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A browser-based tool for visualization and analysis
of diffusion MRI data
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Human neuroscience research faces several challenges with regards to reproducibility. While

scientists are generally aware that data sharing is important, it is not always clear how to

share data in a manner that allows other labs to understand and reproduce published find-

ings. Here we report a new open source tool, AFQ-Browser, that builds an interactive website

as a companion to a diffusion MRI study. Because AFQ-Browser is portable—it runs in any

web-browser—it can facilitate transparency and data sharing. Moreover, by leveraging new

web-visualization technologies to create linked views between different dimensions of the

dataset (anatomy, diffusion metrics, subject metadata), AFQ-Browser facilitates exploratory

data analysis, fueling new discoveries based on previously published datasets. In an era

where Big Data is playing an increasingly prominent role in scientific discovery, so will

browser-based tools for exploring high-dimensional datasets, communicating scientific dis-

coveries, aggregating data across labs, and publishing data alongside manuscripts.
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Fueled by technical advances in modern web browsers and by
the development of open source software libraries for
interactive visualization, browser-based data visualizations

have been playing an increasingly prominent role in commu-
nicating information on a wide range of topics. For example,
news events are frequently accompanied by interactive maps,
election results are reported in interactive plots, and research
findings from a broad range of scientific research disciplines are
displayed as interactive three-dimensional renderings1. JavaScript
libraries for visualizing data in the web-browser2,3 now rival most
platform-specific packages in terms of plotting and rendering
capabilities, and many scientific disciplines have further devel-
oped tools for the visualization of specific data types in the
browser. In the field of neuroscience there are several different
libraries devoted to visualization of brain imaging data. Examples
include BrainBrowser4, XTK5, Mango6 and Fiberweb7, which
provide application programming interfaces for programmers to
create sophisticated applications that visualize three-dimensional
brain structure with overlaid analysis results. These new tools are
ushering in an era of Big Data in neuroscience and have laid the
technical infrastructure for visualizing a breadth of commonly
used medical imaging data types.

In the present work, we leverage these tools to develop the
AFQ-Browser software that visualizes results from diffusion-
weighted magnetic resonance imaging (dMRI) studies of human
white matter. Even though many different methods for the ana-
lysis of dMRI data have been developed, there is broad agreement
that tractometry8–10, in which diffusion measurements are sum-
marized along the length of fiber tracts, is a powerful analysis
approach. There are currently two open source packages available
to automate the process of identifying fiber tracts and quantifying
tissue properties: Automated Fiber Quantification (AFQ10),
which is implemented in MATLAB, and TRACULA11, which
combines FSL diffusion tools12 and Freesurfer anatomy pipe-
line13. These software packages are widely used across clinical and
basic science applications ranging from brain development and
aging14–19, autism spectrum disorders20–22, major depressive
disorder23,24, head trauma25–27, retinal disease28, amyotrophic
lateral sclerosis29,30, surgical planning31, and dyslexia18,32,33. Our
present work focuses on designing a web-based graphical user
interface (GUI) for tractometry. It confronts two major challenges
in the study of human brain connectivity: (1) scientific repro-
ducibility and (2) exploration of high-dimensional data. The
narrow focus on tractometry allowed us to design a robust system
that can be used by researchers without technical expertise in
JavaScript and web visualization. Instead, we provide a
command-line interface that allows researchers to visualize and
explore data on their own computers and to publish results to the
web.

Because AFQ-Browser is portable—it runs in any modern web-
browser—it can be used to facilitate transparency and data
sharing. The field of human neuroscience faces several specific
challenges with regards to reproducibility34,35. Scientists are
generally aware that data sharing is integral to reproducible
research, but it is not always clear how to usefully share data. On
one end of the spectrum, sharing raw data is often unwieldy36,
and reproducing the results from raw data requires access to the
full series of computations that was used in the analysis. Com-
putational complexity and data size can present a serious barrier
that prevents scientists from attempting to reproduce published
findings37. Moreover, the analysis of raw medical imaging data
requires substantial domain expertise. This presents a barrier for
researchers in computer science and statistics to apply innova-
tions in their fields to the analysis of human brain data and to
crosscheck the methodological assumptions of published work.
On the other end of the spectrum, tables, graphs, and scatter plots

that typically appear in journal articles reflect an author’s inter-
pretation of the data, but do not suffice for meaningful repro-
ducibility of the results, or exploration of alternative theories.

Here, we propose that sharing dimensionally reduced portions
of dMRI data, together with rich interactive data visualizations,
lends itself not only to replication of original results, but to
immediate and straight-forward extensions of these results, even
in the hands of researchers in other disciplines. AFQ-Browser
includes a function to publish the visualization and dimensionally
reduced data to a publicly accessible website. Ideally, this inter-
mediate form of data sharing would supplement the release of
raw data, but it might also appeal to researchers who wish to
communicate their findings more completely, but are not ready to
release the full collection of raw data from an ongoing study, or
worry about privacy concerns associated with raw data. AFQ-
Browser automatically organizes dMRI data analyzed along tracts
into tidy tables38. The software facilitates rapid publication of
both the visualization and these data as an openly available
website.

