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Abstract: Gait analysis based on inertial sensors has become an effective method of quantifying
movement mechanics, such as joint kinematics and kinetics. Machine learning techniques are used to
reliably predict joint mechanics directly from streams of IMU signals for various activities. These
data-driven models require comprehensive and representative training datasets to be generalizable
across the movement variability seen in the population at large. Bottlenecks in model development
frequently occur due to the lack of sufficient training data and the significant time and resources
necessary to acquire these datasets. Reliable methods to generate synthetic biomechanical training
data could streamline model development and potentially improve model performance. In this study,
we developed a methodology to generate synthetic kinematics and the associated predicted IMU
signals using open source musculoskeletal modeling software. These synthetic data were used to
train neural networks to predict three degree-of-freedom joint rotations at the hip and knee during
gait either in lieu of or along with previously measured experimental gait data. The accuracy of
the models’ kinematic predictions was assessed using experimentally measured IMU signals and
gait kinematics. Models trained using the synthetic data out-performed models using only the
experimental data in five of the six rotational degrees of freedom at the hip and knee. On average,
root mean square errors in joint angle predictions were improved by 38% at the hip (synthetic data
RMSE: 2.3◦, measured data RMSE: 4.5◦) and 11% at the knee (synthetic data RMSE: 2.9◦, measured
data RMSE: 3.3◦), when models trained solely on synthetic data were compared to measured data.
When models were trained on both measured and synthetic data, root mean square errors were
reduced by 54% at the hip (measured + synthetic data RMSE: 1.9◦) and 45% at the knee (measured +
synthetic data RMSE: 1.7◦), compared to measured data alone. These findings enable future model
development for different activities of clinical significance without the burden of generating large
quantities of gait lab data for model training, streamlining model development, and ultimately
improving model performance.

Keywords: deep learning; inertial sensors; joint kinematics; synthetic data; augmentation

1. Introduction

Gait analysis and musculoskeletal modeling (MSM) are commonly used to quantify
movement mechanics, providing insights into the diagnosis, treatment, and rehabilitation of
movement disorders [1,2]. Using the current gold-standard passive-marker motion capture
(MOCAP) systems, detailed kinematic measurements are time consuming, constrained to
laboratory environments, and require technical expertise to generate reliable data. Wearable
inertial measurement units (IMUs) enable biomechanical measurements without many
of the logistical constraints of traditional techniques by translating multiple streams of
IMU data into an accurate measurement of joint mechanics. However, establishing reliable
clinical metrics of pathological movement with the use of IMUs remains a major hurdle.
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Early IMU-based methods for measuring lower limb kinematics integrate the rota-
tional velocity and linear acceleration data from each limb segment, coupled with orien-
tation data from the magnetometer, to make estimations about limb segment positions
and orientations [3,4]. These methods are prone to errors imparted by noise, drift, and
other inaccuracies in IMU signals. More recently, the accuracy of IMU-based kinematic
measurements has been improved by integration with MSMs and optimization algorithms
to impose realistic joint constraints to the estimated movements [5–9]. These methodolo-
gies, however, require nontrivial computational resources making them less suitable for
real-time applications with instantaneous feedback [6,10,11].

Despite the intensive computational resources necessary for training machine learning
algorithms, trained models can be deployed with minimal processor power to generate
instantaneous kinematic and kinetic predictions. These techniques include neural networks
(NNs) to estimate ground reaction forces for gait, running and jumping [12–16], and lower
limb joint kinematics and kinetics [10,11,15,17–20]. The accuracy of these algorithms relies
on large and representative biomechanics training datasets that are frequently expensive
and time consuming to collect. To expand the availability of training data, researchers are
leveraging artificially generated data to improve model prediction accuracy and reliability.

The most common technique to generate artificial IMU data in movement analysis is
to leverage existing passive-marker motion capture datasets to calculate simulated IMU
data based on marker trajectories and accelerations [13,16,21–24]. For the purposes of this
paper, artificial IMU data generated using this technique will be referred to as “simulated
IMU” data. Using this technique, Mundt et al. [25] combined simulated IMU data from an
archived MOCAP database with experimentally measured IMU data on a smaller subject
cohort to predict lower limb kinematics and kinetics during gait. The inclusion of the
simulated data in the training set reduced the root mean square error in joint kinematic
estimates from 4.8◦ to 4.3◦ but did not improve joint kinetics predictions. The authors
attributed the modest prediction improvements to inaccuracies in the simulated IMU data,
specifically the lack of soft tissue-induced vibrations. One limitation of this technique is
that observations are confined to movements measured in the lab and potentially do not
span the variability present in the population at large.

Dorschky et al. [26] combined measured IMU data from subjects during walking
and running with artificial IMU data generated from complementary MSMs. The authors
applied perturbations to the MSM’s joint angles, ground reaction forces, and speeds based
on random sampling from the experimental measures to generate synthetic IMU data for
movements not observed experimentally. The constraints of the MSM and corresponding
optimal control algorithm ensured the perturbations resulted in physically realistic joint
mechanics. For the purposes of this paper, artificial IMU data generated for movements
beyond those observed experimentally will be referred to as “synthetic IMU” data. Similar
to Mundt et al. [25], the addition of the synthetic data improved kinematic predictions at
the hip, knee, and ankle but had mixed effects on the joint moments and ground reaction
forces. In this way, both simulated IMU data (IMU data generated from existing MoCap
data) and synthetic IMU data (IMU data generated from artificial kinematics not measured
in the lab) are useful for expanding model training sets, but synthetic IMU data enables
expansion of the training set to uncommon movements that are difficult to measure in
the lab.

