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SUMMARY

Airway inflammation underlies cystic fibrosis (CF) pulmonary exacerbations. In a prospectivemulticenter study
of randomly selected, clinically stable adolescents and adults, we assessed relationships between 24 inflamma-
tion-associatedmolecules and the future occurrence of CF pulmonary exacerbation using proportional hazards
models. We explored relationships for potential confounding or mediation by clinical factors and assessed sen-
sitivitiestotreatments includingCFtransmembraneregulator (CFTR)proteinsynthesismodulators.Results from
114 participants, including seven on ivacaftor or lumacaftor-ivacaftor, representative of the US CF population
duringthestudyperiod, identified10biomarkersassociatedwithfutureexacerbationsmediatedbypercentpre-
dictedforcedexpiratoryvolume in1s.Thefindingswerenotsensitive toanti-inflammatory,antibiotic, andCFTR
modulator treatments. The analyses suggest that combination treatments addressing RAGE-axis inflammation,
protease-mediated injury, andoxidative stressmightpreventpulmonaryexacerbations.Ourworkmayapply to
other airway inflammatory diseases such as bronchiectasis and the acute respiratory distress syndrome.
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INTRODUCTION

Airway inflammation erodes lung health in cystic fibrosis (CF). Infecting organisms initiate inflammation in infants,1 and the resulting chronic

inflammation and microbial interactions2 lead to airway obstruction, mucus impaction, microbial biofilms, and bronchiectasis. Acute events

such as viral infections potentially trigger exacerbations that often lead to stepwise reductions in lung function3 even in patients treated with

elexacaftor-tezacaftor-ivacaftor combination therapy. This latest triple combination CF transmembrane regulator (CFTR) protein modulator

modifies sputum characteristics and both inflammation and microbiology, but the degrees of improvements remain incompletely character-

ized.4–6 There is growing agreement that better understandings of inflammation and new treatments are needed7–10 beyond the modulator

therapies in use, particularly because substantial numbers of patients cannot be treated with the newest agents due to genetic ineligibility,

serious adverse events,11 or high healthcare access barriers at individual or national levels.12 Many patients continue to experience difficult

treatment burdens and reduced quality of life, due in part to inflammation-driven exacerbations and associated hospitalizations, and ulti-

mately suffer early mortality13 primarily due to respiratory failure.14–16

We previously found that high-mobility group box 1 protein (HMGB1, see also Figure 1 Legend for all biomarker abbreviations) in expec-

torated sputum was associated with time to next exacerbation in proportional hazards modeling when adjusted by number of prior year pul-

monary exacerbations.17 Sputum calprotectin and neutrophil elastase (NE) were similarly associated with subsequent pulmonary exacerba-

tions.18,19 Other inflammatorymolecules are associated inmultiple settings with concurrent or past CF pulmonary exacerbations but were not

tested for associations with subsequent events.20–28

Seeking inroads toward an integrated understanding of complex airway processes and clinical outcomes, we studied clinically stable par-

ticipants with CF, sputum-derived inflammation, and subsequent pulmonary exacerbations. Nine clinical variables (age, sex, percent pre-

dicted forced expiratory volume in 1 s [FEV1%], number of prior year pulmonary exacerbations, rates of pancreatic sufficiency, diabetes,

and methicillin-sensitive Staphylococcus aureus [MSSA] and Burkholderia cepacia complex [BCC] infections) successfully predict survival.14,29

These variablesmay be associated with underlying inflammation. Clinical abnormalities such as tachypnea or acutely decreased lung function

help define pulmonary exacerbations,13 but they may also be associated with increasing inflammation. Variables that describe clinical states

thatmay be associatedwith inflammationmay also be able to confound andmediate30–32 associations between inflammatory biomarkers and

future exacerbations but have received limited attention in published studies.

In this study, we sought to validate relationships between HMGB1, calprotectin, NE, and other biomarkers with pulmonary exacerbations

through prospective observation. Because our observations begin during chronically ongoing infection and inflammation and developing struc-

tural lung disease, albeit during clinical stability, we included concurrent disease characteristics to help evaluate potential confounding and

mediation that increase the difficulty of analyses of inflammation. The study incorporates randomized patient selection to minimize observer

bias andmaximize generalizability.33We collected spontaneously expectorated sputum tomeasure airway inflammation, andweusedadirected

acyclic graph to guide the strategy for analyses (Figure 1). We synthesized findings to better integrate our understanding of the inflammatory

milieu underlying pulmonary exacerbations and widen the identification of treatment targets for further investigation in CF.
RESULTS

Participant characteristics

After Mountain West Cystic Fibrosis Consortium (MWCFC) IRB approvals (Table S1) and written informed consent, we enrolled 114 partici-

pants whowere clinically stable and able to expectorate sputum. The participants enrolled exceededpre-study estimates of numbers needed

to provide sufficient power for evaluating the relationships of HMGB1 with future pulmonary exacerbations and NE with FEV1%, and they

approached the number needed, 125, for evaluation of the relationship between GMCSF and FEV1% changes with exacerbations.17 We pre-

viously found that the participants were broadly representative of US adolescents and adults with CF who produce sputum.33 All participants

completed follow-up to the next pulmonary exacerbation or study end, up to 2.65 years after enrollment.

Compared with participants with none, those with any pulmonary exacerbations within the year post-enrollment tended toward higher

respiratory and heart rates, lower FEV1%, more numerous pre-enrollment exacerbations, higher CF-related diabetes (CFRD) prevalence,

and poorer five-year prognostic risk scores (Table 1). Kaplan-Meier analyses34 showed that five-year predicted survival risk scores, prior

year exacerbations, diabetes status, and respiratory rate (but not lower FEV1%) were associated with time to next exacerbation (Figure 2).

Univariable logistic regressions35 suggested that lower FEV1%, more frequent prior pulmonary exacerbations, CF-related diabetes, and

higher heart and respiratory rates were associated with higher odds of experiencing a pulmonary exacerbation during follow-up

(Table S2). Proportional hazards modeling36 showed that younger age and lower weight-for-age Z score also increased the hazard of pulmo-

nary exacerbation (Table S2). Altogether, these results suggested these clinical characteristics as potential confounders or mediators of

biomarker effects for time to next pulmonary exacerbation.30,31
Biomarkers and confounding and mediation analyses

Multiple correlations between biomarkers remained significant after family-wise error rate correction for a% 13 10�5 (Table S3). Strong cor-

relations (magnitudeR 0.80) were all positive and observed between MPO and ENRAGE; interleukin-1b (IL-1b) and MMP9; sRAGE and NE;

and among TARC, IL-5, and interferon gamma (IFNg). Strong statistical correlations may indicate biologically relevant relationships.

We assessed confounding and mediation by clinical variables (Figure S1).30,31 Intrinsic variables, age, sex, and prior pulmonary exacerba-

tions, cannot mediate inflammation but can confound analyses.37 We tested each one as the dependent variable for associations with each
2 iScience 27, 108835, March 15, 2024



Figure 1. Directed acyclic graph of biomarkers and pulmonary exacerbation in CF

The heavy arrow shows the key relationships targeted by study. Thin unidirectional arrows indicate eitherMediator relationships (top) involving variables that are

intermediate outcomes in causal pathways between biomarkers and exacerbations or Confounder relationships (bottom) involving variables associated with

both biomarkers and exacerbations but not as intermediates. Mediators obscure biomarker-exacerbation relationships unless excluded from explanatory

models. In contrast, confounders may introduce spurious associations between biomarkers and exacerbations unless some are included as model

adjustments. Not all potential confounders and mediators are shown. Individual biomarkers included C reactive protein (CRP); calprotectin; extracellular

newly identified receptor for advanced glycation end products binding protein (ENRAGE); granulocyte macrophage colony stimulating factor (GMCSF);

high-mobility group box 1 protein (HMGB1); intracellular adhesion molecule 1 (ICAM1); interferon g (IFNg); interleukin (IL)-1b, -5, -6, -8, -10, -17A; matrix

metallopeptidase 9 (MMP9); myeloperoxidase (MPO); neutrophil elastase (NE); proteinase 3 (PR3); s100A8 and s100A9; soluble receptor for advanced

glycation end products (sRAGE); secretory leukoprotease inhibitor (SLPI); thymus and activation regulation chemokine (TARC); tumor necrosis factor a

(TNFa); and chitinase 3-like 1 protein (YKL40).
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biomarker as the independent variable using methods appropriate for each dependent variable (Table S4). Age and number of prior year

pulmonary exacerbations were each associated with several biomarkers suggesting confounder roles, which we tested further by inclusion

of these two variables as adjustments in proportional hazards models of time to next exacerbation (see below). Sex had no associations

with any biomarker thus was not included in further models.