In designing a browser-based tool for sharing diffusion MRI
data we further fill a growing void in the era of Big Data: the need
for visualization tools to intuitively explore complex relationships
in high-dimensional datasets. Data visualization and exploration
plays an integral role in scientific inquiry, even beyond commu-
nicating results from statistical tests of an a priori hypothesis.
High-dimensional datasets, such as Tract Profiles of white matter
tissue properties measured with dMRI10, in conjunction with
behavioral and demographic measures in large samples of sub-
jects, pose a fundamental challenge for data visualization. A
solution pioneered by astronomy, genomics and other fields that
were early to embrace Big Data was the development of tools
implementing linked views of a data set, where interaction with a
visualization of one dimension evokes a change in another
visualization of the same data39. By interactively exploring the
relationships among different dimensions of a dataset, a
researcher can develop an understanding of the principles that
characterize the system without specifying an a priori model of
the complex relationships that are present in the high-
dimensional data. Drawing inspiration from other disciplines
that have already realized the power of linked view visualizations
for exploring high-dimensional data, we present here a software
tool that visualizes results from quantitative tractography analysis
of dMRI data, and facilitates exploratory data analysis through
the implementation of linked views of the data. By satisfying the
need for both exploratory data analysis and data sharing, AFQ-
Browser supports a virtuous cycle where public data are
increasingly valuable and easy to share, and there are new
opportunities to aggregate large datasets across laboratories.

Results
Generating new discoveries from old datasets. Publishing data
in a convenient format supports reproducibility and fuels new
scientific discoveries. For example, examining the published data
from Yeatman et al.19 in a running instance of AFQ-Browser
(http://YeatmanLab.github.io/AFQBrowser-demo), we can
reproduce the previously reported finding that, in terms of mean
diffusivity (MD), the arcuate fasciculus demonstrates more
developmental change than the corticospinal tract (CST). When
the sample is binned into three age groups, both the arcuate and
CST show highly significant changes, but the magnitude of
change between childhood and adulthood is larger for the arcuate
than the CST (Fig. 1). By switching the plot to fractional aniso-
tropy (FA) rather than MD, another effect, not reported in the
original manuscript, can be observed. While the arcuate shows
the expected pattern of results—FA values increase with
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development—the CST shows the opposite pattern of develop-
mental change. For the CST, the three age groups have equivalent
FA values for the first half of the tract, but adults have lower FA
values than young adults or children between nodes 50 and 80
(Fig. 1). At first, this finding might seem counter-intuitive: FA
typically increases with development as axons become more
densely packed and myelinated. But in this case the develop-
mental decline in FA occurs in the centrum semiovale, a portion
of the Tract Profile where FA drops substantially due to crossing
fibers. The developmental decline in FA is therefore likely to
reflect development of the fiber tracts that cross through this
portion of the CST, rather than changes in CST axons per se. This
interpretation makes sense given that the superior longitudinal
fasciculus, one of the tracts crossing through this region of the
CST, is believed to continue developing into young adulthood.
This interpretation of the developmental changes in FA in regions
of crossing fibers offers some clarity to other reports of declining
FA values in the young adult brain, but also requires a more
thorough investigation in an independent dataset.

Localizing white matter lesions in patients with multiple
sclerosis. Multiple sclerosis (MS) is a degenerative disease of the
white matter characterized by progressive loss of myelin. Even
though measures such as MD and FA are not specific to myelin,
dMRI is still a promising technique for detecting and monitoring
white matter lesions in MS and quantifying results from drug trials
targeting remyelination40. DMRI is sensitive to aspects of the
disease that are not detectable with conventional imaging methods
(T1, T2, fluid-attenuated inversion recovery (FLAIR)). Quantita-
tive comparisons between MS patients and healthy control sub-
jects have demonstrated differences in diffusion properties within
“normal appearing white matter”, or regions that do not show
obvious lesions on a conventional MRI image. In longitudinal
studies, these regions with diffusion differences are likely to pro-
gress into lesions, indicating the sensitivity of dMRI for detecting
early signs of the disease, and monitoring the benefit of drugs that
aim to prevent the demyelination process40–43.

