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Abstract

The derivation of human embryonic stem cells followed by the discovery of induced pluripotent stem cells and
leaps in genome editing approaches have continuously fueled enthusiasm for the development of new models of
neurodegenerative diseases such as Parkinson’s disease (PD). PD is characterized by the relative selective loss of
dopaminergic neurons (DNs) in specific areas of substantia nigra pars compacta (SNpc). While degeneration in late
stages can be widespread, there is stereotypic early degeneration of these uniquely vulnerable neurons. Various
causes of selective vulnerability have been investigated but much remains unclear. Most studies have sought to
identify cell autonomous properties of the most vulnerable neurons. However, recent findings from genetic studies
and model systems have added to our understanding of non-cell autonomous contributions including regional-
specific neuro-immune interactions with astrocytes, resident or damage-activated microglia, neuro-glia cell
metabolic interactions, involvement of endothelial cells, and damage to the vascular system. All of these contribute
to specific vulnerability and, along with aging and environmental factors, might be integrated in a complex
stressor-threshold model of neurodegeneration. In this forward-looking review, we synthesize recent advances in
the field of PD modeling using human pluripotent stem cells, with an emphasis on organoid and complex co-
culture models of the nigrostriatal niche, with emerging CRISPR applications to edit or perturb expression of causal
PD genes and associated risk factors, such as GBA, to understand the impact of these genes on relevant
phenotypes.
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Limitations of PD models
Parkinson’s disease (PD) is a neurodegenerative disorder
(Table 1) for which the exact pathogenesis is still un-
known, and no disease-modifying treatment exists to
date. It is therefore essential to refine research models to
better understand the pathophysiology underlying the
neuronal loss and to develop therapeutic strategies.

Postmortem studies of PD patients have laid the founda-
tion of our understanding of pathological aspects of the
disorder. These include the presence of Lewy bodies, in-
clusions primarily composed of aggregated α-synuclein
(α-syn), regional vulnerability of dopaminergic neurons,
and the impact of oxidative stress, inflammation, infec-
tions, and environmental toxins [10]. However, these
studies are restricted by the rarity of brain samples, eth-
ical limitations, the loss of the most vulnerable neurons,
and the restricted temporal window in which to examine
samples, which has hindered genetic and mechanistic
studies.
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Animal models have been extensively used for PD re-
search. While parkinsonism is frequently induced by
acute toxins, more recently transgenic animal models of
familial PD genes have been developed. Although these
models have provided a better understanding of in vivo
mechanisms of PD pathogenesis, they are often limited
by a lack of specific neuronal degeneration and fail to re-
capitulate the progression of the disease and features of
movement disorders [11–13]. Researchers have experi-
enced difficulties in translating promising findings from
animal models into successful trials in patients, mainly
due to species differences in metabolism and in the se-
quence, pathogenicity, or number of isoforms expressed
of key molecules [14–16]. As an appropriate model is
fundamental for research and therapeutic development,
the emergence of human pluripotent stem cell (hPSC)
technology holds great promise to overcome these limi-
tations and recapitulate essential aspects of the homeo-
static and pathological alterations of disease-relevant
cells in a human genetic background.

Overview of the current PD models using hPSCs
hPSCs include blastocyst-derived human embryonic
stem cells (ESC) [17] and induced-pluripotent stem cells
(iPSC), which are reprogrammed from human somatic
cells [18]. hPSCs are an innovative and unique alterna-
tive mean to model neuronal disease in vitro, as they
have the potential to differentiate into multiple neuronal
subtypes, as well as glial cells.
Various informative reviews have summarized PD

models generated using patient-derived iPSCs- or, more
recently, models created by gene-editing technology
[19–24], although most are limited to DN modeling and
the cell autonomous mechanism of degeneration. In this
review, we will introduce new approaches that have
greatly improved hPSC disease modeling, thanks to the

development of specific protocols of differentiation, re-
creation of cellular interactions with co-culture experi-
mental paradigms, and 3D cellular systems.
The self-organizing capability of hPSCs permits the

creation of three-dimensional aggregates, known as
organoids because of their ability to recapitulate cell-
cell interactions, cellular diversity, and structures found
during organ development [25, 26]. Brain organoids are
especially advantageous for modeling adult-onset dis-
eases, as they allow for the differentiation and matur-
ation of neurons and for long-term cultures, in which
disease-associated phenotypes can be promoted
through multiple or chronic treatments. Organoids en-
able the inclusion and complex interaction of different
cell types in a spatially organized environment, and the
possibility to elucidate the contribution of each cell
type to a phenotype [27].
Midbrain organoids have been used to study the