Univariable proportional hazards modeling showed that ENRAGE, MPO, NE, sRAGE, IL-1b, and S100A9 increased the hazard of pulmo-

nary exacerbation. After adjusting for confounding by age and number of prior year pulmonary exacerbations, hazard ratios for ENRAGE,

MPO, NE, and sRAGE increased in magnitude and significance. No models failed tests of the assumption of proportionality.38 The large

impact on the hazard ratios for these biomarkers implies that age and prior exacerbation counts act as confounders and are appropriate

model adjustments. S100A9 was no longer associated with time to next pulmonary exacerbation after adjustments. Among remaining

models, individual hazard ratios for YKL40, ICAM1, TARC, and MMP9 increased in magnitude and reached statistical significance at p <

0.05. However, because there were 24 biomarkers undergoing statistical evaluation, we performed a graphical false discovery rate analysis

(FDR).39,40 By choosing an FDR threshold < 0.2, we demonstrate that eight of the ten biomarkers with p values < 0.05 are likely to represent

true findings, although the analysis cannot identify which eight (Figure 3; Table S5).

In our evaluation of mediation by different clinical factors, we found that multiple inflammatory biomarkers were strongly associated with

FEV1% (Figure 4A). Higher levels of ENRAGE,MPO, NE, sRAGE,MMP9, IL-1b, PR3, and calprotectin were associated by linear regression with

lower FEV1%, whereas SLPI and S100A8 levels were associated with higher FEV1%. Nine associations retained significance with FDR estimates

starting at < 0.001 and continuing to < 0.05 (Figures 4A and 4B). In bivariable proportional hazards models with time to next exacerbation as

the outcome, none of the biomarkers retained significance (p < 0.05) and none had an FDR < 0.2 when modeled with FEV1% as the second

independent variable (Figure S2). After adjustment with age and number of prior year pulmonary exacerbations, p values remained greater

than 0.05 (Figure 4C, red) with two exceptions for ENRAGE (p = 0.02) and TARC (p = 0.04). However, all FDRs remained above 0.2 (Figure 4D).

These findings strongly indicate that FEV1% acts as a mediator in statistical models of inflammation and should be excluded from models

seeking understanding of relationships between inflammatory biomarkers and time to next exacerbation.31

MMP9, IL-1b, ENRAGE, IL-8, calprotectin, MPO, and PR3 were associated with log transformed sputum total cell counts (Figure S3A) and

retained significance at the FDR < 0.05 level after analysis (Figure S3B). Bivariable models for time to next exacerbation using each biomarker

and cell counts and adjusted by age and prior pulmonary exacerbations showed that some biomarkers retained statistical significance
iScience 27, 108835, March 15, 2024 3



Table 1. Participant characteristics and treatments for patients by exacerbations observed within one year

Characteristic or chronic treatment

received

All patients

n = 114

No exacerbations in

first Year, n = 42

Any exacerbations in

first year, n = 72 p valuea

Years of Ageb 26.3 (12.8–68.2) 27.8 (12.8–68.2) 24.5 (13–67.1) 0.084d

Respiratory Rateb 16 (12–30) 16 (12–26) 18 (12–30) 0.009d

Heart Rateb 82 (60–122) 80.5 (62–106) 89.5 (60–122) 0.002d

FEV1%
b 72.1 (19.6–119) 80.5 (30.2–119) 66.5 (19.6–113) 0.018d

Total Cell Count/mm3, median (range) 15 (12.1–17.8) 15.2 (12.1–17.8) 14.9 (12.1–17.8) 0.20d

Exacerbations in Year Prior to Enrollmentb 1 (0–7) 0 (0–5) 2 (0–7) < 0.001e

Days from Last Exacerbation Prior to

Enrollmentb
183 (14–416) 216 (16–357) 182 (14–416) 0.46d

Weight-for-Age Z scoreb �0.118 (�3.29 to 2.72) �0.026 (�1.41 to 2.12) �0.147 (�3.29 to 2.72) 0.23d

Femalec 0.46 0.43 0.49 0.69f

Diabetesc 0.22 0.095 0.29 0.027f

Pancreatic Sufficiencyc 0.079 0.12 0.056 0.29f

MSSA Infectionc 0.45 0.48 0.43 0.78f

Burkholderia cepacia Complex Infectionc 0.026 0 0.042 0.30g

5-Year Prognostic Risk Scoreb 3.16 (�1.8 to 6.08) 3.73 (0.676–6.08) 2.76 (�1.8 to 5.59) < 0.001d

Inhaled Steroidsc 0.59 0.5 0.64 0.21f

Oral Steroidsc 0.07 0.12 0.042 0.14f

Any Steroidsc 0.61 0.55 0.64 0.45f

Azithromycinc 0.54 0.48 0.58 0.36f

Other Oral Antibioticsc 0.11 0.095 0.12 0.77f

Any Oral Antibioticsc 0.61 0.5 0.67 0.12f

Inhaled Tobramycinc 0.33 0.31 0.35 0.84f

Inhaled Aztreonamc 0.35 0.29 0.39 0.36f

Any Inhaled Antibioticsc 0.61 0.52 0.67 0.19f

Any Antibioticsc 0.82 0.74 0.86 0.17f

Ivacaftorc 0.044 0.071 0.028 0.36g

Ivacaftor-Lumacaftorc 0.018 0 0.028 0.53g

Ivacaftor or Ivacaftor-Lumacaftorc 0.061 0.071 0.056 0.71g

aComparisons are between patients with no exacerbations and with one or more exacerbations during study year one.
bMedian (range).
cDecimal fraction of patients.
dLinear regression.
eQuasipoisson regression.
fc-square test.
gFisher’s Exact Test.
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(Figure S3C) with no impact onmodel interpretations (Figure S3D), suggesting that cell counts likely do notmediate inflammation. The results

also indicate that cell counts are not helpful when regarded as potential confounders and adjustment variables by themselves or in addition to

age and prior exacerbations. Analyses replacing total cell counts with polymorphonuclear cell (PMN) counts produced similar results and

identical interpretations. Thus total cell and PMN counts were excluded from further models.

S100A8, IL-10, IL-6, GMCSF, IFNg, and ICAM1 were associated with weight-for-age Z score (p < 0.05) (Figure S4A), but only S100A8 re-

tained significance indicated by an FDR < 0.001 after analysis (Figure S4B). Bivariable proportional hazards models of each biomarker with

weight-for-age Z score for time to next exacerbation did not reduce the significance of individual biomarker relationships (Figure S4C) or sub-

stantively modify FDR analysis results prior to the evaluation of its effects in addition to adjustments for age and number of prior year exac-

erbations. The findings strongly suggest that weight-for-age Z score does not mediate inflammatory effects.

Further testing alongside adjustments by age and number of prior year exacerbations found that weight-for-age Z score may be an addi-

tional confounder of biomarker relationships (Figures S4C and S4D). Adding adjustment by weight-for-age Z score improved the false dis-

covery analysis results for ENRAGE and MPO by placing them into the category of FDR < 0.05 and moved IL-17A into the category of

FDR < 0.2; but effect sizes were not substantially changed. Several other biomarker results were slightly decreased in significance before
4 iScience 27, 108835, March 15, 2024



Figure 2. Kaplan-Meier plots exploring relationships of clinical factors with time to next pulmonary exacerbation

Patients were stratified into evenly sized groups when possible in each Number at Risk legend for (A) 5-year prognostic risk score.