One of the challenges for incorporating dMRI into clinical
practice is the lack of user-friendly methods for visualizing results

in a quantitative manner. For clinical applications, group
comparisons have limited utility, because ultimately the goal is
to detect abnormalities and make diagnoses at the level of the
individual. For example, in the data previously published by
Yeatman et al.19 and Mezer et al.44, MD, radial diffusivity (RD),
and FA values are significantly different in MS patients compared
to controls for most tracts in the brain (https://YeatmanLab.
github.io/AFQ-Browser-MSexample/). MD and RD show much
greater sensitivity to group differences than FA: Fig. 2 shows
group means and standard errors for MD, RD, and FA along the
corticospinal tract, posterior callosum, inferior longitudinal
fasciculus, and arcuate fasciculus.

Group comparisons demonstrate the sensitivity of the measure
to the disease but do not provide diagnostic information about
individual patients: each individual has tissue abnormalities in
different parts of the brain, with some tracts showing diffusivity
values in the normal range, others showing normal-appearing
white matter on a T1, but abnormalities in terms of diffusion
metrics, and other tracts displaying major lesions. AFQ-Browser
provides a simple and intuitive method to quantitatively compare
an individual’s white matter tissue properties to normative data
from healthy brains by plotting each individual’s Tract Profile in
comparison to the normative distribution of healthy brains
(means and SDs, Fig. 3). When an individual is selected in the
AFQ-Browser GUI, z-scores comparing that individual to the
norms of each group are displayed above the individual’s Tract
Profile. Such a comparison can localize lesions to specific
locations on a tract and quantify the extent of damage. Clinical
data are a prime example of the utility of linked visualization: the
links between quantitative plots of diffusion measures, tract
anatomy, and subject metadata make it possible to quickly find a
subject with a lesion, determine the location of the lesion and
associate this information with clinical symptoms. While not as
specific to myelin as other quantitative measurements such as
R119,45–48, we find that MD and RD are highly sensitive to MS
lesions. For example, the lesion shown in Fig. 8 of ref. 19 can be
detected based on MD values that are 5.6 SD away from the
norms, with a larger lesion in the left compared to the right
occipital callosal connections (Fig. 3, subject_020). In this lesion,
RD values are slightly more sensitive showing a z-score of 6.2 and
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Fig. 1 Development of the corticospinal tract, arcuate fasciculus, and cingulum. Tract profiles of mean diffusivity (top) and fractional anisotropy (bottom)
are shown for the left hemisphere corticospinal tract (CST, orange), arcuate fasciculus (blue), and cingulum (green). Splitting the group by age, and
selecting 3 bins, displays mean lines of three groups: 8–15 (red), 15–30 (purple), and 30–50 (blue). For the CST, there is a region that shows a decrease in
FA with development, and this location of the tract is highlighted on the plot using the “brushable tracts” feature (shaded gray box). The linked view in the
anatomy displays the portion of the CST that is brushed in the plot demonstrating that this effect occurs in the anatomical portion of the CST known as the
centrum semiovale, adjacent to the arcuate fasciculus. This linked visualization provides a connection between the data plots and the 3D Anatomy. Data
and MATLAB code are available at https://github.com/YeatmanLab/AFQ-Browser_data (see Figure2_Development.m) and running AFQ-Browser
instance at: https://YeatmanLab.github.io/AFQBrowser-demo/)
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FA values are slightly less sensitive, with a z-score of −3.3
compared to healthy controls (Fig. 3). For this patient, the large
lesion on the ILF was more than 10 SD greater than the controls
in terms of MD and RD. As more clinical datasets are aggregated
in public repositories there will be new opportunities to explore
the sensitivity and specificity of this type of individual
comparison.

Detecting degeneration in amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative dis-
ease in which progressive degeneration of upper and lower motor
neurons leads to atrophy, weakness, and loss of muscle control.
The time-course of disease progression varies substantially across
patients, with some showing rapid degeneration and others
showing a sporadic or gradual decline. Due to the heterogeneous
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presentation of clinical symptoms in ALS, early diagnosis can be
challenging and the disease can go undetected in many patients
until they present with severe symptoms. Hence, the development
of quantitative and automated methods for diagnosis and disease
monitoring has been a major focus within clinical neuroimaging
research. Diffusion MRI holds promise as a tool to detect the
early stages of neural degeneration and corroborate behavioral
assessments. Group analyses have consistently demonstrated
significant reductions in FA, increases in RD, and increases in
MD in the corticospinal tract29,49. Group comparisons provide
information about the average pattern of disease progression but
ultimately the goal of clinical neuroimaging research is to develop
techniques that have sufficient sensitivity and specificity to be
applicable at the individual level. A recent study used AFQ and a
random forest classifier to develop an automated diagnosis sys-
tem to classify subjects as healthy or diseased based on dMRI
measures29. They achieved 80% classification accuracy (cross-
validated) based on Tract Profiles of the corticospinal tract and
reported that FA and RD at the level of the cerebral peduncle and
posterior limb of the internal capsule were the most informative
diffusion properties. These effects can be visualized in AFQ
browser by binning the subjects based on disease diagnosis
(https://YeatmanLab.github.io/Sarica_2017/, Fig. 4). As reported
by Sarica et al.,29 the mean RD and FA values in this region of the
CST are more than 1 SD different in ALS patients compared to
controls (node 40, arrow, Fig. 4). Even though a multivariate
classification strategy (random forests) is used to achieve good
diagnostic accuracy, visualization of individual Tract Profiles
demonstrates that a majority of patients (75%) deviated by more