Numerical techniques to supplement existing optical tracking data with simulated
IMU data or augmentation techniques to expand existing datasets with unique synthetic
observations have both proven effective at enhancing kinematic predictions from machine
learning algorithms. However, both techniques rely on intensive gait lab data collections,
limiting widespread accessibility. In contrast, synthetic data can be generated with only a
few representative gait lab measurements of an activity to establish the general kinematic
patterns of the movement. It has yet to be demonstrated if machine learning models
can achieve the necessary accuracy when trained exclusively with synthetic data. In this
study, we aimed to develop a musculoskeletal modeling framework to augment and
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expand an existing dataset of gait kinematics, then use those synthetic data to train neural
networks to predict 3-D joint angles from experimentally measured IMU data during
gait. We hypothesize that (1) introducing synthetic IMU data into the training dataset will
significantly improve the kinematics predictions and (2) models trained exclusively on
synthetic data will perform equivalent to models trained using experimentally measured
IMU data.

2. Materials and Methods
2.1. IMU Measurement and Simulation Workflow Overview

In this study, we trained recurrent neural networks to predict three-dimensional
hip and knee kinematics during gait using either experimentally measured IMU data,
synthetically generated IMU data, or a combination of experimental and synthetic IMU
data. First, combined IMU and motion capture data were collected from 30 subjects
during multiple gait trials at various speeds (Figure 1). Next, the subjects’ lower limb hip
and knee kinematics were calculated from the experimental marker position data, then
augmented to generate synthetic IMU data via a musculoskeletal modeling workflow in
OpenSim [27]. Finally, the original measured kinematic data, the synthetic kinematic data,
and the combined measured and synthetic data were used to train the recurrent neural
networks to estimate three-dimensional hip and knee kinematics during gait from IMU
data. The detailed experimental methods can be found below.
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Figure 1. Overview of workflow for generating IMU signals labeled with joint kinematics. Knee and hip kinematic were
calculated from measured marker positions using the Inverse Kinematic tool in OpenSim. The OpenSim analysis tool was
used to generate simulated IMU data from the experimental kinematic and synthetic data from augmented joint kinematics.
Simulated IMU signals from the experimental kinematics were compared with the measured IMU data to determine the
reliability of the IMU simulation process.

2.2. Experimental Data Collection

In total, 30 subjects, including 13 subjects with OA (age = 63 ± 6, weight = 76 ± 14 kg,
height = 165 ± 13 cm, 6 females and 8 males) and 17 subjects with total knee arthroplasty
(age = 68 ± 5, weight = 76 ± 14 kg, height = 163 ± 13 cm, 13 females and 4 males), partici-
pated in the study as part of a larger investigation. All participants signed a consent form
prior to the experiment with IRB approval (IRB# 1328728). All biomechanical measure-
ments were carried out in the same lab setting. Subjects were outfitted with 71 reflective
markers on anatomical landmarks and 17 research-grade IMUs on various limb segments
and the trunk. Only IMUs located on the pelvis, left thigh, left shank, and left foot were
used in this analysis [28]. Thigh and shank IMUs were attached to rigid 4-marker clusters
used to track the relative orientations of the IMUs, while markers placed directly on the
IMUs were used to track IMU displacements. The relative orientation of the foot IMU was
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tracked using markers on the medial and lateral malleoli in addition to a marker directly
on the foot IMU. Similarly, the relative orientation of the pelvis IMU was tracked using
markers placed on the posterior superior iliac crests and a marker on the pelvis IMU.

Subjects performed 15 trials of a 5 m walking task at three different speeds: self-
selected, slow, and fast. During the walking trials, synchronized data were collected
from a 13 camera Vicon motion capture system (Centennial, CO), 4 Bertec force platforms
(Columbus, OH), and the IMUs (Xsens, Enschede, The Netherlands) (Figure 2a). The
sampling frequency of force data, MOCAP, and IMUs (acceleration and angular velocity)
were 1000 Hz, 100 Hz, and 40 Hz, respectively. The IMUs used in this study leveraged
on board data processing to reduce noise and drift in the signals [29]. IMU data for each
trial were upsampled using cubic interpolation to 100 Hz and filtered using a Butterworth
low-pass filter with cutoff frequency of 6 Hz.
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sponding musculoskeletal model representation with the virtual IMU sensors (b).

2.3. Musculoskeletal Modeling and IMU Simulation

Subject-specific musculoskeletal models were created for each study participant using
a previously published workflow [30]. Each model included 10 rigid body segments,
23 degrees of freedom, and 92 muscle actuators. The hip and knee joints were each modeled
with three rotational degrees of freedom, and the ankle was modeled as a 1 degree of
freedom hinge joint. Limb segments were scaled to match the optical markers from the
experiment. An inverse kinematics analysis was conducted for each subject and each gait
trial using OpenSim to obtain 3-D joint kinematics at the hip and knee [27].

Four virtual IMUs were placed on the pelvis, thigh, shank, and foot according to
their experimentally measured locations and orientations via fixed joints to their respective
limb segments (Figure 2b). These virtual IMUs were used in subsequent steps to generate
synthetic IMU signals. The angular velocities and linear accelerations of the model’s
rigid segments (pelvis, thigh, and shank) from the inverse kinematics analysis were used
to calculate simulated IMU signals using the Analyze Tool in OpenSim. The angular
velocity of each rigid segment in the global coordinate system was transformed through
the local segment’s anatomic reference frame and into the simulated IMU’s local sensor-
based coordinate system to align with the experimental measurements. To calculate the
simulated IMU’s acceleration, the second derivative of the position vector for the marker
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placed directly on the IMU was calculated in the global OpenSim coordinate system. These
accelerations were transformed into the experimental IMU’s global earth-fixed coordinate
system for comparison to the experimental measurements. To assess the reliability of
the simulated IMU data, the root mean square error (RMSE) and the Pearson correlation
coefficient (r) between the experimentally measured IMU data and the simulated IMU data
were calculated.