(B) Number of pulmonary exacerbations in the year prior to enrollment.

(C) Weight-for-age Z score.

(D) FEV1%.

(E) CF-related diabetes status and (F) respiratory rate. Measurements and status were from the day of enrollment. Patients were followed until occurrence of the

next pulmonary exacerbation and censored. Groups are unequal in size for number of prior exacerbations, diabetes and respiratory rate because those values are

ordinal and do not allow more even distribution. Results of log rank tests are shown in each panel legend. See also Table S2.
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and after false discovery analysis without substantial changes in either effect sizes or their interpretations. A clear confounder effect for weight-

for-age Z score is somewhat unexpected because of the paucity of significant associations with the biomarkers (Figure S4B), and the combi-

nation of expectation with variable small effects on biomarker effects and indicators of significance led us to exclude weight-for-age Z score

from further models.

Diabetes and respiratory rate variables had few significant associations with inflammatory biomarkers (Figures S5 and S6). Bivariable pro-

portional hazards models of individual biomarkers and diabetes found diminished significance for all biomarkers except ENRAGE. In false
iScience 27, 108835, March 15, 2024 5



Figure 3. Proportional hazards models of time to next exacerbation

(A) Forest plots of hazard ratios with 95% confidence intervals derived from biomarker values as univariables adjusted for assay detection limits (gray) or assay

detection limits and age and number of prior year pulmonary exacerbations as confounders (red). The upper 95% confidence limit for TARC adjusted by age and

prior exacerbations is 6.80.

(B) Graphical FDR analysis was applied to hazard ratios adjusted by age and exacerbations. Using the p values for each hazard ratio, we ranked the potential

biomarkers and drew lines with slopes determined by the thresholds for false discovery (set to 0.1 and 0.2) divided by the number of potential biomarkers in

the entire study. A biomarker falling below a threshold line has a fractional chance of being a true finding, which is greater than 1—FDR threshold for that

line. Once a biomarker is plotted above a threshold line, no biomarkers with a larger rank are considered to be below that threshold. ENRAGE falls below

the FDR 0.1 line, whereas MPO is just above, hence the next eight are considered below the FDR 0.2 threshold and not below FDR 0.1.
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discovery analyses, only ENRAGE retained an FDR < 0.2. These findings suggest that diabetes potentially mediates inflammation and should

be excluded from further models. Respiratory rate had no significant associations with any biomarker and had no further effect on models

already adjusted by age and number of prior pulmonary exacerbations (Figure S6C). Multiple biomarkers were associated with heart rates

(Figures S7A and S7B). Heart rate was a possible mediator of inflammation as inclusion in models of time to next exacerbation generally

reduced biomarker effect sizes and significance (Figures S7C and S7D). These results prompted us to excludeCF-related diabetes, respiratory

rate, and heart rate from further models.

Sensitivity analyses

Adjustments for inflammation modifying treatments did not substantially modify any biomarker hazard ratio. Use of corticosteroids, inhaled,

oral, or both; chronic azithromycin; other oral antibiotics; and inhaled aztreonam and tobramycin, each alone or alternating every

other month, had no significant associations with time to next exacerbation nor interactions with biomarker variables. Biomarker effects (Fig-

ure 3) remained stable throughout testing, suggesting that results are not due to these inflammation altering treatments.

Seven participants used ivacaftor or ivacaftor-lumacaftor, but usage of these medications had no independent effect or interaction

with biomarker effects. FEV1% recalculated with Global Lung Initiative equations41 produced similar results and identical conclusions to using

NHANES III.42 Use of multiple strategies and alternative estimating equations for FEV1%
43 for the participants belonging to groups for whom

no specific equations exist had no impact on our findings.

We repeated all models to understand the impact of partially or completely missing biomarker information. Out of a possible 2,736 total

biomarker measurements, there were 25 values below the lower limit of detection (0.9%), 33 above the upper limit of detection (1.2%), and 51

completely missing (1.8%). The exact biomarker values partially or completely missing are enumerated in Table S6. We used biomarker data-

sets that either omitted records with missingness or imputed the missing values. Values were similar across the original and alternative data-

sets (Table S6). Results of all models using datasets with records omitted for missingness or with imputed values were similar to the original

models (Tables S7–S13), and no interpretations changed with use of any of the alternative datasets created to address missingness.

DISCUSSION

Wemeasured 24 sputum biomarkers from 114 randomly chosen, clinically stable adolescents and adults to prospectively validate potentially

causal inflammatory biomarker relationships with future pulmonary exacerbations in a cohort representative of people with CF in the US

from the study era.33 The complexity of disease required careful explorations of confounding30 and mediation31 to improve causal inference
6 iScience 27, 108835, March 15, 2024



Figure 4. Relationships between biomarkers and FEV1%

(A) Forest plots show linear regressionmodel effect estimates and 95% confidence intervals for associations between inflammatory biomarkers adjusted for assay

detection limits and FEV1%.

(B) FDR analysis shows nine biomarkers retain significance for associations with FEV1%, three each at FDR < 0.001, FDR < 0.01, and FDR < 0.05.

(C) Significance of hazard ratios of biomarkers when used in models with FEV1% for time to next pulmonary exacerbation (gray) is reduced during testing and

confirmation of FEV1% as a mediator (salmon) even when adjusted by age and prior pulmonary exacerbations (red). (See Figure S2 for the results of FDR analysis

of unadjusted bivariable models.) The order of biomarkers allows easier comparison with Figure 2A.

(D) In mediation testing of FEV1%, no biomarkers used as adjustments to FEV1% for proportional hazards models of time to next pulmonary exacerbation clearly

retain statistical significance after FDR analysis with FDR < 0.2.

ll
OPEN ACCESS

iScience
Article
quality.37,44 Among the three potential biomarkers previously studied specifically for relationships with future exacerbations,17–19 NE was

most strongly related in validation, whereas there were surprisingly weak relationships for HMGB1 and calprotectin. However, we found addi-

tional strong positive associations with time to next exacerbation for biomarkers that were previously found to have associations with past or

concurrent exacerbations (namely ENRAGE, MPO, sRAGE, ICAM1, YKL40, TARC, MMP9, IL-1b, and IL-5).20–28 Altogether, these biomarkers

suggest three types of inflammation, RAGE axis, protease-mediated, and oxidative stress, thatmay be attractive treatment targets, perhaps in

combination, for anti-inflammatory bench studies and clinical trials to help prevent pulmonary exacerbations and treat underlying

inflammation.

We found that SLPI, NE, and MPO (Figures 4A and 4B) were associated with FEV1% with an FDR < 0.001. With FDR < 0.01, we found as-

sociations with sRAGE, MMP9, and ENRAGE. SLPI was associated with higher, whereas NE, sRAGE, MMP9, and ENRAGE were associated

with lower, FEV1% and shorter times to next exacerbation (Figure 3A).
iScience 27, 108835, March 15, 2024 7



Figure 5. Relationship between RAGE axis, protease-antiprotease imbalance, oxidant injury, and lung function

Three pathways of injury with representative biomarkers shown contribute to reducing lung function. Sharp decreases in lung function are the most frequent

indicator used by clinicians making a diagnosis of pulmonary exacerbation of CF.
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SLPI, NE, and MMP9 represent opposing sides in protease-antiprotease-imbalance-associated inflammation. SLPI inhibits NE and other

proteases such as cathepsin G and suppresses MMP9 expression and other NF-kB mediated pro-inflammatory activities,18,45,46 although it

does not inhibit proteinase 3 (PR3).47 In opposition,48 NE released from neutrophil azurophilic granules degrades pericellular matrix in a

manner that is impossible to completely stop.49,50 NE is a major cause of inflammation in multiple lung diseases51 and specifically in pulmo-

nary exacerbations in CF.18,52

MPO was associated with lower FEV1% and shorter time to next exacerbation confirming prior findings.53 Upon neutrophil azurophilic

granule release, it generates antibacterial reactive oxygen species and hypohalous acids.54 However, the reactive oxygen species can cause

cellular and airway oxidative damage.46 MPO is representative of oxidative stress resulting from inflammation.

