tests ordered from December to 
May represented 41.9% of total tests, had a positive rate of 
4.5%, a PTPEst of 3.7%, and 50 of their 54 (40.5% of total 
tests) stratum received a label of overuse or equivocal. 
In contrast, the highest value testing occurred in people 

under 21 years of age and between June and November. 
They produced 28.0% of total tests, had a positive rate of 
6.6%, a PTPEst of 5.9%, and 11 of their 30 stratum (1.7% 
of total tests) had a label of overuse or equivocal.

We noticed an exception to the general age trend at 
1‑year of age. 1‑year‑old represented 2.1% (n = 357) of 
total tests, had a positive rate of 0.6%, a PTPEst of 0%, 
and all 12 monthly stratum received a label of overuse 
or equivocal. We observed the trends for season and age, 
including the trend for 1‑year of age, across the three 
sites.

Sensitivity Analysis
For sensitivity analysis, we altered several constant 
parameters [Table 2]. To increase the performance of 
the test, we changed the sensitivity from 95% to 100% 
and specificity from 97% to 100%. We also decreased 
test performance by decreasing sensitivity from 95% to 
92% and specificity from 99% to 97%. We changed the 
stratification of order date from month to season, and 
the stratification of age (original: <1, 1, 2, 3–10, 11–20, 
21–30, 31–40, 41–50, >50; altered: <1, 1–4, 5–9, 
10–19,	 20–44,	 ≥45).	 We	 observed	 the	 largest	 change	
in tests labeled overuse or equivocal, a 2.7% decrease 
(32% to 29.3%) when altering the age stratification. 
The alternative age stratification grouped 1‑year‑old, a 
stratum shown to have low‑value testing, with age one 
to four.

DISCUSSION

We have created a unique approach to providing feedback 
on physician’s ordering habits. Our method derives from 
decision‑making theory, and we base the conclusion of 
appropriate or inappropriate testing on cost‑efficacy 
analysis. Unlike a rule‑based approach, which dictates 
a particular physician decision in a given medical 
context, this method evaluates patterns of utilization 
allowing the physician to tailor their decision‑making 

Figure 2: Comparison of clinician behavior to cost-efficacy analysis 
recommendations. We compared the pretest probability estimates 
(PTPEst) from Table 1 to cost efficacy recommendations (PTPLow1, 
PTPLow2) to determine overuse (PTPEst < PTPLow1 = 5.9%), equivocal 
benefit (5.9% = PTPLow1 ≤ PTPEst ≤ PTPLow2 = 12.8%), or not 
overuse (12.8% = PTPLow2 < PTPEst)
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strategy to the clinical context. It also differs from a 
rule‑based utilization management in that it evaluates 
the consequence of the decision to test, specifically the 
positive or negative result, rather than the context in 
which the physician made the choice. Because it uses 
retrospective test results, the information needed by the 
model exists in nearly all clinical laboratories without the 
need for manual chart review.

The method for utilization management presented 
here demonstrates a basic concept upon which future 
authors could expand. For example, we focused on 
a prototypical test, a test with a binary result and a 

diagnostic interpretation. A variation of our model 
may apply to tests informing prognosis or monitoring 
for side‑effects of therapy. Another model variation 
could measure the significance of sample size 
differences among the strata as well as uncertainty in 
the sensitivity and specificity.[28] For a situation where 
a cost‑efficacy analysis does not exist, our approach 
could be adapted to identify variations in utilization 
among groups.