than 1 SD from control values within the right CST at the level of
the cerebral peduncle. Based on these data that were made pub-
licly available through AFQ-Browser, we implement a series of
computations in a Jupyter Notebook that reproduce the central
findings, and a figure from the original work (https://github.com/
YeatmanLab/AFQ-Browser_data/blob/master/AFQ-
Browser_ALSexample/Reproducing-Sarica2017-Figure3.ipynb).

The goal of most clinical neuroimaging studies is to detect
regions of the brain that are affected by the disease. While not a
central focus of clinical research, there is also scientific
importance to clearly establishing regions of the brain that are
not affected by the disease. Based on the previously published
data in Sarica et al.29, we can investigate the specificity of the
effects to the CST and determine whether there are any tracts that
can be established as control regions not affected by the disease.
We find that the CST is the only tract that shows large (>1 SD)
differences between patients and controls in terms of RD and FA
values. While there are a few regions that show small differences
(depending on the statistical threshold), the specificity of the
effects to the CST is striking. For example, many tracts including
the forceps major and forceps minor of the corpus callosum and
the left and right inferior fronto-occipital fasciculus show nearly
identical distributions of values between patients and controls
(Fig. 4).

Removing barriers for interdisciplinary collaboration. Statis-
tics, machine learning, and data science are making impressive
strides in the development of general-purpose methods for the
interpretation of data across a variety of scientific fields50. One of
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the current barriers to a broader application of these methods is
the extraction of useful analysis features from unstructured data
sets that contain large, heterogeneous, noisy measurements, saved
in obscure domain-specific or proprietary formats, that require
special software, and arcane preprocessing steps. Brain imaging
data are a paradigmatic case of this state of affairs: measurements
are typically large, on the order of several gigabytes per individual,
signal-to-noise ratio can be low, and differences in three-
dimensional (3D) brain structure between individuals make
naive image processing of the original measurement fraught. One
of the major strengths of tractometry is that it extracts features
from brain imaging data based on domain-specific knowledge:
quantitative measurements of tissue properties for well-defined
anatomical segments of the major white matter connections in an
individual’s brain51. This reduces the dimensionality of the data
substantially, while still retaining rich, complex information
about an individual’s neuroanatomy.

AFQ-Browser provides these domain-relevant features in a
format that will be familiar to many machine learning and
statistics practitioners: tables with observations as rows, and
variables as columns. This format, known as tidy data38, is the
universal exchange format of data science. The data are converted
by the AFQ-Browser software and stored in ubiquitous text-based
formats: CSV and JSON files. Separate tables are available for
node-by-node estimates of the diffusion properties along the
length of the fiber groups, and for the subject metadata, and these
tables can be merged in an unambiguous manner through a
shared subject ID variable. These files can be read using the
standard data science tool-box: Software libraries such as the
Python pandas library52, or using the R statistical language53.
Once data are read into tables, data processing and visualization
with tools such as Seaborn (https://seaborn.pydata.org/) or ggplot
(http://ggplot2.org/) are also straightforward. Furthermore, very
few steps are required to apply machine learning techniques to
the data, using tools such as the scikit-learn library54, and results
such as classifier weights can be easily interpreted with respect to
known brain anatomy. An example of such an analysis is
presented in Fig. 5, using the same data as in Fig. 4.

To lower the barrier to data use even further, we integrate
AFQ-Browser with the Binder service (https://elifesciences.org/
labs/8653a61d/introducing-binder-2-0-share-your-interactive-
research-environment): this web-service allows visitors to an
AFQ-Browser instance to click a button that takes them to a
cloud-based interactive Jupyter notebook, with the data from
this instance accessible, and Seaborn, Pandas, and scikit-learn
already installed. Thus, visitors to an AFQ-Browser site
can immediately start analyzing the data, even without down-
loading anything to their personal computer, or installing any
additional software.

Discussion
We have developed a new visualization tool for the quantitative
analysis of diffusion MRI data in the web browser. The goals of
this work were twofold: first, to support scientific reproducibility
by removing barriers to public data release and, second, to capi-
talize on new technologies for linked visualization that facilitate
exploratory data analysis. AFQ-Browser makes it possible to create
an interactive website of companion data for a manuscript with a
single command (afqbrowser-publish). While, ultimately, we
advocate for releasing all the raw data and analysis code associated
with published work36, we also maintain that releasing derived
measures (Tract Profiles) is a major step in the right direction and
will allay the concerns that many scientists feel about giving up
control of difficult to collect data sets. Ideally, this practice will
serve as a stepping-stone to further data and code sharing.