ENRAGE and sRAGE were associated with decreased FEV1% and time to next exacerbation. Both are receptors for advanced glycation

end products (RAGE) involved in RAGE-axis-related inflammation.21,55 These findings suggest that RAGE-axis-, protease-anti-protease-

imbalance-, and reactive-oxygen-species-related inflammation are related to lower FEV1% (Figure 5) and shorter times to next exacerbation

in CF.

Derivation of relationships between biomarkers and time to next exacerbation required evaluation of confounding andmediating relation-

ships involving clinical variables. Confounders are associated with both biomarkers and outcomes (Figure 1) but are not part of causal disease

pathways. However, at least some are needed to adjust models for non-causal relationships.30,31 We adjusted our proportional hazards

models by including age and number of prior pulmonary exacerbations. Weight for age Z score and sex had small or no confounding effects

and no impact on our interpretations of biomarker relationships with time to next exacerbation. We excluded these and other low-impact

confounders in favor of increased parsimony and interpretability of our biomarker models.

Mediators are intermediate outcomes between putative causal factors and targeted clinical outcomes such as time to next exacerbation.

Mediatorsmay obscure upstream causal pathway effects,37,44 frustrating identification of potentially treatable pathologic relationships. Exclu-

sion of mediators from inference models improves evaluation of those relationships and primes studies seeking more comprehensive treat-

ments30,31 (Figure 1). For example, in a study of inflammation responses to intravenous antibiotic treatment of lower airway infections in 19

subjects with CF, protease-antiprotease balance returned toward normal;26 however, in a similar study, other neutrophil-related inflammation

types persisted,25 suggesting that concurrent treatments for multiple forms of inflammation may improve outcomes.

Statistical inference based on probabilistic models is rarely convincing for causality (cigarette smoking causing lung cancer56 is an impor-

tant exception) but can focus study on targets likely to be causal.37 This study reproduced pre-study expectations17,19 of strong associations

between calprotectin and HMGB1 with prior pulmonary exacerbations (Table S5); however, they were not associated with time to next pul-

monary exacerbation. Inability to validate as potentially causal suggests that clinical trials antagonizing calprotectin and HMGB1 to prevent

pulmonary exacerbations will fail.

However, after FDR analysis,39 our testing found 10 biomarkers that may be involved in causal pathways of inflammation and explanatory

for pulmonary exacerbations in CF (Figure 3). Setting FDR< 0.2 suggests that eight of the ten are likely associatedwith time to next pulmonary

exacerbation (Figure 3). The findings validateNE as a potentially causal contributor to exacerbations. NEwas previously associatedwith future
8 iScience 27, 108835, March 15, 2024
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exacerbations,18 and our results suggest protease-anti-protease imbalance as an underlying mechanism mediated through an effect

on FEV1%.

The other biomarkers associated with time to next exacerbation in our study were all previously associated in some way with prior or con-

current exacerbations, and they fall into several categories. ENRAGE and sRAGE are constituents of RAGE-axis-related inflammation.

ENRAGE is a high-avidity RAGE ligand57 elevated in CF airways in infancy58 associated with low FEV1 and CF-related diabetes.55 It increases

with pulmonary exacerbation and falls with antibiotic treatment.21 Beyond CF, ENRAGE is associated with cigarette smoking,59 coronary ar-

tery60 and fatal kidney61 diseases, and development and resolution of acute respiratory distress syndrome (ARDS).62

ENRAGE was strongly correlated with MMP9 and MPO (Table S3), suggesting networked expression of RAGE axis, protease imbalance,

and oxidative stress inflammation. Correlations between sRAGE and NE (0.80), MMP9 (0.65), and IL-1b (0.69) strengthen possible associations

between RAGE and protease imbalance (Table S3). MPO, ICAM1, NE, YKL40, TARC, andMMP9 reflect the participation of PMN,25,27,28 PMN-

associated proteases,18,63 and reactive oxygen species46 in CF airway inflammation (Figure 5).

Severe CF lung disease is steadily decreasing as CFTR modulator usage increases among those with eligible mutations.64 FEV1% remains

the single most commonmeasure of disease severity but poorly distinguishes between rapid or slow worsening of lung disease,29 and it me-

diates and obscures biomarker effects (Figure 4; Table S8). As lung disease severity lessens in the CF population,65 FEV1% will become less

useful as an investigational tool. In contrast, potentially causal biomarkers (as well as strongly associated but probably non-causal biomarkers

such as calprotectin) may enable more precise tracking of disease and interventional trial outcomes. Focusing on potentially causal bio-

markers will amplify the clinical relevance of bench research and the effectiveness, timeliness, and precision of animal studies and interven-

tional human trials.

Extrapulmonary manifestations of CF are increasing as individuals with CF reach older ages in larger numbers66,67; some of these mani-

festations maymodify or reflect airway inflammation during a pulmonary exacerbation. Even accounting for efforts to improve detection, dia-

betes is increasing in frequency at all ages in the CF population.14 People with CF who also have CFRD are twice as likely to suffer exacer-

bations and generally have worsened lung disease,68 prior findings that our results support despite a much smaller dataset; 22 of the 114

participants with CF also had CFRD (19%), which was associated with earlier exacerbation of lung disease (Figure 2E). Nevertheless, we found

no direct connections between the biomarkers we studied andCFRD and little direct effect on biomarker relationships with time to next exac-

erbation (Figure S5). This set of findings suggests that additional factors relating systemic diabetes and exacerbations exist but remain

undiscovered.

Many of the biomarkers that we measured from sputum are found in blood as reporters of systemic inflammation in the setting of pulmo-

nary exacerbations. Inflammatory oxidative stress and other inflammatorymarkers are elevated during pulmonary exacerbations in blood and

plasma and respond rapidly to treatment.25,69 However, airway inflammation persists when systemic inflammation subsides after clinical res-

olution of an exacerbation,25 providing information on recent exacerbations that may contribute to and explain the success of our model ad-

justments with prior year exacerbation counts. Inflammatory markers such as assessments of up- and downregulation of gene expressions

related to lung inflammation are more varied in airway PMN compared with blood circulating PMN,70 increasing the information available

from airway inflammatory biomarker measurements compared with blood measurements.71 In our study, we collected biomarker-containing

sputum in order to minimize any reluctance to participate due to blood draw associated pain. Based on prior data, we likely improved our

ability to detect relationships between inflammatory biomarkers during clinical stability compared with use of systemic markers from blood.
Limitations of the study

Sputum is a non-invasive but complex sample that contains multiple inflammation-related components. We focused in this work on aqueous

human proteins that we carefully isolated andmeasured, but the list of proteins and human-derivedmolecules is incomplete; some excluded

moleculesmay be important for inclusion in further studies.72 We excluded pellet fractions from our samples that containmicrobes, microbial

byproducts, human cell fragments, and other debris, and we excluded the lipid aliquots from the samples that contain extracellular vesicles

that may help maintain homeostasis or contain inflammation-related proteins, micro RNA, and other constituents such as vesicle surface-

bound neutrophil elastase that remains active but becomes resistant to inhibition by anti-proteases.73–76

Because we pursue explanatory models that may reveal new targets for treatment,77 no methods of model selection are sufficient30 to

confidently produce a multivariable panel of inflammatory biomarkers to better understand the evolution of increasing inflammation and

future pulmonary exacerbations. Multivariable model selection using forward, backward, or other input variable selection methods with or

without automated procedures may be adequate for developing prediction models that need to maximize accuracy above all else for prog-

nostication, but these methods do not necessarily produce models that provide insights into underlying mechanisms of disease.