pathological mechanisms of PD-related gene mutations
and have shown the ability to recapitulate hallmarks of
the disease [28, 29]. These studies focused on relatively
early time-points and on DNs, not considering cell pop-
ulations that emerge at later time-points in organoid dif-
ferentiation, such as astrocytes or oligodendrocytes. The
integration of glia to the midbrain organoids would ex-
pand the potential of the model, enabling investigation
of PD molecular dysregulation, neuro-glia interactions,
and neuroinflammation, overall covering each of the
main pathways currently implicated in PD pathology.
Among the cell types interacting with DNs, glia have

been shown to be critical to faithfully model the in vitro
key features of neurodegeneration pathology [30, 31].
Astrocytes and microglia are the two main types of glia.
Their specific functions and cross-talk are actively in-
volved in maintaining brain microenvironments [32, 33].
They strictly control neuronal homeostasis through
metabolic support, phagocytic function, removal of
apoptotic neuronal cells, and inflammatory response
with cytokine production [34, 35]. In an environment of
protracted stress, such as in neurodegenerative disease,
glia divert from their beneficial function to take an active
role in disease progression. Proinflammatory cytokines
released from activated glia can become neurotoxic, en-
hance protein aggregation, and facilitate disease spread
through transmission of protein aggregates to neurons
via exosomes [36–39].
While initial PD research focus concentrated on DN

intrinsic neuronal dysfunction, the contribution of glia
in the pathology progression and development is now
being investigated and recognized as decisive. Recently,
astrocyte dysfunction has been directly involved in
pathological mechanisms contributing to the degener-
ation of DNs [40, 41], and impacting neuronal levels of
α-syn [42]. Co-culture systems of hPSC-derived cells

Table 1 Parkinson’s disease

Parkinson’s disease (PD) is a complex, progressive neurodegenerative
condition affecting more than 1% of the population over 65 years of
age. By the time clinical symptoms appear, around ~ 50% dopaminergic
neurons in the substantia nigra pars compacta (SNpc), are lost. Most PD
cases exhibit abnormal intracellular protein aggregates called Lewy
bodies. These are composed largely of aggregated α-synuclein (α-syn).
With the progression of the disease, the neurodegeneration in this re-
gion reaches 90%, while dopaminergic neuron loss in the dorsal tier
may be as low as 25%, and many other brain regions are relatively un-
affected [1]. The striatal selective neurodegeneration is clinically charac-
terized by debilitating motor and non-motor features which cause
severe disability [2]. About 10% of PD cases are monogenic forms, asso-
ciated with highly penetrant gene mutations [3, 4]. However, the major-
ity of PD cases are sporadic, with a complex etiology caused by an
interplay of environmental and associated genetic risk factors. Over the
last few years, large scale genome-wide association studies (GWAS) and
meta-analyses have identified more than 90 loci of different frequency
and penetrance associated with sporadic PD risk. Most of the loci confer
a small PD risk individually, but have shown to possess a substantial cu-
mulative risk [5–9].
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have shown that familial PD mutations in LRRK2 and
ATP13A2 (PARK9) induce astrocytic functional alter-
ations, which results in a pathogenic crosstalk between
astrocytes and neurons. Astrocytes harboring these PD
mutations exhibit dysfunctional autophagy-lysosomal
pathways, which induced toxic propagations of α-syn in
DNs and neurodegeneration [42, 43]. Microglia are the
main cell type responsible for the inflammatory response
in the brain. Increasing evidence associates microglia-
mediated responses with neurodegeneration in PD. Sev-
eral loci found to be involved in microglia and innate
immunity functions have been correlated to PD herit-
ability [44–47], and elevated levels of pro-inflammatory
cytokines and reactive microglia in the vicinity of dopa-
minergic neurons in the SN have been found in post-
mortem brain samples [48].