2.4. Kinematic Augmentation and Synthetic IMU Data Generation

Joint angles calculated from the measured data were segmented into individual
gait cycles of the left lower limb using the heel marker resulting in 3943 unique strides
from the 30 study participants. These joints angles were augmented using five different
numerical techniques to introduce variation in both the magnitude of the joint angles (e.g.,
increased knee flexion during stance) and the timing of the gait events (e.g., shorter stance
phase). These methods included magnitude offsets, magnitude warping, combinations
of magnitude offsets and warping, time warping, and combinations of time warping and
magnitude warping (Figure 3) [31–33].

Magnitude offsets were introduced by adding a random number from a normal
distribution (µ = 0◦, σ = 5◦) to all joint angles from a given trial. Magnitude warping was
introduced by fitting a cubic spline to seven random numbers from a normal distribution
(µ = 1, σ = 0.2) that were uniformly spaced along the time domain of the input gait cycle.
The cubic spline was evaluated at the time increments from the original trial’s joint angle
vectors to form a distortion vector. Joint angles augmented with magnitude warping were
generated by multiplying corresponding elements of the distortion vector and the original
joint angle vector. The same distortion vector was used on all joint angles from a given gait
trial. Augmented joint angles with combined offset and warping were generated using
these same methods by first applying the magnitude warping and subsequently applying
the magnitude offset.

Time warping was introduced using a similar methodology by fitting a cubic spline
to seven random numbers from a normal distribution (µ = 1, σ = 0.2) that were spaced
uniformly along the time domain of the input gait cycle. The cubic spline was evaluated at
the time increments from the original trial’s joint angle vectors, then the cumulative sum
vector was calculated and divided by the length of the original joint angle vector to form
a time distortion vector. Joint angles augmented with time distortion were generated by
interpolating the original joint angles at the time values in the time distortion vector. Aug-
mented joint angles with combined time warping and magnitude warping were generated
by first applying the time warp to the joint angles and then applying the magnitude warp.

One set of augmented joint kinematics was generated for every gait trial using each
of the five augmentation methods described above, resulting in a total of 19,715 sets of
augmented joint angles from the original 3943 measured strides (5:1 ratio). Synthetic
IMU data were calculated for each set of augmented joint kinematics by using the new
joint angles to animate the associated patient-specific musculoskeletal model, in lieu of
optical marker locations, using the workflow described above in OpenSim Analyze. This
kinematics augmentation method introduced random variation into the dataset, and no
controls were implemented to ensure the resulting kinematics were strictly physiologi-
cal. Kinematic perturbations were selected from normal distributions with conservative
standard deviations (σ = 5◦ for angular offsets, 20% for magnitude warping, and 20% for
time warping) that ensured the perturbations were similar to the measured kinematics. In
this way, generation of the augmented kinematic data required no a priori knowledge of
movement strategies, making the results more generalizable to other movements of interest
and simpler to implement.

All experimentally measured IMU data and the corresponding joint angles were lowpass
filtered with a second-order Butterworth filter using a cutoff frequency of 6 Hz [10,34,35]. In
addition, all datasets were zero padded to a length of 200, corresponding to the maximum
length of any stride in the dataset.
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2.5. Neural Network Model Architecture, Tuning, Training, and Evaluation

To facilitate neural network model development and testing, subjects from the ex-
perimental dataset were randomly assigned into training and test groups. The train-
ing dataset included the experimental measurements for all gait cycles from 27 subjects
(3451 gait cycles). All experimental measurements from the remaining three subjects were
reserved for the test set (492 gait cycles).

Two independent neural network models, one for knee kinematics and one for hip
kinematics, were developed to predict joint angles from the corresponding IMU data. Both
networks contained a bidirectional long short-term memory (BiLSTM) layer, followed by
two fully connected layers. LSTM models are a specific class of recurrent neural networks
particularly suited to time series data by addressing the vanishing gradient problem [36].
Specifically, LSTM is unique in that it uses feedback to remember long-term dependencies
of the input data on output data with the use of the time domain. Unlike unidirectional
LSTM models, which only consider information from the past, BiLSTM models also invert
the time scale of the data to consider information from the future input, which may inform
the present prediction and ultimately improve accuracy [37,38]. A dropout of 0.5 was
added prior to the final layer to avoid overfitting. The model input was a 200 × 24 matrix
containing the three accelerations and three angular velocities from the pelvis, left thigh,
left shank, and left foot IMUs. The model output was a 200 × 3 matrix containing the
corresponding 3-D joint angles of the hip or knee (flexion–extension, adduction–abduction,
and internal–external rotations) as a function of time. Model training was conducted using
an adaptive learning rate optimization with a learning rate, beta-1, and beta-2 of 0.001, 0.9,
respectively, with a total of 100 epochs [39]. The size of each batch size was 50. The model
development and training were conducted using PyTorch.