An effort to derive an explanatory model including multiple inflammatory biomarkers would need to consider that some biomarkers may

confound while others mediate the effects of a given set of biomarkers. An explanatory model would require characterization of potential

webs of confounding and mediation among the biomarkers prior to selection of final multi-variable models. The time required even for fully

automated procedures involving 24 biomarkers is not feasible. Thus, for an exploratory investigation, we considered each biomarker in turn in

univariable models and in models adjusted by clinical confounders and excluding mediators. This work exploring individual biomarkers may

provide useful guidance prior to launching new observational, bench, and interventional investigations, perhaps with factorial designs,78 to

prospectively test our individual biomarkers for potential causal relationships with future increasing airway inflammation and clinical pulmo-

nary exacerbations.
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Since the study was initiated, highly effective CFTR modulator therapies beyond ivacaftor alone or combination ivacaftor-lumacaftor have

been broadly adopted among genetically eligible patients. These agents may reduce inflammation, associated infections, and sputum pro-

duction for biomarker sampling. Early data, however, suggest that inflammation and infections persist in part even in these patients,7–10 and

remaining sputum production may suffice for serial study.79 Although many of our study patients took every available effective CF treatment,

due to study timing, only 6% received CFTR modulators. In this study, we found a non-significant decrease of approximately 50% on average

in sputum weight collected among participants using either ivacaftor or ivacaftor-lumacaftor treatments (Figure S8). Adjustments for lung

function or prior exacerbations had no impact on this finding. Two out of thirteen missing HMGB1 measurements were from samples that

were from participants treated with modulators but none of the other missing biomarker measurements were from modulator-treated indi-

viduals. Our results were statistically insensitive to CFTR modulator use, but our findings do not settle questions whether usage substantially

reduces airway inflammation, reducesmeasurability of any specific inflammatory marker, or prevents collection of sputum for study. However,

among patients who are genetically ineligible or otherwise unable to obtain modulator therapy, there is no doubt that inflammation remains

an important investigation and treatment target.

Finally, our explanatory models infer but cannot confirm causal relationships37,44 arising from an inflammatory biomarker network. RAGE-

axis inflammation, protease-mediated injury, and oxidative stress are plausibly associated with future exacerbation. FEV1%, the single most

important CF survival predictor,14,29 statistically mediates the association of inflammatory markers with time to next pulmonary exacerbation,

but a role as a statistical mediator may indicate that FEV1% is a summarizing reporter of biological inflammation of different kinds in actual

airways. Further studies in cell culture, animal models, or human trials of anti-proteases, anti-oxidants, RAGE inhibiting agents, or a combi-

nation are needed to confirm our inferences and potentially develop new treatments for CF airway inflammation. Because these inflammatory

processes are similar and important in other lung diseases such as bronchiectasis and ARDS, progress in CF with novel anti-inflammatory

treatments may have broad application.
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Hünniger, K., Hipler, U.-C., Sonnemann, J.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-human CRP (2.5 mg/ml) Abcam, Cambridge, MA, USA

www.abcam.com

Abcam Cat# ab31156; RRID AB_2085618

Mouse monoclonal anti-human Calprotectin

(1.5 mg/ml)

LS-Bio, Shirley, MA, USA

www.lsbio.com

LS-Bio (LifeSpan) Cat# LS-C96223; RRID

AB_10567208

Rabbit polyclonal anti-human HMGB1

(1.5 mg/ml)

Upstate Biotechnology

(Now Millipore, Burlington, MA, USA

www.emdmillipore.com/US)

Upstate Cat# 07-584; RRID AB_11210378

Mouse monoclonal IgG anti-human CRP

(1.5 mg/ml)

Abcam, Waltham, MA, USA www.abcam.com Abcam Cat# ab136176; RRID AB_2747847

Rabbit polyclonal anti-human Calprotectin

(1:1500)

LS-Bio, Shirley, MA, USA www.lsbio.com LSBio (LifeSpan) Cat# LS-C122793-20,

RRID:AB_10805991

Mouse monoclonal anti-human HMGB1

(0.75 mg/ml FC)

R&D Systems, Minneapolis, MN, USA

www.rndsystems.com

R&D Systems Cat# MAB1690; RRID

AB_2117897

Goat Anti-Mouse Polyclonal IgG-FC 1:2000 Millipore, Burlington, MA, USA

www.emdmillipore.com/US

Millipore Cat# AP127P; RRID AB_92472

Goat Anti-Rabbit IgG-FC 1:2000 Santa Cruz Biotechnology, Dallas, TX, USA

www.scbt.com

Santa Cruz Biotechnology Cat# SC-2004; RRID

AB_631746

Goat Anti-Mouse Polyclonal IgG (FC 1:2000) Millipore, Burlington, MA, USA

www.emdmillipore.com/US

Millipore Cat# AP127P; RRID AB_92472

Chemicals, peptides, and recombinant proteins

1% bovine serum albumin MilliporeSigma, Burlington, MA, USA

www.emdmillipore.com/US

Cat# 9048-46-8

3,30,5,50-tetramethylbenzidine substrate

solution

Thermo Scientific, Waltham, MA, USA

www.thermofisher.com

Cat# N301

10%newborn calf serum in phosphate buffered

saline

MilliporeSigma, Burlington, MA, USA

www.emdmillipore.com

Cat# 16010142

C-Reactive Protein (CRP) Abcam, Waltham, MA, USA www.abcam.com Cat# ab167710

Calprotectin or S100A8/A9 Heterodimer Biolegend, San Diego, CA, USA

www.biolegend.com

Cat# 753404

Hanks Buffered Saline Solution Sigma-Aldrich, Burlington, MA, USA

www.sigmaaldrich.com

Cat# H9269

High Mobility Group Box-1 (HMGB1) Sigma-Aldrich, Burlington, MA, USA

www.emdmillipore.com

Cat# H4652

Roche cOmplete� Protease Inhibitor Cocktail

tablets

Sigma-Aldrich, Burlington, MA, USA

www.emdmillipore.com

Cat# 11697498001

Streck Cell Preservative Solution Streck, La Vista, Nebraska, USA Cat# 213355

Critical commercial assays

Neutrophil elastase activity The Pediatric Clinical Translational Research

Center Core Laboratory, Children’s Hospital

Colorado

N/A

Custom Luminex 4-Plex Kit Biotechne, Minneapolis, MN, USA

www.rndsystems.com

Cat# LXSAHM-4

Custom Luminex 16-Plex Kit Biotechne, Minneapolis, MN, USA

www.rndsystems.com

Cat# LXSAHM-16
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Theodore G. Liou,

MD (ted.liou@utah.edu).

Materials availability

New materials generated by this report include remaining lipid, aqueous and pellet fractions of the original sputum samples. Please contact

Dr. Liou to inquire about sharing fully annotated deidentified samples. Any transfer requires execution of aMaterials Transfer Agreement with

the University of Utah and may require a fee for processing, handling and shipping.

Data and code availability

� The data reported in this paper will be shared by the lead contact in deidentified form upon request.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical reviews

Following finalization of study protocols, we submitted the study to the ethical review boards or committees at each of the nine participating

MWCFC centers (Table S1). No study procedures were started prior to approval at each of the centers.

Study participants

This was a prospective observational study examining airway inflammation and any relationships with time to the next pulmonary exacerba-

tion of CF in participants who were clinically stable at the time of enrollment and able to produce expectorated sputum. We recruited par-

ticipants at random from the nine Mountain West CF Centers accredited by the US CF Foundation (Bethesda, Maryland). We followed par-

ticipants from enrollment for a minimum of 18 months up to 2.65 years when the study concluded.