Like other statistical models, random variation may 
influence the model’s conclusions. For example, a 
physician could test a population with a high PTP of 

Table 2:  Sensitivity analysis of percent overuse

Sensitivity 
(%)

Specificity 
(%)

Time of  
year groups

Age 
groups

Overuse 
(%)

Equivocal 
(%)

Not overuse 
(%)

95 99 Month Control 50.0 20.8 29.3
100 100 Month Control 49.2 20.3 30.5
92 97 Month Control 55.0 16.5 28.5
95 99 Month CDC 45.7 22.3 32.0
95 99 Season Control 48.5 20.0 31.5

Control	age	groups:	<1,	1,	2,	3‑10,	11‑20,	21‑30,	31‑40,	41‑50,	>50.		Center	for	Disease	Control	(CDC)	age	groups:	<1,	1‑4,	5‑9,	10‑19,	20‑44,	≥45[26]

Table 1: Test results, positive rate and PTPEst by age and month. For each cell the top line represents 
positive results/total, and the second line the positive rate. We calculated the PTPEst in the third line 
with a sensitivity of 95% and a specificity of 99% . PTP: Pretest probability

Jan (%) Feb (%) Mar (%) Apr (%) May (%) Jun (%) Jul (%) Aug (%) Sep (%) Oct (%) Nov (%) Dec (%)

<1 21/235 
(8.94) 
8.44

10/176 
(5.68) 
4.98

16/210 
(7.62) 
7.04

21/227 
(9.25) 
8.78

30/258 
(11.63) 
11.31

45/289 
(15.57) 
15.50

89/363 
(24.52) 
25.02

102/384 
(26.56) 
27.19

95/360 
(26.39) 
27.01

77/331 
(23.26) 
23.68

42/255 
(16.47) 
16.46

18/192 
(9.38) 
8.91

1 0/40 
(0) 
0

0/24 
(0) 
0

0/31 
(0) 
0

0/18 
(0) 
0

0/34 
(0) 
0

0/35 
(0) 
0

1/36 
(2.78) 
1.89

0/39 
(0) 
0

0/30 
(0) 
0

0/33 
(0) 
0

0/22 
(0) 
0

1/15 
(6.67) 
6.03

2 0/11 
(0) 
0

0/18 
(0) 
0

1/13 
(7.69) 
7.12

0/14 
(0) 
0

2/12 
(16.67) 
16.67

1/19 
(5.26) 
4.54

2/16 
(12.50) 
12.23

5/24 
(20.83) 
21.10

2/19 
(10.53) 
10.13

0/12 
(0) 
0

1/15 
(6.67) 
6.03

1/5 
(20.0) 
20.21

3‑10 12/107 
(11.21) 
10.87

7/65 
(10.77) 
10.39

8/71 
(11.27) 
10.92

11/69 
(15.94) 
15.90

26/95 
(27.37) 
28.05

26/128 
(20.31) 
20.55

54/146 
(36.99) 
38.28

67/164 
(40.85) 
42.40

63/148 
(42.57) 
44.22

47/127 
(37.01) 
38.31

41/110 
(37.27) 
38.59

10/65 
(15.38) 
15.30

11‑20 11/153 
(7.19) 
6.58

3/102 
(2.94) 
2.07

4/130 
(3.08) 
2.21

9/126 
(7.14) 
6.53

13/112 
(11.61) 
11.28

34/175 
(19.43) 
19.60

33/187 
(17.65) 
17.71

73/233 
(31.33) 
32.27

54/226 
(23.89) 
24.36

38/157 
(24.20) 
24.68

33/144 
(22.92) 
23.32

10/97 
(10.31) 

9.90
21‑30 5/143 

(3.50) 
2.66

1/123 
(0.81) 

0

1/139 
(0.72) 

0

7/138 
(5.07) 
4.33

12/151 
(7.95) 
7.39

19/164 
(11.59) 
11.26

21/190 
(11.05) 
10.69

36/198 
(18.18) 
18.28

35/189 
(18.52) 
18.64

27/169 
(15.98) 
15.93

17/120 
(14.17) 
14.01

5/127 
(3.94) 
3.12

31‑40 3/140 
(2.14) 
1.22

1/108 
(0.93) 

0

2/132 
(1.52) 
0.55

5/130 
(3.85) 
3.03

13/126 
(10.32) 

9.91

11/149 
(7.38) 
6.79

19/170 
(11.18) 
10.83

27/210 
(12.86) 
12.61

19/189 
(10.05) 

9.63

20/177 
(11.30) 
10.96

8/135 
(5.93) 
5.24

4/110 
(3.64) 
2.80

41‑50 1/124 
(0.81) 