The neural network models’ hyperparameters, including the number of BiLSTM layers
and hidden sizes, were tuned via 5-fold cross-validation using only the experimentally
measured MOCAP and IMU data in the training dataset [40]. Specifically, the training set
was subdivided into 5 sets with 5–6 subjects per set. In each fold, one set was reserved for
validation, while the remaining four were used to train models with all combinations of
hyperparameters. The prediction accuracies of these models and corresponding hyperpa-
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rameters were evaluated on the validation set designated for that fold. Hyperparameters
that resulted in the minimum average RMSE across all five folds for each model were used
in all subsequent model training and evaluation (Table 1). The optimal hip model had
1 layer with a hidden size of 32, while the optimal knee model had 1 layer with a hidden
size of 128.

Table 1. Architecture of bidirectional long short-term memory neural networks withtuned hyperparameters.

Model n-Layers
Evaluated

Hidden Sizes
Evaluated

Optimal
n-Layer

Optimal
Hidden Size

Hip-BiLSTM 1, 2, 3, 4 16, 32, 64, 96, 128 1 32
Knee-BiLSTM 1, 2, 3, 4 16, 32, 64, 96, 128 1 128

To investigate the influence of synthetic IMU and lower limb kinematic data on
prediction accuracy, hip and knee neural network models were trained on three variations
of the training dataset. The first variation included the experimentally measured IMU
signals and associated kinematics for gait cycles from all 27 subjects included in the training
cohort (3451 measured gait cycles). The second variation included only the synthetic
IMU signals and associated kinematics generated from the subjects in the training cohort
(17,255 synthetic gait cycles). The third dataset included the measured data from the
training cohort and the corresponding synthetic data generated for those same subjects
(3451 measured gait cycles and 17,255 synthetic gait cycles). All three sets of trained
models were used to predict the lower limb joint angles for all trials of the three subjects
assigned to the test cohort using the measured IMU data (492 measured gait cycles). The
predictive accuracy of the models was quantified by calculating the RMSE, normalized-
RMSE, and Pearson correlation coefficients between the predicted and measured joint
angles from the test set. A multivariate analysis of variance (MANOVA) was performed
with the predicted RMSE for each of the six kinematic degrees of freedom (e.g., Knee
Flex–Ext or Hip Ad–Ab) as the dependent variables and the training dataset type as the
independent variable. Tukey’s honest significant different (HSD) post hoc tests were
performed to determine which kinematic degrees of freedom demonstrated statistically
significant prediction improvements with each training dataset (p < 0.05).

3. Results
3.1. Simulated IMU Accuracy

The average RMSE between the measured IMU data and simulated IMU based on
marker trajectories across all sensors for angular velocities was 0.56 rad/s (ranging from
0.33 to 1.02) with correlation coefficients ranging from 0.29 in the pelvis sensor’s y-axis
to 0.98 in the foot sensor’s y-axis (Table 2, Figure 4). Similarly, the average RMSE for
accelerations was 1.43 m/s2 (ranging from 0.62 to 2.46) with correlation coefficients ranging
from 0.75 in the thigh sensor’s y-axis to 0.96 in the shank sensor’s x-axis. IMU predictions
for free accelerations were generally more accurate than angular velocities with average
correlations coefficients of 0.86, compared to 0.71, respectively. Predictions for the pelvis
IMU were consistently worse than predictions for the other segments, particularly for the
pelvis rotational velocities (mean r = 0.47).
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Table 2. Pearson correlation coeffecient (r) and root mean square error (RMSE) and of angular velocity and acceleration
between simulated and measured IMU data across all subjects and trials.

Segment IMU
DoF

Angular Velocity (rad/s) Acceleration (m/s2)

r RMSE nRMSE r RMSE nRMSE
(Mean ± Std) (Mean ± Std) (Mean ± Std) (Mean ± Std) (Mean ± Std) (Mean ± Std)

Pelvis
x 0.62 ± 0.15 0.40 ± 0.17 19.47 ± 4.90 0.88 ± 0.10 0.65 ± 0.30 11.03 ± 3.79
y 0.29 ± 0.24 0.36 ± 0.15 32.28 ± 11.00 0.79 ± 0.12 0.62 ± 0.23 12.15 ± 3.02
z 0.52 ± 0.32 0.46 ± 0.21 26.58 ± 9.02 0.86 ± 0.11 0.75 ± 0.33 11.16 ± 3.76

Left
Thigh

x 0.67 ± 0.13 0.71 ± 0.19 16.22 ± 4.39 0.88 ± 0.10 1.64 ± 0.71 9.19 ± 3.37
y 0.61 ± 0.23 0.48 ± 0.16 23.64 ± 8.01 0.75 ± 0.23 1.12 ± 0.59 11.45 ± 4.90
z 0.95 ± 0.05 0.40 ± 0.20 8.56 ± 4.03 0.84 ± 0.12 1.17 ± 0.59 9.79 ± 3.23

Left
Shank

x 0.83 ± 0.11 0.63 ± 0.17 10.5 ± 3.67 0.96 ± 0.03 1.51 ± 0.70 5.32 ± 1.90
y 0.85 ± 0.21 0.33 ± 0.15 11.79 ± 7.33 0.81 ± 0.19 1.51 ± 0.82 9.82 ± 4.95
z 0.98 ± 0.02 0.47 ± 0.18 5.22 ± 1.81 0.92 ± 0.05 1.31 ± 0.51 8.00 ± 2.12

Left
Foot

x 0.39 ± 0.41 1.02 ± 0.34 20.24 ± 8.14 0.95 ± 0.04 2.46 ± 1.02 5.66 ± 2.11
y 0.98 ± 0.02 0.69 ± 0.27 4.69 ± 1.53 0.85 ± 0.15 2.15 ± 1.15 8.39 ± 4.08
z 0.85 ± 0.17 0.79 ± 0.24 11.16 ± 4.49 0.87 ± 0.08 2.33 ± 1.10 9.30 ± 2.65
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3.2. Model Accuracy