Participants were required to be 12 years of age or older, andwe selected patients after block randomization for two groups, age 12 to <18

and 18 or older (see below for randomization details). We excluded children with CF younger than 12 because of their inconsistent ability to

expectorate sputum.Wemade no specification on race, ethnicity or sex, but the population recruited reflects characteristics of the population

of people with CF in the CF Foundation Patient Registry for 2014.33 Table 1 presents the characteristics of the participants. The proportion of

participants who were female was 0.46. Sex was used as an adjustment in all analyses (see below) but was not reported in our main results

because it had no statistical impact. Race and ethnicity numbers are withheld as all groups that were not white each numbered less than

5. Race and ethnicity were used in estimations of FEV1% along with age, sex and height. Socioeconomic status was not recorded.

METHOD DETAILS

Pre-study preparations and personnel training

Development of all study procedures was initiated at the University of Utah and reviewed, modified and finally approved by all participating

MWCFC centers. Patients at the University of Utah provided feedback and suggestions on experimental procedures directly involving study

participants. University of Utah personnel tested all sputum collection and processing procedures as well as shipping procedures on actual

samples collected with informed consent from 10 participants prior to the main study. (These samples were not included in the current work.)

Evaluations of laboratory results of shipping led to a change in procedure from central processing of all samples after overnight wet-ice ship-

ping to on site sample processing with later batch shipping on dry ice, the method underlying results reported here.33

All participating MWCFC personnel were trained at the University of Utah on study background, goals, inclusion and exclusion criteria,

good clinical practice, patient safety and study procedures, data entry using the Research Electronic Data Capture (REDCap) system80

and records security. The initial University of Utah team provided teaching on the finalized clinic and laboratory protocols at the meeting,

at subsequent onsite study initiation meetings and at additional in person trainings at the University of Utah as requested by MWCFC site

personnel.

Weproduced a three part video introduction to the study design underlying the project as an interviewof Sir DavidCox by Ruth Keogh and

a training video on sputum collection and processing with the University of Utah Research Team that remain available for viewing at https://

bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-019-0705-0. Specifically, see Additional Files 1-3 for the interview, Addi-

tional File 4 for a transcript and Additional File 7 for sputum processing.33

Once finalized, the study background, purpose, procedures, funding sources, informed consent and assent documents, training docu-

mentation for work with human subjects were submitted to the investigational review boards or equivalent ethical review committees at

each of the MWCFC Centers (Table S1). No study activities involving participants were begun until formal approval at each of the centers

was received. Changes to any aspect of the study were submitted to each approving entity by amendment and were not implemented until

approved.
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Study design, participants and sample size

To mitigate bias, we randomly selected participants fromMWCFC care center (Table S1) patient lists older than 12 years able to expectorate

sputum for prospective observational study of biomarkers of airway inflammation.33 After successful institutional reviews (Table S1), each

participating center identified candidates for study who were 18 years or older, able to provide informed consent and able to expectorate

sputum. Each center identified candidates who were older than 12 up to 18 years of age who were able to provide assent, had parents or

guardians who could provide informed consent and were able to expectorate sputum or tolerate sputum induction as part of routine

care. We generated two blocks of randomly chosen letters of the alphabet for adolescent and adult candidates to avoid over representation

of either group.

For each recruiting center, we assigned a threshold letter for enrollment. Threshold letters for centers were chosen to allow enrollment

from all centers proportional to their patient population sizes within the MWCFC and allow for a 10% combined clinic no-show and study

refusal rate. We adjusted the center threshold letters after the first month and after each quarter of the year during the study to adjust enroll-

ment rates to prevent over representation of patients from any one quarter of the year and maintain proportional enrollments among the

participating centers asmuch as feasible. These adjustments did not affect the randomized nature of enrollment butmay have delayed enroll-

ment for a few participants. The pre-clinic visit assignments eliminated the need for randomization for enrollment by a research coordinator at

a clinical appointment time but excluded any new patients to the clinics from participation once the study was begun.

Candidates who came to clinic who were clinically stable and had a personal randomly assigned letter earlier in the alphabet than the as-

signed center letter were approached for enrollment. After we obtained written informed consent from adults and assent from adolescents

with informed parental or guardian consent, we enrolled clinically stable participants from December 8, 2014 through January 16, 2016. All

consents were obtained in person.

Our primary outcome was days from enrollment to next pulmonary exacerbation requiring hospitalization for acute treatment of at least

one symptom and one sign of CF pulmonary exacerbation.17 Symptoms included increased sputum, cough or dyspnea, chest pain or tight-

ness, participant reported hemoptysis, fever, chills, arthralgias, fatigue. Signs included 10% drop in FEV1 or forced vital capacity,

temperature > 38.4�C, healthcare personnel witnessed hemoptysis > 100 mL per episode, SaO2 < 90% or PaO2 < 60 mm Hg despite usual

oxygen, a drop in SaO2 of 5% in adolescents, increased supplemental oxygen and unplanned weight lossR 5% of baseline body weight over

3 months. We chose this definition of an exacerbation because it may be applied prospectively and requires no retrospective adjudication

based on use of antibiotics or other standard responses indicating an exacerbation as in many prior studies.81

We allowed site principal investigator (PI) discretion for symptoms and signs not listed here, which was exercised once during the study.

We allowed for a site PI to consider admission for respiratory arrest as an exacerbation of CF, but no participants were so unfortunate. The

days to the next pulmonary exacerbation were not affected by the success of sputum collection at the next exacerbation. In less than 5 cases,

participants were admitted for their next exacerbation at non-MWCFC institutions. Research coordinators obtained and reviewed charts in

those cases to ascertain the occurrence and timing of the next exacerbation and verified findings with the appropriate MWCFC Site PI.

We selected a total number of participants to enroll based on power calculations derived from prior experience with biomarker studies

with people with CF and pulmonary exacerbations.33 Using data including age, number of exacerbations in the year prior to enrollment,

FEV1%, HMGB1 sputum concentrations and time to next exacerbation from our prior work for 26 participants who were clinically stable,17

we sampled 20, 26, 40, 60, 80, 100, 125 and 150 participants with replacement to create synthetic data sets from among the 26 actual patients.

We bootstrapped82 Cox proportional hazards models36 with 1000 iterations per synthetic data set. Wemodeled time to next exacerbation as

the outcomeand usedHMGB1 concentration as themain independent variable.We repeated the procedure formodels adjusted by age, sex,

number of prior pulmonary exacerbations within 1 year and FEV1% that was itself calculated from FEV1, age, sex, height, race and ethnicity

using NHANES III equations.42 We used the percentage of models within each 1000 bootstrapped model set with p% 0.01 or 0.05 to derive

the power of a data set to reach an a of 0.01 or 0.05 for the size of each synthetic data set. For HMGB1, the results for 40 participants revealed

90% power for a = 0.01 (meaning that 90% of the 1000 Cox proportional hazards models run with datasets of 40 simulated patients had p

% 0.01).