0

0/111 
(0) 
0

0/132 
(0) 
0

3/133 
(2.26) 
1.34

1/159 
(0.63) 

0

2/173 
(1.16) 
0.17

7/166 
(4.22) 
3.42

11/203 
(5.42) 
4.70

8/202 
(3.96) 
3.15

7/174 
(4.02) 
3.22

2/135 
(1.48) 
0.51

0/119 
(0) 
0

>50 1/380 
(0.26) 

0

1/280 
(0.36) 

0

0/310 
(0) 
0

0/291 
(0) 
0

1/338 
(0.30) 

0

2/343 
(0.58) 

0

2/359 
(0.56) 

0

3/454 
(0.66) 

0

2/426 
(0.47) 

0

2/410 
(0.49) 

0

5/333 
(1.50) 
0.53

0/314 
(0) 
0
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disease, but a possibility exists where no patient has 
a positive result. Thus, the PTPEst would appear low 
because it depends on the proportion of positive results. 
The physician would also appear to over‑utilize the test. 
Fortunately, the probability of this scenario decreases as 
the sample size increases. The increase in sample size 
decreases the variance of PTPEst.

Each patient in the cohort of tested patients has an 
individual PTP, and the distribution of the PTP among 
the cohort represents a second important factor in 
the interpretation of the model. In a large sample, the 
PTPEst reflects the average PTP of the patients tested, 
but it does not provide information on the distribution 
of the patients’ PTP. If therefore PTPEst < PTPLow in a 
large population, it would be incorrect to conclude the 
majority of tests occurred in patients with too low of PTP. 
This statement assumes PTPEst represents the population 
median, which it does not. In contrast, the conclusion 
could state the average PTP of the cohort had a value 
less than the lower limit of the suggested PTP range.

The systematic literature review to find a cost‑efficacy 
analysis for EV‑PCR found one paper that may 
overestimate the benefit of EV‑PCR by supposing certain 
assumptions. First, the paper assumes a positive EV‑PCR 
can rule‑out bacterial meningitis faster than the gold 
standard diagnosis for bacterial meningitis, CSF culture. 
Second, it proposes EV‑PCR had a turnaround time of 
1‑day. Third, patients with confirmed EV meningitis were 
assumed discharged in 1‑day. When evaluated at one of 
the study’s sites, three cases of positive CSF culture had a 
result within 1‑day, while only half (15/30) of the positive 
cases of EV meningitis met the 1‑day turnaround time 
and 1‑day discharge time. The submission of a sample to a 
reference laboratory, as occurred in the majority of samples 
in this study, would presumably require longer than 1‑day.

Because our method views decisions over time, not in the 
moment, it can separate the utilization metric (PTPEst) 
from the judgment of the metric (i.e. appropriate, 
inappropriate). The modularity of our approach allows a 
future cost‑efficacy study to re‑evaluate our conclusions 
with different PTP cutoff values (PTPLow, PTPHigh). 
Similarly, a health care center could retrospectively trend 
its utilization knowing only its test results.

We demonstrate our approach to utilization on a 
large retrospective cohort of patients tested by real‑time 
reverse transcriptase EV‑PCR. The sample, gathered 
over multiple years from sites across the United States, 
represents one of the largest published EV cohorts. By 
stratifying the cohort across age and season, we determined 
specific patient subgroups receiving low‑value testing. As 
the next step, we could then provide quantitative feedback 
to inform physician decision making on individual patients 
with population‑based concerns of resource allocation.
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APPENDIX, DERIVATION OF THE ROGAN-GLADEN EQUATION FROM BAYES THEOREM

Bayes Theorem

P (Disease) P (Positive test Disease)= P (Positive test)P (Disease Positive Test)

•	 Substitution:	P(Positive Test |Disease) ≡Sensitivity
•	 Substitution:	PPV ≡P(Disease|Positive Test)

P(Disease) Sensitivity=P(Positive Test) PPV

Substitution:  PPV ≡ 
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