Inclusion of synthetic kinematics to supplement the measured data in the neural
network training dataset statistically significantly improved kinematic predictions for
all hip and knee degrees of freedom (p < 0.001, Table 3, Figure 5). Likewise, the neural
networks trained exclusively on synthetic data significantly improved prediction accuracy
compared to models trained exclusively on measured data for five of the six kinematic
degrees of freedom, excluding knee adduction–abduction (Ad–Ab) (p < 0.002). The mean
RMSE and correlation coefficients for hip kinematics improved from 4.5◦ ± 1.6◦ and
0.82 ± 0.13 when trained on measured data to 2.3◦ ± 0.3◦ and 0.91 ± 0.08 when trained
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on synthetic data, corresponding to a 38% reduction in RMSE and a 13% increase in the
correlation coefficient. Predictions improved to 1.9◦ ± 0.2◦ and 0.96 ± 0.03 when trained
on both measured and synthetic data together, corresponding to a 54% reduction in RMSE
and a 20% improvement in correlation coefficient, compared to the measured data alone.
Mean RMSE and correlation coefficients for knee kinematic predictions followed a similar
trend, improving from 3.3 ± 0.2◦ and 0.83 ± 0.12 when trained on experimental data
to 2.9 ± 0.7◦ and 0.84 ± 0.12 for synthetic data, and 1.7 ± 0.4◦ and 0.96 ± 0.04 for the
combined training dataset.

Across all joint angle predictions, the models consistently had the highest accuracy
when predicting knee flexion–extension (Flex–Ext) with correlation coefficients of greater
than 0.99 ± 0.01 and nRMSE ranging from 1.9 ± 0.7 to 3.9 ± 1.6 across all training datasets.
Conversely, the hip and knee internal–external (Int–Ext) rotation predictions consistently
had the lowest accuracy, with nRMSE ranging from 9.8 ± 3.5 to 23.9 ± 11.1 for the hip,
and from 14.1 ± 6.4 to 25.5 ± 6.3 for the knee. The models trained on both measured
and synthetic data had the highest generalizability with the lowest standard deviations in
prediction errors for patients in the test cohort (maximum standard deviations were 0.07
for r, 1.6◦ for RMSE, and 6.8 for nRMSE). Accuracy metrics for individual subjects in the
test cohort are reported in Appendix A.
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Table 3. Model prediction accuracy for hip and knee joint angles with different sets of training data: measured data, synthetic data, and combined measured and synthetic data. Accuracy
metrics include the Pearson correlation coefficient (r), root mean square error (RMSE), and normalized root mean square error (nRMSE).

Training
Set

# Samples
Hip Flex–Ext Hip Ad–Ab Hip Int–Ext Hip Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.88 ± 0.12 7.2 ± 5.0 15.4 ± 10.8 0.94 ± 0.04 2.1 ± 0.7 10.1 ± 3.2 0.64 ± 0.24 4.2 ± 2.0 23.9 ± 11.1 0.82 ± 0.13 4.5 ± 1.6 16.5 ± 8.4
Synthetic 17,255 0.98 ± 0.03 2.6 ± 1.5 5.7 ± 3.2 0.95 ± 0.05 2.0 ± 0.6 9.5 ± 2.9 0.81 ± 0.17 2.3 ± 0.8 12.8 ± 4.6 0.91 ± 0.08 2.3 ± 0.3 9.3 ± 3.6
Measured

+ Synthetic 20,706 0.98 ± 0.01 2.6 ± 1.1 5.5 ± 2.3 0.98 ± 0.02 1.3 ± 0.5 6.1 ± 2.2 0.93 ± 0.07 1.7 ± 0.6 9.8 ± 3.5 0.96 ± 0.03 1.9 ± 0.2 7.1 ± 2.7

Training
Set

# Samples
Knee Flex–Ext Knee Ad–Ab Knee Int–Ext Knee Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.99 ± 0.01 2.9 ± 1.1 3.9 ± 1.6 0.75 ± 0.22 2.0 ± 0.8 15.2 ± 6.3 0.77 ± 0.14 7.0 ± 1.8 25.5 ± 6.3 0.83 ± 0.12 3.3 ± 0.2 14.9 ± 4.7
Synthetic 17,255 0.99 ± 0.01 2.1± 0.6 2.9 ± 0.8 0.82 ± 0.13 2.0 ± 0.6 15.1± 4.5 0.70 ± 0.24 6.4 ± 2.8 24.0 ± 11.3 0.84 ± 0.12 2.9 ± 0.7 14.0 ± 5.5
Measured

+ Synthetic 20,706 0.99 ± 0.01 1.4 ± 0.5 1.9 ± 0.7 0.94 ± 0.06 1.2 ± 0.4 6.6 ± 2.3 0.93 ± 0.07 3.8 ± 1.6 14.1 ± 6.4 0.96 ± 0.04 1.7 ± 0.4 7.5 ± 3.1
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4. Discussion

This study demonstrated a musculoskeletal modeling-based workflow to generate
synthetic kinematic data that were used to improve the performance of neural networks to
predict 3-D hip and knee rotations during gait. Supplementation of the measured kinematic
training data with synthetic data that had been augmented in both magnitude and timing
reduced the prediction RMSE by 54% at the hip and 45% at the knee. Training the model
with synthetic data resulted in prediction accuracy that was either equivalent to or better
than training purely on experimentally measured data for all three kinematic degrees of
freedom at both the hip and knee.

