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ABSTRACT The taxonomically uncharacterized nematophagous fungus ARF18, which
parasitizes cysts, juveniles, and adults of the soybean cyst nematode (Heterodera gly-
cines), was proposed as a nematode biological control agent in 1991. A 46.3-Mb draft
genome sequence of this fungus is presented, and a tentative taxonomic identification
as a novel species of Brachyphoris is proposed.

Plant-parasitic nematodes are destructive pathogens of crop plants worldwide and
cause estimated losses in excess of $150 billion annually (1). Control of plant-

parasitic nematodes relies on chemical nematicides and cultural practices, including
crop rotation and using resistant cultivars. The manufacture and use of several key
chemical nematicides has been discontinued due to human health risks and environ-
mental concerns. Resistant cultivars do not currently exist for all crops, and effective
crop rotation schemes are lacking for many cropping systems due to economic
concerns. Alternative nematode control tactics are urgently needed for many major
economic crops (2, 3). The hyphomycete fungus ARF18 was first isolated from infected
cysts of Heterodera glycines nearly 30 years ago (4). Because the fungus parasitizes all
stages of the nematode, including eggs, juveniles, and adults in both soil and culture
media (5), it was suggested as a potential biological control organism. Culture condi-
tions have not yet been identified that induce conidiation or other morphological
features that are required for classical taxonomic identification. Additionally, nothing is
yet known about nematophagy in ARF18 at the molecular level.

The genome of ARF18 was sequenced with Pacific Biosciences (PacBio) technology,
which generated 142,598 reads. Lengths varied from 35 bp to 43,743 bp with an
average length of 7,686 bp. A draft genome assembly of the fungus was obtained with
Canu version 1.1 (6), following the program instructions for low coverage data sets. The
ARF18 draft genome assembly was improved by merging contigs into scaffolds with
AHA from the SMRTanalysis suite version 2.3.0 (http://www.pacb.com/products-and
-services/analytical-software/devnet/devnet-analysis-tools). The resulting genome as-
sembly had 46,639,970 bp organized into 412 scaffolds with an N50 value of 177 kb, an
L50 value of 76, and a GC content of 44.6%. Compared to the genome of Arthrobotrys
oligospora and many other ascomycetes, ARF18 had a slightly larger genome (7, 8).

Gene prediction was performed with the Maker version 2.31.6 pipeline (9) with
homology evidence proteins from A. oligospora ATCC 24927, Monacrosporium hapto-
tylum CBS 200.50, and Drechslerella stenobrocha 248. A total of 14,461 protein-encoding
genes, with an average length of 1,028 bp, were predicted in the ARF18 genome
assembly. Through BLAST analyses, several genes were identified that could play roles
in nematode pathogenesis, including cuticle-degrading serine proteases, alkaline serine
proteases, and chitinases (10–12). Further examination of the ITS1-5.8s to ITS2 rDNA
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region suggested that ARF18 belongs to a distinct monophylogenetic clade within
Brachyphoris, a genus of nematophagous fungi that belongs to the ascomycete family
Orbiliaceae (13–15). Based on BLAST analyses, most of the genes analyzed showed high
identity to A. oligospora and Dactylellina haptotyla, both nematophagous fungi within
the Orbiliaceae family, supporting the taxonomic placement of ARF18 within the
Orbiliaceae family.

Currently, only a few nematophagous fungal genomes are publicly available. Thus,
the genome sequence of this fungus will provide a useful resource to study the biology
of nematophagous fungi, especially within the Brachyphoris genus. Further analyses of
the genome of ARF18 will also provide important information regarding the molecular
basis of fungal nematophagy and guide the potential development of this nematode
pathogen as a biological control agent.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession no. AZLU00000000. The version described in
this paper is the first version, AZLU01000000.
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