Modeling PD in the engineered nigrostriatal niche
An increasing number of findings implicate numerous
processes in the mechanism leading to neurodegenera-
tion in PD, both in degenerating DNs (cell autonomous)
and in other cell types (non-cell autonomous). A multi-
cellular co-culture model appears to be essential to bet-
ter understand the role of PD genes in the pathophysi-
ology of the disease.
Various region-specific human brain organoids have

been developed through distinct protocols of differenti-
ation based on knowledge of brain development during

embryology [49]. A recent step forward in disease mod-
eling has been the ability to combine different region-
specific pattered organoids into “assembloids” [50–53].
Assembloids bring another level of complexity to model-
ing, as cells generate a complex microenvironment
which mimics essential in vivo aspects, including inter-
regional interactions of differentially patterned cells, for-
mation of neuronal circuits among neuronal subtypes,
long-range axonal connections and cell migration [53,
54]. They provide a system in which it is possible to
compare the effects of perturbations on selective suscep-
tibility among regions affected and not affected by dis-
ease [55]. Furthermore, non-neuronal cell types like
microglia or pericytes can also be engineered into
assembloids, enabling the integration of vascular and im-
mune systems in the model [56, 57].
We propose to combine existing differentiation tech-

nologies to engineer the nigrostriatal niche using two
different multi-lineages culture models composed of de-
fined neuronal and glial cell types relevant in PD (Fig. 1).
Midbrain and forebrain organoid differentiation gener-
ates DNs and forebrain medium spiny neurons (MSNs)
respectively. Region-patterned glial cells, such as astro-
cytes and oligodendrocytes arise after extended culture
times [58]. Unlike cells derived from neuroectoderm,
microglial cells are not present during brain organoid
differentiation [59, 60], but can be generated separately
and later integrated in the co-culture [30, 51, 61]. The

Fig. 1 Modeling the nigrostriatal niche. Schematic representation of nigrostriatal multilineage co-culture models. a Human pluripotent stem cells
(hPSC) undergo specific protocols of differentiation and generate region-patterned organoids (midbrain in yellow; forebrain in blue), as well as
microglia (green). b Organoids dissociation allows for the isolation of neuronal populations and patterned astrocytes for further analysis.
Dopaminergic neurons rise from the midbrain organoid (DNs, yellow), medium spiny neurons from the forebrain organoid (MSNs, blue), and
region-patterned astrocytes from either one (purple). c hPSC-derived components are engineered into co-culture models. Midbrain and forebrain
organoids are assembled and integrated with microglia to generate a multilineage assembloids model, which allows for neuronal circuit
formation and neuro-immune communication in a 3D environment. Dissociated components are combined in 2D co-culture, a model in which
each component can undergo differential genomic editing
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fusion of midbrain and forebrain organoids seeded with
microglia would create a complex nigrostriatal cellular
environment and a physiologically relevant context to
study PD. DNs would be able to establish long-range
connections, complex interactions, and rely on glial sup-
port to form functional connections to forebrain synap-
tic targets [62]. Glia may establish neuro-immune
communication and improve neuronal maturation [63–
66].
Patterned brain organoids can be dissociated, and spe-

cific cell types can be combined in 2D co-culture. Even
though the 2D system loses complexity compared to
assembloids, it presents a stable population of cells over
time and provides the opportunity to generate fully
mixed-genetic models, as distinct cell types can be iso-
lated and mixed from organoids with unique genetic
perturbations. Neuro-immune interactions can be dis-
sected among microglia, astrocytes, and neurons in
long-term cultures. Both models offer a promising ex-
perimental paradigm in which to reproduce the com-
plexity of the disease and explore the role of PD genes
in the sequence of aberrant cellular functions at the
basis of cell-type-specific neurodegeneration.

Using advanced PD models to understand the
role and function of risk genes
PD genetics are complex and despite recent advances,
the majority of identified PD risk variants’ contribution
to disease pathogenesis is poorly understood. More than
90 PD-related variants have been identified in the most
recent GWAS. For most loci, it is still not known which
genes underlie PD risk [8, 9, 67], as each locus identified
encompasses hundreds of SNPs, and most lie within
non-coding regions of the genome, potentially affecting
the regulation of a network of nearby or distant coding
genes [68, 69].
In order to understand how genetic variation leads to

phenotypic differences, current genetic approaches are
aimed at (i) identification of additional disease-
associated SNPs/loci, (ii) fine mapping the causal SNPs
and the genes impacted by variants, and (iii) understand-
ing the specific effects of variants on cell types relevant
to the pathology, or the combined effects in different cell
types.
Several analytic strategies are being used to link spe-

cific GWAS loci to the causal genes that influence PD
susceptibility [70, 71]. Quantitative trait loci (QTL) map-
ping correlates variants in genotype and changes in gene
expression [72, 73]; the integration of previous genomic
and functional annotation, single-cell RNA [74] or
transcriptomic data [75] permits the determination of
candidates’ expression in pathologically relevant cell
populations or physiological contexts.