We performed similar bootstrapped power calculations for other biomarkers that we previously studied.17 For GMCSF sputum concen-

tration as the independent variable and the acute decrease in FEV1% accompanying a diagnosis of pulmonary exacerbation as the dependent

variable, we used linear regression with up to 175 participants in synthetic data sets.We found that 125 participants implied 85%power for a=

0.05 while 175 participants implied 80% power for a = 0.01. Based on these calculations, we targeted an enrollment of 125 to 175 participants

as the maximum number of participants to enroll.
Sputum and biomarker collections and measurements

Weprocessed, aliquoted and froze expectorated sputum immediately after collection (mean= 54, SD= 98,max = 225minutes on ice) to allow

batch laboratory evaluations to reduce variation in results due to artifacts related to assays performed at different times.33 We collected 114

enrollment samples when participants were clinically stable using sterile 50 mL conical bottom centrifuge tubes. We collected 52 samples

within 48 hours of the diagnosis of the next pulmonary exacerbation; 32 convalescence samples within 4 to 12 weeks after exacerbation diag-

nosis; 12 samples within 48 hours of any subsequent exacerbation; and 55 samples at study end. We annotated each sample with clinical in-

formation, cell counts and differentials.33

For this work, we used only the 114 enrollment samples because we sought to understand relationships between inflammatory biomarkers

observed during clinical stability and the next pulmonary exacerbation from the viewpoint of a clinician seeing a patient in clinic for routine
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follow up. Such a clinician would not have access to information from future collections of data or sputummeasurements. Because of the focus

on biomarkers previously observed to have relationships of some kind with past, concurrent or future exacerbations that weremeasured from

aqueous sputum fractions, we used only the aqueous fractions obtained after centrifugation of well mixed samples that were carefully sepa-

rated from top lipid and bottom pellet fractions.33

We collected samples on ice and transported from each MWCFC clinic to its respective laboratory for processing. All samples were pro-

cessed within 4 hours, but we specified that sputum expectoration time was limited to 20 minutes, transport on ice was limited to 40 minutes

and post-collection processing was to begin no later than 60 minutes after the start of collection. Site visits by the University of Utah team

verified adherence to these guidelines. Each sample was labeled at the point of collection to identify the participant and the type of sample

relative to study stage or exacerbation.

In the lab, samples were diluted 1:1 with Hanks Buffered Saline Solution (key resources table) and vortexmixed for 1minute. Using a sterile

disposable pipette, 0.25 mL of the mixed sample was transferred to a 1.8 mL tube containing 0.25 mL of Streck Solution (key resources table).

The Streck mixed sample was sent via Fedex (Memphis, TN) to the University of Utah for cell counts and differentials. Cell counts were per-

formed manually with a hemocytometer and desktop light microscope. Differentials were determined after modified Wright Staining of

smears. Cells were not subjected to cytospinning due to bias associated with increased fragility of some leukocytes which cannot be counted

if they rupture, however, this procedure makes differentiating between cell types more difficult.

The remaining HBSS diluted sample was centrifuged at 2,800 g at 4�C for 20 minutes. Top lipid, middle aqueous and bottom pellet layers

were seperated using sterile transfer pipettes to avoid contamination of the aqueous layer by the other two layers. The lipid layer was frozen in

a labeled container and remains unused. The aqueous layer was divided in twowith the first half diluted 1:1 with additional HBSS, vortexmixed

for 10 s and frozen as multiple 1 mL aliqouts. The second half was diluted 1:1 with protease inhibitor cocktail (key resources table), vortex

mixed 10 s and frozen as 1mL aliquots. Pellet fractions were frozen without further processing. All fractions were frozen at -70�C until assayed.

At least 2 aliquots of each fractionwere frozen, and sampleswere shippedon dry ice in two batches per patient to avoid losses due to shipping

failures. We encouraged samples from more than 1 patient to be shipped together. This procedure prevented loss of any single sample

despite thawed shipments on two occasions.33

Concurrent with sample collections, wemeasured forced expiratory volume in 1 s (FEV1) in accordancewith American Thoracic Society and

European Respiratory Society guidelines,83,84 and we estimated percent predicted FEV1 (FEV1%) based on age, height and sex at the time of

testing.42,84 A few individuals enrolled in the study belong to groups for which no equations are published (number of individuals and nature

of groups withheld to protect privacy). We used a selection of equations to generate different estimates of FEV1% to enable inclusion of these

individuals in all analyses.43 We based prior year exacerbation counts on hospitalization dates within one year before enrollments. We calcu-

lated weight-for-age z-score and 5-year prognostic scores (higher predicts longer survival).29 Prognostic scores were recalculated each time

we used a different set of FEV1% estimating equations.

The Pediatric Clinical Translational Research Center Core Laboratory at Children’s Hospital Colorado and University of Colorado Anschutz

Medical Campus (Aurora, CO, USA) spectrofluorometrically measuredNE activity18 using aqueous fractions frozen without protease inhibitor

cocktail. Prior literature almost exclusively uses NE activity as the target of study while for other enzymes in our study (MPO, PR3, MMP9),

enzyme linked immunosorbent assay (ELISA) results are used for analysis. The University of Utah CF Center Laboratory (Salt Lake City, UT,

USA) measured calprotectin, CRP, and HMGB1 by ELISA (key resources table) using aqueous fraction aliquots frozen with protease inhibitor

cocktail. We shipped frozen aqueous samples with protease inhibitor cocktail (Fedex,Memphis, TN, USA) to R&D Systems’ Biomarker Testing

Service (Biotechne, Minneapolis, MN, USA) for remaining assays. Because of different standard curves and dilution requirements, Biotechne

assayedMMP9, MPO, PR3 and ENRAGE using a 4-plex human luminex kit (R&D Systems Cat # LXSAHM-04) after 1:50 dilution. The remaining

16 biomarkers (GMCSF, ICAM1, IFNg, IL1b, IL5, IL6, IL8, IL10, IL17A, S100A8, S100A9, SLPI, sRAGE, TARC, TNFa, YKL40) were assayed using a

16-plex human luminex kit (R&D Systems Cat # LXSAHM-16) after 1:2 dilution.

Because multiplex assays require a single dilution of each sample, optimization across all biomarkers resulted in some single biomarker

values outside the specific standard curve range for limits of detection. After considering standard curve values for each biomarker, we used

quantile plots to visually ascertain85 upper and lower limits of detection for each biomarker. In order to retain those values which provided

partial information for use in the study, we adjusted values outside the limits of detection. Concentrations outside the limits of detection were

assigned values 0.1% above upper or below lower detection limits to retain partial information prior to natural logarithmic transformation and

use in statistical analysis. The procedure avoids creating outlier values that can influence subsequent analyses such as arbitrarily assigning a

log-transformed value of 1 when values within the limits of detection have, for example, a mean of 14.4 (SD = 1.32) for MMP9 (Table S6).
ELISA procedures for measurements of calprotectin, CRP and HMGB1

We incubated 96-well plates (Costar, Corning Inc, Costar, NY, USA) overnight with capture antibody diluted according to manufacturer rec-

ommendations or 1% bovine serum albumin (BSA, MilliporeSigma, Burlington, MA, USA) or 10% newborn calf serum in phosphate buffered

saline (NCS-PBS, MilliporeSigma). Plates were washed 4 times with PBS prior to addition of 1st antibodies then washed 6 times prior to addi-

tion of horse radish peroxidase-conjugated 2nd antibodies. Standards were diluted 1:2 for standard curves using manufacturer’s recommen-

dations or 1% BSA or 10% NCS-PBS (MilliporeSigma). All assays were incubated with 3,30,5,50-tetramethylbenzidine (TMB) substrate solution

(Thermo Scientific, Waltham,MA, USA). Reactions were stopped using 0.18 MH2SO4 after 15-30 minutes and read in an ELISA plate reader at

OD450. Standard curves were constructed using linear regression of log-transformed mean fluorescence intensities and log-transformed

known protein concentrations.
18 iScience 27, 108835, March 15, 2024
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical software

We use the R statistical programming environment86 for data handling and analysis. We use the basic packages included in the stable release

(version 4.3.x) along with the survival package which includes generalized linear model (for binomial, gaussian and quasi-poisson regression)

and Cox proportional hazards model functions, the future and future_lapply packages for parallel processing and the rlist package for conve-

nient handling of list outputs. We generally set p < 0.05 as the threshold for statistical significance, but we performed false discovery rate39

analysis using thresholds of 0.001, 0.01, 0.05, 0.1 and 0.2 as illustrated in figures. All figures were drawn using standard plotting commands

provided in base R software.
Statistical analysis procedures

Weperformed causal inference using key principles suggested for control of confounding.30We performedpurposeful variable selection and

postulated a specific causal model for biomarkers, clinical variables, and outcome using a directed acyclic graph (Figure 1). We evaluated

Pearson product moment correlations among detection limit adjusted biomarker measurements and used family-wise error correction

with a % 1 3 10-5 to reduce the number of reported correlations to an easily comprehensible number.87 We estimated the distribution of

time to next pulmonary exacerbation by Kaplan-Meier34 stratified by the nine clinical survival predictors14,29 (see introduction), followed

by logistic regression35 and proportional hazards model36 evaluations using clinical variables as explanatory. We examined proportional haz-

ards models for departures from the assumption of proportionality by examining the c-square distribution of weighted Schoenfeld resid-

uals.38 We used exacerbation within the first follow up year as the logistic regression outcome and time to next exacerbation as the propor-

tional hazards outcome.