An additional benefit of releasing derived measures is that
readers of a manuscript can easily explore dimensions of the data
that were not reported in the publication. For example, it is not
feasible to report results for every possible diffusion metric, and it
is common for a manuscript to focus on a single metric. In our
previous work19 we only reported modeling results for MD, R1,
and MTV. A reader that is left wondering whether other metrics
(e.g., RD and AD) would show the same pattern of results can
now quickly answer this question through the companion website
(http://YeatmanLab.github.io/AFQBrowser-demo). Not only is a
companion website more feasible than a supplement that includes
every potential analysis, but also through AFQ-Browser
researchers can extend published work and make new dis-
coveries. For example, we have made three observations that
extend the findings reported in published datasets: (1) in regions
of crossing fibers there are developmental declines in FA (Fig. 1);
(2) MS lesions can be detected in an individual, and localized on a
tract, based on RD or MD but not FA (Fig. 3); (3) white matter
degeneration in ALS is highly specific to the corticospinal tract
and many cortical association tracts are largely unaffected by the
disease (Fig. 4). While each of these discoveries is only an
incremental contribution to what was reported in the original
work, we contend that having datasets openly available online,
with tools that facilitate data exploration, will fuel important new
discoveries in human neuroscience.

We are not the first to create interactive web-based visualiza-
tions to accompany a manuscript. For example, the Allen Brain
Institute has built a powerful GUI to explore large, multimodal
genomics and physiology datasets (http://casestudies.brain-map.
org/celltax). Friederici et al.55 built an interactive brain viewer to
accompany a review paper on the neuroanatomy of language so
that readers could explore anatomy in a more detailed manner
than is possible in a static figure (http://onpub.cbs.mpg.de/index.
html). The BigBrain project56 has released a high-resolution atlas
of the human brain histology that can be navigated based on
custom WebGL code (https://bigbrain.loris.ca). Huth and col-
leagues used pyCortex57 to build an interactive website to
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Fig. 5 Classification of ALS patients based on FA in the corticospinal tracts.
The Tract Profiles in the two CSTs are submitted to a Principal Components
Analysis—the first two PCs form the dimensions of this plot (accounting for
about 50% of the variance in the data). The data are separately used to
train a support vector machine classifier, with a polynomial kernel. The
classification boundary is shown here in the space of first two PCs. This
classifier performs at 88% accuracy (cross-validated) in discriminating
patients from controls. The Jupyter Notebook containing all steps of the
analysis is shared here: https://github.com/YeatmanLab/AFQ-
Browser_data/blob/master/AFQ-Browser_ALSexample/Figure6.ipynb
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accompany recent work58 on the structure of semantic maps in
the human brain (http://gallantlab.org/huth2016/). There are
numerous examples of beautiful interactive websites that labs
have designed to accompany key studies, and interact with
landmark datasets. However, these major achievements in
browser visualization are isolated to a few labs with high technical
capabilities and the willingness to invest the time and resources
required to design a custom website for a publication. AFQ-
Browser fills an important gap by removing these constraints: a
website can be published by running a single command (afq-
browser-publish) in a software package that can be installed
automatically on any machine with Python (pip install AFQ-
Browser), the website is hosted for free through GitHub Pages,
and the underlying data are permanently stored in afqvault
(http://afqvault.org). Thus, even labs with minimal resources and
technical capabilities can communicate important scientific
findings in an interactive format.

In building a tool like AFQ-Browser, should we worry that we
are supporting scientific transparency at the expense of artificially
diminishing p-values? In other words, is exploratory analysis of
public datasets at odds with hypothesis testing? The statistician
John Tukey59 coined the term “exploratory data analysis” to
describe the process of data analysis through iterative processing,
probing, and visualization of datasets. Tukey argued for a sharp
distinction between exploratory and confirmatory data analysis
(or hypothesis testing), and posited that scientists should strive to
obtain multiple datasets allowing them to explore a high-
dimensional system, and develop hypotheses through explora-
tory data analysis, before performing the formal statistical tests to
confirm or reject their hypothesis based on an independent
dataset. Traditionally, the field of cognitive neuroscience has
approached data analysis with the goal of testing specific
hypotheses. Thus, experiments and data collection are designed
with a hypothesis in mind, and data analysis involves computing
statistics to formally test this hypothesis. In hypothesis-driven
science, data visualization is often viewed as separate from the
scientific investigation, but in complex systems, with non-linear
relationships, exploratory data analysis and visualization can be
essential for clarifying patterns that might be obscured in a
conventional statistical analysis60. With new imaging techniques,
and large-scale data collection efforts, the field of human neu-
roscience sits at a transition point, where exploratory data ana-
lysis and data-driven discovery is becoming appreciated as
increasingly important. Other scientific fields such as astronomy
and genomics that have embraced Big Data have discovered the
critical role that data visualization can play in developing new
theories39. As the field of human neuroscience transitions to an
era of Big Data, tools like AFQ-Browser will become increasingly
important as a way for scientists to interact with large datasets. As
datasets grow, so will the importance of tools that can operate in
the same manner on data stored on a personal computer in a
laboratory, or on remote datasets stored in the cloud. Browser-
based GUIs can fill this growing need.