Synthetic data used in model development must preserve the physical relationship
between joint rotations and the corresponding IMU data. The musculoskeletal workflow
used in the current study to generate simulated IMU data had mixed results across different
limb segments. We saw the worst correlations between measurements and simulations
in the pelvis rotational velocities. The magnitudes of the pelvis rotational velocities were
also considerably smaller than the other limb segments during gait. Inclusion of activities
that require greater pelvic rotational velocities into the training set may improve overall
predictive accuracy. Additionally, rigidly attaching the pelvis IMU was challenging given
the amount of soft tissue present on some study participants. These factors likely caused
soft tissue artifacts to have a larger effect on the pelvis IMU measurements than the other
limb segments. Angular velocity correlation coefficients for the other limb segments
averaged greater than 0.79 across the three degrees of freedom. Despite the limitation
associated with synthetic pelvic rotational velocities, the inclusion of the synthetic data
considerably improved the predictive ability of the model, even for the hip joint angles.
This result suggests that some components of the IMU signals contribute less to the overall
prediction accuracy. Future work to determine the most basic set of IMU data necessary to
accurately predict joint rotations would be valuable for guiding hardware development for
commercial systems used in performance monitoring or rehabilitation.

Data augmentation is commonly used to expand training datasets for machine learn-
ing algorithms. Most augmentation approaches for IMU-based applications employ label-
preserving transformations such as adding noise or simulating variation in sensor position-
ing [31]. More recently, Dorschky et al. published a non-label preserving augmentation
method in which planer musculoskeletal models with an optimal control simulation frame-
work generated synthetic IMU data coupled with 2-D joint kinematics and kinetics [26].
The optimal control simulation was necessary to preserve the physical relationship between
joint kinematics, ground reaction forces, and the calculated joint kinetics but required com-
putationally expensive and specialized modeling techniques, which may not be necessary
for improving kinematic prediction accuracy. In the current study, we randomly augmented
the joint kinematics with variations in both time and magnitude but did not implement
controls to ensure the resulting joint kinematics were physically realistic. Additionally,
the augmentation was implemented using a freely available musculoskeletal modeling
framework. Therefore, these methods may be easier to implement for non-specialists in
biomechanics and provide substantial time savings in the generation of valuable synthetic
data for other applications. While the inclusion of unphysiological synthetic data in the
training set still enabled significant improvements of prediction accuracy, it is unclear if
this would hold true of other types of movements. Future work should consider methods
to generate more targeted and realistic synthetic data that span the variability in the subject
population of interest such as the meta-learning algorithm proposed by Ruiz et al. [6,41].

Differences in subject characteristics, activities, dataset size, sensor type and configu-
ration, and variation in reported data make direct comparisons of prediction accuracy with
previous studies tenuous. Mundt et al. reported 3-D hip and knee joint angle predictions
from a large cohort of over 88,000 cycles of simulated IMU data validated with more
recent experimental IMU measurements and achieved comparable results to the current
study (Tables 4 and 5) with approximate average hip and knee RMSEs of 1.9◦ and 1.7◦,
respectively [25]. Similar to the current study, they also observed higher prediction corre-
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lations for hip and knee flexion–extension, compared to rotations in the frontal and axial
planes. While both studies used an LSTM model architecture, the current study required
significantly fewer experimental observations to achieve an equivalent level of prediction
accuracy. Rapp et al. predicted hip and knee joint angles during gait in 420 subjects using
an LSTM model coupled with an optimization algorithm to account for differences in the
predicted and measured segment rotational velocities [42]. When evaluated on simulated
IMU data, the combined algorithm achieved an RMSE of 4.2◦ at the knee and 4.1◦ at the hip
prior to a calibration step, which further improved the accuracy. Dorschky et al. reported
RMSEs in hip and knee flexion of 5.1◦ and 4.8◦, respectively, which were higher than the
current study, but included predictions for both gait and running at different speeds using
a smaller training set of only 418 measured cycles and individual model for each joint
angle prediction [26]. Gholami et al. used a single IMU mounted to the foot of 10 subjects
to predict hip and knee flexion during treadmill running with RMSEs of 5.6◦ and 6.5◦,
respectively [10]. It remains unclear whether the higher accuracy achieved in the current
study was due to the larger experimental dataset or that higher accelerations and rotational
velocities during running make predictions more difficult.

The finding that equivalent predictive accuracy can be achieved when training neural
networks using synthetic kinematic data, in contrast to experimental data, expands the
speed and accessibility of model development. Previously, the generation of experimental
training data was the bottleneck for algorithm development and required significant in-
vestments of time and capital equipment. The current results demonstrate that reasonable
predictive accuracy can be achieved using a cohort of musculoskeletal models, representa-
tive joint angles for the activities of interest, and a robust pipeline for generating simulated
IMU data. The generalizability of this workflow to additional movements, particularly
more dynamic movements with higher variability (i.e., stair descent, running, or cutting
maneuvers), is still unclear and requires further validation.