Once high-throughput studies prioritize candidate
genetic variants related to the disease, the integration of
gene editing tools such as CRISPR can be used to valid-
ate causal variants and genes and pinpoint the effect on
disease-related phenotypes (Fig. 2). CRISPR genome
editing allows for reengineering of the genome, epige-
nome, and transcriptome of cells [76]. The combination
advances in both gene editing and hPSC technologies
provide a powerful tool to test cell-type-specific effects
of candidate genes and variants in isogenic models
(reviewed in [20, 77, 78]). The strictly controlled and
consistent genomic background enables the identifica-
tion of even subtle in vitro phenotypes [79–81] and
will be useful in efforts to stratify PD on a molecular
level and identify a common therapeutic angle. In our
lab, we used isogenic models to compare three dis-
tinct early-onset autosomal recessive forms of PD
through CRISPR-mediated knockout (KO) of PARKIN,
ATP13A2, and DJ-1. We observed a significant loss of
DNs in PARKIN-KOs and showed dysregulation of
the main pathways involved in PD [82] in all PD
lines, including common mitochondrial dysfunction as
well as lysosomal dysregulation and oxidative stress
[29]. Taking these steps further, the recent iPSC Neu-
rodegeneration Disease Initiative (iNDI) project is the
largest genome editing project focused on Alzheimer’s
Disease and related dementias, including a series of
PD-causing mutations and as genetic risk factors such
as GBA. These lines will be CRISPR edited into hPSC
lines from unaffected individuals. iNDI will provide
high-quality, deeply characterized isogenic iPSC lines
that will be freely shared across the research commu-
nity. Once available, this resource will greatly extend
our ability to test common dysregulations in PD and
our understanding of the related pathology [83].
In the past few years, CRISPR-mediated gene editing

of PD genes has been successfully applied for many pur-
poses in hPSC-derived models (reviewed in [84]). Pheno-
types induced by autosomal dominant PD mutations
have been explored by CRISPR-mediated correction and
phenotype rescue. For example, the removal of two al-
leles in SNCA triplication iPSCs showed lower levels of
α-syn aggregation and stress response [85]. Correction
of A53T SNCA mutation has shown α-syn aggregation
and lysosomal dysfunction associated with the patho-
genic form [86]. LRRK2 G2019S point mutation, which
is estimated to account for 1% of sporadic and 4% of fa-
milial PD patients [87], has been explored in several
models. Mutation correction both in neurons [88] and
astrocytes [43] as well as the introduction of the muta-
tion in midbrain organoids [28], has implicated it in
lysosomal dysfunction, α-syn accumulation, and neur-
onal cell death. In 2016, CRISPR was used to elucidate
the effect of a common PD genetic risk variant at the
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SNCA locus on a molecular level. The risk-associated SNP,
found in a non-coding distal enhancer element, was shown
to significantly alter the expression of α-syn [89].
CRISPR-KO of several PD genes has pointed to the

pathogenesis associated with their misexpression. A
study using loss of DJ-1 models connected this muta-
tion to commonly dysregulated PD pathways involving
elevated α-syn, dysregulated GBA, as well as mito-
chondrial and lysosomal dysfunction and showed that
oxidized dopamine may be part of the pathology. It
was suggested that aspects of the observed pathology
were unique in human models and not seen in mouse
models which has been attributed to differences in
dopamine metabolism [16].
Several technical challenges still remain. It is import-

ant to note that hPSCs are prone to genomic instability,
abnormalities, or chromosome aberration, especially
during long-term cultures or upon transgene transfec-
tion [90–92]. Moreover, genome editing may also cause
unwanted edits, off-target effects, or transgene silencing
upon hPSC differentiation [93]. Genome editing technol-
ogy is in continuous advancement and the identification
and application of new CRISPR effectors is constantly
improving editing specificity, efficiency, genome stability,
and target accuracy [94, 95].
Recent efforts in the scientific community have gener-

ated collaborative and international programs, such as

the Global Parkinson’s Genetics Program (GP2) that will
genotype more than 150,000 volunteers from a different
ethnic background, or the Parkinson’s Progression
Markers Initiative (PPMI) that will collect longitudinal
clinical data and biosamples, including iPSCs generated
from patients [96]. The availability of a robust and ac-
curate PD model will be essential to maximize these re-
sources to clarify PD genetic architecture and
pathogenic pathways. The nigrostriatal niche, built on
the conjunction of genome editing and multi-lineage
modeling, offers a system in which to consider and com-
pare gene perturbation among vulnerable and non-
vulnerable populations of neurons. Each component of
the model can undergo a different genetic edit, to
recognize cell-specific effects of pathological gene muta-
tions. Moreover, it holds promising advantages for fu-
ture research to translate GWAS findings into cell-type-
specific phenotypes as the identification of new CRISPR
systems is increasing the ability to manipulate simultan-
eously several genes and multiple SNPs [97, 98].