However, we might also worry that in developing tools like
AFQ-Browser, we are supporting reproducibility and data mining
at the expense of “p-hacking”61–63. This is a valid concern and
highlights the need for our standards on scientific rigor to evolve
with the changing landscape of Big Data. For example, a lab
might typically only conduct a limited number of statistical tests
and, ideally, would correct p-values for each statistical test that
was performed (not just the tests that were reported in the
manuscript). But exploratory data analysis involves examining
many possible processing pipelines and relationships between
variables in a system59. The strength of tools like AFQ-Browser is
the ease of exploring large datasets to identify relevant dimen-
sions, and make data-driven discoveries that suggest a new

hypothesis to test in future work. Data exploration is a critical
component of hypothesis generation, and data mining tools
should not be discarded over worries of p-hacking. But thoughtful
consideration of statistical concerns is also paramount. Drawing a
distinction between exploratory and confirmatory data analysis
allays concerns over biased p-values by defining the central role of
replication in scientific discovery. An observation that emerges
from exploratory data analysis should be confirmed in an inde-
pendent dataset. As more datasets become publicly available,
confirmatory data analysis and independent replication will
become standard practice. Tools like AFQ-Browser facilitate this
goal of aggregating many independent datasets. Finally, Big Data
should not be viewed as a replacement for small and careful,
hypothesis-driven investigations within a single laboratory. The
field should strive for a balance between the innovative data-
driven discoveries that can emerge from large public datasets, and
the careful, targeted scientific investigations that a lab can
undertake to definitively test a specific hypothesis.

Methods
The AFQ-Browser software. AFQ is a software package for quantitative analysis
of white matter fiber tracts10. The AFQ software is a fully automated pipeline that
takes in diffusion MRI data and returns Tract Profiles of diffusion properties (or
other quantitative MRI parameters) sampled along the trajectory of 24 major white
matter fiber tracts (i.e., tractometry8,9). Fiber tracts are identified in an individual’s
native space, and the diffusion properties are sampled at points along the trajectory
of each tract, thereby representing the data for each tract as a vector of measure-
ments. For groups of subjects, data for a tract are represented by a matrix of values
where each row corresponds to a subject and each column corresponds to a node
along the tract. This pipeline can be thought of as a dimensionality reduction
technique, whereby the data from hundreds of thousands of voxels get summarized
in terms of features (fiber tracts) that have a known anatomy, and are important for
specific aspects of cognitive function. Based on this dimensionality reduction and
alignment into the individual participant’s anatomy, groups of subjects can be
compared in terms of these features, individuals can be compared to groups, and
supervised and unsupervised learning techniques can be applied to link white
matter biology to cognition in health and disease. But even this lower-dimensional
view of the diffusion data can become unwieldy as datasets grow larger, and as
there is an increasingly complex collection of subject metadata characteristics (e.g.,
behavioral measures, demographics, disease state, etc.) that might be linked to the
underlying biological measurements. Hence, data visualization that allows for
linked views across different dimensions of the dataset is essential.

AFQ-Browser takes the output of the AFQ MATLAB tractometry pipeline, and
generates a browser-based visualization of the results. The AFQ MATLAB analysis
pipeline produces a standard AFQ object, stored as a MATLAB .mat/hdf5 file. This
file contains a structure array data-structure, with Tract Profiles for all the diffusion
properties that were calculated from the dMRI data, for all tracts and subjects. The
AFQ file also contains a field for metadata: subject-level characteristics, such as age,
clinical diagnosis, or scores on psychometric tests are saved into this field. A
command line function, afqbrowser-assemble, extracts all this information from
the AFQ .mat file and writes out the hierarchically nested structured array as a
series of .csv and .json files, stored in tidy formats38. This command line
application then organizes the various AFQ-Browser files into a fully functioning
AFQ-Browser website: a template of HTML and JavaScript scripts, and CSS styling
are arranged into the appropriate folder structure, and the data are placed in a data
folder from which the application files read it into the browser. A second command
line function, afqbrowser-run, launches a static web-server on the user’s computer
with AFQ-Browser running for this dataset. Running a static web-server is required
to access locally stored data files. Navigating a web browser to the returned URL
(defaulting to https://localhost:8080) will open the visualization.