This study had a few notable limitations that should be considered when evaluating
the results. All the subjects who participated in this study had either end-stage osteoarthri-
tis in the hip or knee or had recently recovered from a total joint arthroplasty. This patient
population has been shown to exhibit gait adaptations, including a slower pace, shorter step
length, reduced knee flexion, and increased levels of variability that may affect the general-
ization of the model to healthy individuals [28,48–50]. Gait measurements were taken in
the laboratory environment, which may affect the subjects’ normal gait patterns. Research
grade IMUs were used in this study that had on board data processing to reduce noise and
drift in the signals [29]. These IMUs were placed in specific, repeatable anatomic positions
to minimize variability associated with sensor positioning. Additional simulation and
model training would be necessary to make the system robust to noise from lower-grade
sensors and increased variability in sensor positioning on the limb segments so the system
could be deployable in real-life unsupervised applications. Finally, model hyperparameter
selection was based solely on the measured data and not evaluated using synthetic data.
While we anticipate that incorporating synthetic data into the hyperparameter selection
would further improve model accuracy when trained with synthetic data, this has yet to
be demonstrated.
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Table 4. Reported prediction accuracy compared with previous studies for hip kinematics. Sensor configurations included pelvis (P), thigh (T), shank (S), and foot (F). Synthetic data were
data generated by augmented kinematics data, while simulated data were generated by existing motion capture data.

DoF Reference Sensor
Configuration # Subjects # Cycles Data Type Activity r RMSE(◦) nRMSE

Hip
Flex–Ext

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.98 2.6 5.5
Mundt 2020a (PS-Net) [43] P S 115 88,067 Simulated Gait 0.98 1.6 NR
Mundt 2020b (FFNN) [25] P T S 93 3098 + 46,437 Measured + Simulated Gait 0.99 5.2 NR
Mundt 2019 (FFNN) [22] P T S F 75 1028 Simulated Gait 0.99 1.3 NR

Dorschky 2020 (CNN) [26] P T S F 7 418 + 6688 Measured + Synthetic Gait and Running 1 5.1 NR
Rapp 2021 (LSTM) [42] P T S F 420 NR Simulated Gait NR 4.3 NR

Gholami 2020 (CNN) [10] F 10 NR Simulated Running 0.8 5.6 9.9

Hip
Ad–Ab

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.98 1.3 6.1
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.94 0.9 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.96 2.1 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.98 1.3 NR
Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NR 2.7 NR

Hip
Int–Ext

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.93 1.7 9.8
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.64 2.1 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.88 5.2 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.86 2.5 NR
Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NR 5.2 NR

Hip
Average

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.96 1.9 7.1
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.85 1.5 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.94 4.2 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.94 1.7 NR
Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NR 4.1 NR



Sensors 2021, 21, 5876 14 of 19

Table 5. Reported prediction accuracy compared with previous studies for knee kinematics. Sensor configurations included pelvis (P), thigh (T), shank (S), and foot (F). Synthetic data were
data generated by augmented kinematics data, while simulated data were generated by existing motion capture data.

DoF Reference Sensor
Configuration # Subjects # Cycles Data Type Activity r RMSE(◦) nRMSE

Knee
Flex–Ext

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.99 1.4 1.9
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.99 1.7 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.98 4.5 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.99 1.4 NR

Dorschky 2020 (CNN) P T S F 7 418 + 6688 Measured + Synthetic Gait &
Running 0.99 4.8 NR

Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NR 3.1 NR
Gholami 2020 (CNN) F 10 NR Simulated Running 0.93 6.5 6.5

Knee
Ad–Ab

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.94 1.2 6.6
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.95 1.5 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.80 2.5 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.79 1.6 NR
Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NR 3.2 NR

Knee
Int–Ext

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.93 2.8 14.1
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.93 2.5 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.97 5.5 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.95 1.7 NR
Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NA 6.4 NR

Knee
Average

Current P T S F 27 3943 + 17,255 Measured + Synthetic Gait 0.96 1.7 7.5
Mundt 2020a (PS-Net) P S 115 88,067 Simulated Gait 0.95 1.9 NR
Mundt 2020b (FFNN) P T S 93 3098 + 46,437 Measured + Simulated Gait 0.92 4.2 NR
Mundt 2019 (FFNN) P T S F 75 1028 Simulated Gait 0.91 1.6 NR
Rapp 2021 (LSTM) P T S F 420 NR Simulated Gait NA 4.2 NR
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5. Conclusions

The present study demonstrated that recurrent neural network predictions of 3-D hip
and knee angles during gait using IMU sensors can be significantly improved using
synthetic kinematic and IMU data. On average, RMSEs in joint angle predictions were
improved by 38% at the hip and 11% at the knee when models were trained on synthetic
data, compared to measured data alone. When models were trained on both measured
and synthetic data, RMSEs were reduced by 54% at the hip and 45% at the knee, compared
to measured data alone. The musculoskeletal workflow described here enables future
model development for other activities that have clinical significance without the burden
of generating large quantities of gait lab data for model training.

Author Contributions: Conceptualization, M.S.R., C.A.M. and C.W.C.; methodology, M.S.R. and
A.M.E.; software, M.S.R. and A.M.E.; validation, M.S.R.; formal analysis, M.S.R.; investigation,
C.A.M. and C.W.C.; resources, C.A.M. and C.W.C.; data curation, M.S.R. and A.M.E.; writing—
original draft preparation, M.S.R.; writing—review and editing, C.A.M. and C.W.C.; visualization,
M.S.R.; supervision, C.W.C.; project administration, C.W.C.; funding acquisition, C.W.C. and C.A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Knoebel Institute for Healthy Aging (KIHA), University
of Denver.