Modeling GBA, the major genetic risk factor in PD
A clear connection has been established between PD
and the alteration of lysosomal pathways [99, 100]. Sev-
eral familial PD genes as well as identified risk factors
for sporadic PD converge in the function of this organ-
elle. Among these, GBA is the most common genetic

Fig. 2 Pinpoint disease-relevant genes and cell types. a Samples collected from unaffected controls and patients are analyzed through genome-
wide association studies (GWAS). Genetic variants determination and network analysis reveals genetic candidates. b To validate candidates’
effects, genome editing is carried out in disease-relevant cell types with isogenic background, as vulnerable and resilient population of neurons
and glial cells. c Phenotypes are characterized and compared, in order to link functional consequences to specific genes and cell types. OMICs
techniques allow to link candidate editing to a differential expression set of genes, overall generating additional candidates. Comparisons among
different cell types elucidate genes responsible for cell-type-specific response and cell population vulnerability. Convergent phenotypes of
differential genes pinpoint to pathology-relevant pathways. Multiple gene perturbations are useful to detect phenotype modifiers, that can either
alleviate, therefore be considered potential therapeutic targets, as well as aggravate phenotypes
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risk factor for PD and provides an ideal target for the
nigrostriatal experimental model (Table 2). GBA is
expressed in all cell types and encodes the lysosomal
enzyme GCase. A decrease in GCase activity results
in accumulation of its substrate, glucocerebroside, and
compromised activity of the autophagy-lysosomal
pathway [116]. The consequences of GBA mutations
and GCase loss of function have been strongly linked
to several pathological processes and hallmarks of PD
in hPSC-derived midbrain DNs. GCase loss of func-
tion and lysosomal alteration compromise protein
degradation, elevated α-syn levels and toxic buildup
of aggregates in DNs [111, 117–120]. Glycosylcera-
mide accumulation resulting from reduced GCase has
been linked to several pathological pathways: deficit
in autophagic flux, calcium imbalance [121], endoplas-
mic reticulum stress [122], and reduced dopamine
storage and uptake [119, 123, 124]. iPSC-derived neu-
rons from GD patients have shown several electro-
physiological abnormalities, such as defects in action
potential firing. Treatment of control iPSC neurons
with a GCase inhibitor results in a similar phenotype,
implicating GCase activity in the observed abnormal
neuronal electrophysiological properties [125]. GCase
activity has been suggested to play a role in PD
pathogenesis even in the absence of GBA mutations.
Other PD-related mutations, such as deficiency of the
late endolysosomal transporter ATP13A2 (PARK9)
have been recently shown to alter lysosomal function
and decrease GCase activity in both DNs and astro-
cytes [42]. Additionally, accumulation of α-syn aggre-
gates inhibits lysosomal maturation and activity of

normal GCase, giving rise to a self-propagating bidir-
ectional pathogenic loop that eventually leads to neu-
rodegeneration [126, 127].
Studies of GBA have mainly focused on dysfunction

in isolated cell types, which fails to model the complex
interplay between other factors contributing to pheno-
type. GBA is expressed in all cell types, including glia
[40, 128, 129], and is involved in essential processes for
these cells, such as neuroimmune response and phago-
cytic activity [130, 131]. The first study considering the
role of GBA mutation in glia with a human genetic
background clearly suggests that astrocytes with mutant
GBA may contribute to PD pathology. Residual levels
of GCase activity in iPSC-derived astrocytes generated
from GD patients appear to determine the degree of
astrogliosis, inflammatory response, and ability to
process α-syn [132].
Although GBA has been linked to lysosomal func-