Even though AFQ-Browser was designed specifically to interact with the AFQ
software, there are many other approaches to deriving Tract Profiles of diffusion
properties, and we have designed AFQ-Browser to be broadly compatible with
other software packages. The afqbrowser-assemble function also accepts the output
of a group analysis in TRACULA (stats folder, see https://surfer.nmr.mgh.harvard.
edu/fswiki/FsTutorial/Tracula for TRACULA documentation). Moreover, the data
format used by AFQ-Browser is not specific to either of these software packages,
and it is extensively documented (https://YeatmanLab.github.io/AFQ-Browser/
dataformat.html) such that any other software pipeline can easily leverage the
afqbrowser-run and afqbrowser-publish function to analyze and publish data, if it
is formatted according to these specifications.

Linked visualization. The browser-based GUI has four panels (Fig. 6: (a) BUN-
DLES ; (b) ANATOMY; (c) BUNDLE DETAILS; and (d) SUBJECT METADATA).
The visualization is linked across the panels in four ways.
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First, color is used to identify each fiber tract (here referred to as “Bundle”)
across the Bundle List, 3D Brain visualization, and Bundle Details plots. We use the
categorical Tableau-20 color scheme (https://www.tableau.com/about/blog/2016/7/
colors-upgrade-tableau-10-56782). Clicking on a tract in the Bundle List, or 3D
Brain, will highlight that tract in both panels and open up the corresponding line
plot showing diffusion properties of that tract for each subject.

Second, the Tract Profiles from each individual subject in the Bundle Details
panels are linked to their metadata. Selecting a Tract Profile (line) in the Bundle
Details plot will highlight that subject’s row of the metadata table, and selecting a
row of the metadata table will highlight that subject’s Tract Profile in the plot. A
subject of interest can be selected based on their metadata to visualize their Tract
Profiles relative to the group of other subjects, or a Tract Profile of interest can be
selected to compare their metadata against the group of other subjects. Z-scores are
displayed on mouse hover over for selected Tract Profiles, providing a statistical
summary of an individual’s data relative to the group.

Third, columns in the Metadata table are linked to mean lines in the Bundle
Details plots. Clicking a column will sort the metadata table based on the data in
that field, and subjects will be divided into N groups by binning the data (the
number of groups can be defined in a control bar). Each bin will be assigned a color
and this color will be used for the rows of the metadata table, the mean lines in the
Bundle Details plot, and the individual subject lines in the plot. Each time a new
column in the metadata is selected, the mean lines are updated in the plot, and the
rows are sorted and colored appropriately in the metadata table. This feature
provides an efficient tool to slice a large data set across different dimensions,
examine how different subject characteristics relate to diffusion measures,
determine subjects that are outliers within a group, and determine how different
manners of grouping produce changes across different white matter fiber tracts.
Subject z-scores are updated based on the grouping.

Fourth, the spatial dimension (x-axis) of the Bundle Details plots is linked to the
fiber tracts in the 3D brain visualization. Manual selection (brushing64) of a range
of nodes in the Bundle Details plot, enabled by toggling on the brushable tracts
feature in a control bar, highlights the corresponding region of the fiber tract in the
3D brain. This feature allows a user to link statistics, group differences, or
quantitative comparisons of an individual subject back to their brain anatomy.

Publishing data for reproducible science. A single command, afqbrowser-pub-
lish, packages the entire website, including both data and visualization into a git

repository, and uploads this repository to GitHub (https://github.com). This script
automatically creates a website with these data, hosted on the repository’s “GitHub
Pages” website, so that it can be viewed by anyone through a web-browser. The
published website also includes a link that allows users to download the .csv files
that contain the information that is displayed, for additional computational
exploration through other tools (e.g., by reading the data into scripts that imple-
ment machine learning algorithms). The only requirement is that the user has a
GitHub account and afqbrowser-publish will create the public repository, build the
webpage, and launch the web server through GitHub.

To create a centralized index of public AFQ-Browser instances, and to aggregate
data across studies, we have implemented a centralized database at http://afqvault.
org, akin to the NeuroVault (https://neurovault.org) database for functional MRI
derivatives65 (and capitalizing on the infrastructure from other open source
database projects in the field65,66). In addition to launching an AFQ-Browser
instance on GitHub, the afqbrowser-publish command also commits the data to
the afqvault database. This database stores all the data and the parameters from the
AFQ object (including scan parameters if these were entered).

Long-term preservation of the data is important and, because GitHub does not
guarantee long-term storage, we suggest using another service to ensure that the
data are accessible in perpetuity. A one-click solution is provided through Zenodo
(http://zenodo.org/)34, a website developed by CERN specifically to support long-
term preservation of data and other research products. Zenodo can be used to mint
a persistent digital object identifier (DOI) for GitHub repositories. Other solutions
include institutional repositories, to which users of AFQ-Browser can upload their
data. We do not intend to enforce one solution or another, and we provide users
with maximal control over this process. However, to provide users with
information about the reasons to pursue long-term preservation, and about one
way they could approach this, we provide documentation for issuing a DOI
through Zenodo (https://YeatmanLab.github.io/AFQ-Browser/
long_term_preservation.html).