Intrinsic variables such as age, sex, and prior pulmonary exacerbations cannot mediate but may confound inflammatory effects for future

events thus may adjust time to next pulmonary exacerbation models.30 In contrast, variables that describe active disease such as nutritional

status, diabetes and lung function potentially mediate future pulmonary exacerbations.
Assessments of confounding and mediation

We assessed confounding and mediation (Figure 1) in steps (Figure S1).31 First, we fitted a regression model for each biomarker as a univari-

able with 5-year prognostic risk score variables14,29 (age, sex, FEV1%, weight-for-age z-score and status of diabetes, pancreatic insufficiency,

MSSA and BCC infections) and other potential confounders ormediators as the outcomes (thin arrows on left side of Figure 1). We used linear

regression for age, vital signs, FEV1%, weight-for-age z-score and total cell count; quasi-Poisson regression for prior year pulmonary exacer-

bation count; and logistic regression for status of pancreatic sufficiency, diabetes and MSSA and BCC infections. Because of clinical impor-

tance,13,88 we additionally evaluated methicillin resistant Staphylococcus Aureus (MRSA) and Pseudomonas aeruginosa status as outcome

variables using logistic regression.

Second, we evaluated proportional hazardsmodels for time to next pulmonary exacerbationwith the potentially explanatory inflammatory

biomarkers as independent univariables (thin arrows on right side of Figure 1). To eachmodel, we added, one at a time, the variables that had

relationships with the inflammatory biomarkers in the first part of the confounding and mediation analysis as independent adjustment vari-

ables. We identified variables that substantially reduced biomarker effect sizes and significance as mediators for exclusion from further

models and considered remaining variables as potential confounders.

Finally, we considered a variable as potentially confounding and useful as an adjustment variable if it fulfilled two conditions. (1) It had

significant associations with multiple biomarkers in regression models (linear, quasi-Poisson or logistic from the first step above). (2) It

improved the fit of proportional hazards models of time to next exacerbation with each biomarker when it was included as an adjustment

variable, especially for the same biomarkers for which it fulfilled condition (1).
Development of explanatory models and false discovery rate analyses

Following confounding andmediation assessments31 of prognostic risk score variables14,29 and selected clinically important variables such as

MRSA, sputum neutrophil and total cell counts,13,88 we developed explanatory models for time to next pulmonary exacerbation (thick arrow,

Figure 1). We fitted proportional hazards models36 for each biomarker, adjusted for confounding with exclusion of mediating variables.31

Because we evaluated 24 biomarkers and found 10 which had p values < 0.05 in proportional hazards models of time to next exacerbation

with each biomarker as the independent variable adjusted by age and prior pulmonary exacerbations, we performed false discovery rate

(FDR) analysis to reduce the chance of categorizing spurious associations as significant.39 We chose a graphical approach because it is

easy to evaluate multiple biomarker results simultaneously and illustrate the findings.

We selected 20% as the threshold rate of false discovery above which we would discourage further investigation of a biomarker. To

perform the evaluation for our main results (see Figure 2, for example), we ranked biomarkers based on p values from the 24 proportional

hazards models of time to next exacerbation, each adjusted by age and prior pulmonary exacerbations in the year prior to enrollment.

We plotted the p values on the y-axis and p-value rank on the x-axis for the graphical analysis. We drew a line through the origin with a

slope equal to FDR threshold/24 or 0.2/24. All biomarkers below and to the right of this line have an FDR < 20% or true discovery rate of

(1 – FDR) > 80%. We drew a second line for FDR threshold = 10%.
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As illustrated in Figure 2, ENRAGE has a true discovery rate > 90%. YKL40 also appears to have a true discovery rate > 90%, however, the

biomarkers plotted between ENRAGE and YKL40 have intervening ranks and fail the FDR threshold = 10% line. The first biomarker that

crosses above and to the left of a threshold line is considered to disqualify any subsequent biomarkers, thus the biomarkers ranked 2-10 (Fig-

ure 2B) are considered all to have FDR< 20%or true discovery rate (1 – FDR) of > 80%.Wedid similar graphical FDR analyses for other analyses

with some differences in chosen FDR thresholds (Figures 3 and S2–S7).
Sensitivity analyses

WeassessedCox proportional hazardsmodel sensitivities to anti-inflammatory treatments including steroids, chronic antibiotics (oral azithro-

mycin, inhaled aztreonam and tobramycin) and potentially anti-inflammatory CF transmembrane regulator protein (CFTR) modulators, iva-

caftor and ivacaftor-lumacaftor.13 We included these treatments as binary adjustment variables one at a time in the explanatory models

described above for each biomarker and examined the results seeking substantial changes in the effect sizes for each biomarker and the ad-

justments for age and prior pulmonary exacerbation counts. Effect sizes that reversed sign (or hazard ratios that transitioned from less than 1

to more than 1 or vice versa) would have indicated sensitivity to a treatment as would a change in effect resulting in a clinically important

change in time to next exacerbation. The latter threshold for sensitivity is necessarily harder to define, but a change in relationship of a

biomarker with time to exacerbation measured in weeks or months which would be meaningful to a person with CF, for example, would

have been considered evidence of model sensitivity.

We assessed the impact of substituting Global Lung Initiative (GLI) equations41 to estimate FEV1% for NHANES III equations.42 We

substituted FEV1%GLI for FEV1%NHANESIII and compared estimates, 95% CI and p-values for linear regressions of biomarkers with FEV1%

and hazard ratios, 95% CI and p-values for proportional hazards models of time to next exacerbation with FEV1% and biomarkers. We would

have considered a change in sign for estimates or a shift from below to greater than 1 (or vice versa) for hazard ratios or change in interpre-

tation of FEV1% as a mediator of biomarker effects as evidence of model sensitivity.

Low sample volumes prevented some measurements. We examined whether participants on ivacaftor or ivacaftor-lumacaftor produced

less sputum by weight for study than participants not treated with a CFTR modulator and compared using a t-test. We performed three an-

alyses seeking evidence that missingness was other than completely at random: using a dataset (1) deleting records with completely or

partially unmeasured biomarkers, (2) deleting only records with completely unmeasured biomarkers and (3) retaining all records after multiple

imputation by chained equations89 for completely missing biomarker values.
ADDITIONAL RESOURCES

This is an observational study of airway inflammation without registration. The times of study planning (2012) and study initiation with first

enrollment (2014) predate the allowance for observational trial registration at clinicaltrials.gov. Registration was not required because the

study did not involve assignment of participants to any intervention nor did it primarily observe the outcomes of interventions given in the

course of regular care.

The study design and sputum collection and processing protocols were previously published: Liou, T.G., Adler, F.R., Argel, N., Asfour, F.,

Brown, P.S., Chatfield, B.A., Daines, C.L., Durham,D., Francis, J.A., Glover, B. et al. (2019). Prospectivemulticenter randomized patient recruit-

ment and sample collection to enable futuremeasurements of sputum biomarkers of inflammation in an observational study of cystic fibrosis.

BMCMed Res Methodol 19, 88. https://doi.org/10.1186/s12874-019-0705-0. Teaching videos (with a transcript) to improve understanding of

our study design incorporating randomized selection of participants and for laboratory processing of samples are included in this reference.

Website with step by step guidance on mediation analysis with examples:

Kenny, D.A. Mediation. https://davidakenny.net/cm/mediate.htm.
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