tionality in isolated neuronal and glial cells, existing
methods fail to resolve the relationship between GBA
and PD pathogenesis, as they do not explain cell type
vulnerability and incomplete penetrance of GBA vari-
ants. The nigrostriatal multilineage assembloid model
offers an innovative complex co-culture paradigm that
overcomes previous limitations to our understanding
of the complexity of gene-variant induced phenotypes.
Isogenic hPSC cell lines can be differentiated into
glia, susceptible or unaffected neuronal populations,
and combined in genetically mixed co-culture to dis-
sect cell-type contributions to pathological phenotypes
(Fig. 3). Using high-density SNP arrays different genes
have been reported to influence GBA-associated risk
of disease [133] and could partially explain the ob-
served low penetrance. Emerging CRISPR system tools
enable us to simultaneously target multiple genes and
evaluate how different variants with individually small
effect may synergistically affect GBA pathways and ag-
gravate or ameliorate PD phenotypes [97, 134].

Extending the complex hPSC models to study
other neurodegenerative diseases
Neurological disorders are the leading source of dis-
ability globally [135]. A common clinical feature
shared among different neurodegenerative diseases is
the presence of protein-based deposits as intracellular
inclusions and/or as extracellular aggregates, present
in specific neuronal types in distinct regions of the
brain [136–139] (Table 3). Genetic studies and experi-
mental findings have shown that both genetic and en-
vironmental factors impact the onset and progression
of the pathology [140, 141].
In most cases, the proteins and genes implicated in the

etiology of these diseases have a widespread, ubiquitous
expression; nevertheless, the degeneration selectively

Table 2 The complex role of GBA in PD pathology

The GBA gene encodes the lysosomal enzyme glucocerebrosidase
(GCase), responsible for the hydrolysis of glucocerebroside to glucose
and ceramide [101]. Biallelic mutations in GBA result in GCase deficiency
and cause Gaucher disease (GD), an autosomal recessive systemic
lysosomal storage disorder with a complex pathogenesis [102, 103].
Heterozygous mutations in GBA, have been found to increase the risk of
developing PD by 20–30-fold and are more than 5 times more likely to
be found in PD patients compared to controls [104–106]. Clinical
observations show that GBA-associated PD may have an earlier onset
and higher risk of developing non-motor symptoms such as dementia
and depression [107, 108].
Although the role of GBA mutations as risk factors for PD is well
established, the mechanism underlying GBA-associated PD is still not
clear.
Glucocerebrosidase has a complex biology. The majority of GBA
mutation carriers do not develop PD, and there is great variability in
symptoms and clinical presentations in both GD and PD patients
carrying the same mutations, suggesting the existence of modifying
factors such as gene co-variants and environmental factors [109–111].
Decreased GCase activity is also found in patients with PD without GBA
mutations, suggesting a central role of the enzyme in the pathogenesis
of PD [112, 113]. Many different GBA mutations have been linked to PD
disease including those resulting in null alleles and structural protein al-
teration that can affect stability or trafficking to the lysosome, as well as
changes not related to enzymatic activity [114, 115].
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targets specific neuronal types and regions. A major un-
resolved question in the field is the mechanism under-
lying the selective vulnerability of specific neuronal
subpopulations.
The complexity of neurodegenerative diseases requires

new methods to understand the specific dysfunction and
multifactorial origins contributing to disease pathogen-
esis. With the recent development of specific differenti-
ation protocols [142–144], multicellular assembloid
models can be extended to study the mechanisms in-
volved in other neurodegenerative diseases in which sin-
gle gene differences can point to pathological
mechanisms in a specific cell type, but mostly do not ex-
plain cell type vulnerability. For example, Huntington’s
disease is characterized by widespread cell death in the
striatum of carriers of the mutant huntingtin gene. The
most vulnerable and first neurons to degenerate are
MSNs of the striatum, while other regions are unaffected
[145]. The molecular basis underlying this highly specific
neurodegeneration is still not clear. The nigrostriatal
model proposed could be used to model huntingtin gene
mutation in MSNs and others cell types in order to

clarify the possible involvement of non-autonomous cell
functions.
Multi-lineage assembloids are a scalable system in

which to integrate several variables and risk factors re-
lated to neurodegenerative diseases simultaneously. The
model offers a novel experimental paradigm which takes
complexity and phenotypic heterogeneity into consider-
ation [146]. Understanding the basis for cell type vulner-
ability and the factors involved in disease pathogenesis
will provide insights regarding how to specifically inter-
vene to reverse cellular dysfunction, support the affected
cell types, and enable the development and testing of fu-
ture therapeutics.
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