Saving the browser state. Reproducing results that are generated by a GUI can be
problematic since figures are generated based on a series of user inputs (i.e., mouse
clicks and key presses). To solve this problem, we record the series of interactions
as a query string, and append the URL with each user input to AFQ-Browser. By
copying or bookmarking the URL, a user can save and re-open a specific state of

Fig. 6 AFQ-Browser. The BUNDLES panel displays the names of the tracts and the colors are linked to the ANATOMY and BUNDLE DETAILS panels.
Selecting a tract in the BUNDLES or ANATOMY panel will display the Tract Profile in the BUNDLE DETAILS panel. Selecting an individual subject’s Tract
Profile will highlight that subject in the SUBJECT METADATA panel. Selecting a column of SUBJECT METADATA groups subjects based on this measure.
In the example, subjects are grouped based on age and means and standard deviations are shown in the BUNDLE DETAILS panel. When the mouse hovers
over a selected subject’s Tract Profile, z-scores are displayed for that subject relative to the group
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AFQ-Browser. Hence, a discovery made through a series of operations in the GUI
is recorded in the URL and can be communicated (and reproduced) without a
lengthy description of the series of user inputs.

Integration with Binder to support extensible computations. While AFQ-
Browser supports flexible exploration of the data over many dimensions, it does
not implement the myriad of computations that are useful for modeling dMRI
data. Indeed, there could be many other questions to ask with these data that
cannot be addressed with the functionality supported by AFQ-Browser. To facil-
itate flexible online computation on the data without having to download it to a
personal computer, AFQ-Browser closely integrates with Binder, a web-service that
allows users to access a cloud-based computational environment that runs a col-
lection of Jupyter notebooks (https://elifesciences.org/labs/8653a61d/introducing-
binder-2-0-share-your-interactive-research-environment). Jupyter Notebooks are
web applications that store code, text, and figures side by side67 and run Python
(and other language) code through a web-browser user interface. Binder allows
users to access collections of notebooks that are stored in Github, and to execute
the code in these notebooks through their browser, without having to download
any software. To integrate between AFQ-Browser and Binder, the software auto-
matically generates a button in the AFQ-Browser website (Fig. 6, upper right
corner) that, upon clicking, directs the visitor’s web-browser to a Binder website
that contains the data from this AFQ-Browser instance, and an example notebook
that reads the data from this website. The example notebook we include performs
some data visualization and simple unsupervised learning. Visitors can then extend
the code from this example to capitalize on the wealth of statistics, machine
learning, and data visualization libraries in Python. Thus, even without down-
loading the data, AFQ-Browser enables any computation that a visitor can imagine
on the shared data, and computations that annotate the data (e.g., adding new
labels to the metadata table) can be updated in AFQ-Browser.

Installation of AFQ-Browser. AFQ-Browser is open source and distributed under
the permissive BSD 3-Clause License, which allows the software to be freely used
and redistributed. It is not encumbered by any pending or obtained patents that
would limit its use or redistribution. The current version of AFQ-Browser can be
cloned from the GitHub repository: https://github.com/YeatmanLab/AFQ-
Browser. The current stable release (v0.2) can be found on the Python Package
Index (https://pypi.python.org/pypi/AFQ-Browser) and it can be installed, together
with all of its dependencies, on any machine with Python and the pip package
manager simply by calling: pip install AFQ-Browser. The software includes a test
suite implemented using pytest (https://docs.pytest.org/en/latest/), which contains
unit testing of portions of the Python code. These tests are also automatically run
through a continuous integration system (https://travis-ci.org) for every change
introduced to the code.

Data availability. The main software described in this study is available through
Github at: https://github.com/YeatmanLab/AFQ-Browser/. The version of the
software described in this study is also available at the following https://doi.org/
10.5281/zenodo.1134626. Code used to generate the figures in this study is available
at: https://github.com/yeatmanlab/AFQ-Browser_data (and deposited at the fol-
lowing https://doi.org/10.5281/zenodo.1161846). In addition, we refer to three
websites/datasets generated with the software, the source code and data for these
websites is available at: https://github.com/yeatmanlab/AFQBrowser-demo/
(https://doi.org/10.5281/zenodo.1161862), https://github.com/yeatmanlab/AFQ-
Browser-MSexample/ (https://doi.org/10.5281/zenodo.1161844), and https://
github.com/yeatmanlab/Sarica_2017 (https://doi.org/10.5281/zenodo.1161864).
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