Institutional Review Board Statement: The study was conducted in accordance with our Institu-
tional Review Boards, and the protocol was approved by the IRB Committee of University of Denver
Project title and IRB identification code: Pioneering Quantitative Assessments of Disability in the
Patients after Total Knee Replacement using Wearable Devices and Machine Learning (1328728).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 5876 16 of 19

Appendix A. Prediction Accuracy for Each of the Three Subjects in the Test Cohort

Test Subject #1

Training
Set

# Samples
Hip Flex–Ext Hip Ad–Ab Hip Int–Ext Hip Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.97 ± 0.02
3.4

± 1.1
7.3 ± 2.4 0.94 ± 0.04 2.0± 0.6 9.4 ± 3.0 0.84 ± 0.08 2.0 ± 0.6 11.2 ± 3.4 0.92 ± 0.04 2.4 ± 0.8 9.3 ± 2.9

Synthetic 17,255 0.97 ± 0.04 0.97 ± 0.04 3.7 ± 1.7 0.94 ± 0.09 2.2 ± 0.7 10.6 ± 3.3 0.70 ± 0.15 2.7 ± 0.8 15.3 ± 4.6 0.87 ± 0.09 2.9 ± 1.1 11.2 ± 3.8
Measured

+ Synthetic
20,706 0.97 ± 0.01 0.97 ± 0.01 3.5 ± 0.9 0.96 ± 0.02 1.6 ± 0.4 7.4 ± 1.8 0.87 ± 0.08 2.0 ± 0.5 11.1 ± 2.8 0.94 ± 0.04 2.4 ± 0.6 8.7 ± 2.2

Training
Set

# Samples
Knee Flex–Ext Knee Ad–Ab Knee Int–Ext Knee Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.99 ± 0.01 2.2 ± 0.7 3.0 ± 0.9 0.49 ± 0.20 1.9 ± 0.5 14.3 ± 3.6 0.69 ± 0.11 4.6 ± 0.9 23.5 ± 4.6 0.72 ± 0.10 2.9 ± 0.7 13.6 ± 30.0
Synthetic 17,255 0.99 ± 0.01 2.3 ± 0.7 3.1 ± 0.9 0.76 ± 0.10 2.2 ± 0.6 16.9 ± 4.3 0.85 ± 0.06 2.6 ± 0.4 13.3 ± 2.3 0.87 ± 0.06 2.4 ± 0.6 11.1 ± 2.5
Measured

+ Synthetic
20,706 0.99 ± 0.01 1.6 ± 0.4 2.2 ± 0.6 0.91 ± 0.06 0.9 ± 0.3 7.0 ± 2.0 0.94 ± 0.04 2.1 ± 0.5 10.5 ± 2.7 0.95 ± 0.03 1.5 ± 0.4 6.6 ± 1.8

Test Subject #2

Training
Set

# Samples
Hip Flex–Ext Hip Ad–Ab Hip Int–Ext Hip Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.96 ± 0.05 3.6 ± 1.5 7.6 ± 3.1 0.96 ± 0.04 1.9 ± 0.6 9.1 ± 2.9 0.49 ± 0.20 5.0 ± 1.2 28.1 ± 6.6 0.80 ± 0.10 3.5 ± 1.1 15.0 ± 4.2
Synthetic 17,255 0.98 ± 0.02 2.9 ± 1.2 6.3 ± 2.6 0.96 ± 0.03 2.3 ± 0.4 10.8 ± 2.0 0.74 ± 0.15 2.7 ± 0.5 15.3 ± 2.9 0.89 ± 0.06 2.6 ± 0.7 10.8 ± 2.5
Measured

+ Synthetic
20,706 0.99 ± 0.01 1.9 ± 0.7 4.0 ± 1.6 0.99 ± 0.01 1.2 ± 0.4 5.7 ± 1.9 0.91 ± 0.07 2.0 ± 0.6 11.2 ± 3.3 0.96 ± 0.03 1.7 ± 0.6 7.0 ± 2.3

Training
Set

# Samples
Knee Flex–Ext Knee Ad–Ab Knee Int–Ext Knee Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.99 ± 0.01 2.7 ± 1.4 3.6 ± 1.8 0.80 ± 0.09 2.9 ± 0.7 22.1 ± 5.1 0.89 ± 0.07 4.4 ± 1.3 22.0 ± 6.7 0.89 ± 0.06 3.3 ± 1.1 15.9 ± 4.5
Synthetic 17,255 0.99± 0.01 2.0 ± 0.5 2.7 ± 0.6 0.73 ± 0.10 1.5 ± 0.4 11.5 ± 2.7 0.81 ± 0.13 3.8± 1.1 19.3 ± 5.7 0.84 ± 0.08 2.4 ± 0.6 11.1 ± 3.0
Measured

+ Synthetic
20,706 0.99 ± 0.01 1.2 ± 0.5 1.6 ± 0.7 0.91 ± 0.06 0.8 ± 0.3 6.2 ± 2.2 0.96 ± 0.03 2.1 ± 0.6 10.5 ± 3.3 0.96 ± 0.03 1.4 ± 0.5 6.1 ± 2.0
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Test Subject #3

Training
Set

# Samples
Hip Flex–Ext Hip Ad–Ab Hip Int–Ext Hip Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.74 ± 0.08 13.3 ± 1.9 28.6 ± 4.1 0.93 ± 0.03 2.4± 0.6 11.5 ± 3.1 0.62 ± 0.25 5.4 ± 1.7 30.7 ± 9.4 0.76 ± 0.12 7.0 ± 1.4 23.6 ± 5.5
Synthetic 17,255 0.99 ± 0.01 1.6 ± 0.5 3.5 ± 1.0 0.95 ± 0.03 1.6 ± 0.4 7.5 ± 1.9 0.96 ± 0.02 1.5 ± 0.4 8.7 ± 2.3 0.97 ± 0.02 1.6 ± 0.4 6.5 ± 1.8
Measured

+ Synthetic
20,706 0.99 ± 0.01 2.4 ± 0.8 5.1± 1.7 0.98 ± 0.01 1.1 ± 0.5 5.3 ± 2.2 0.98 ± 0.01 1.3 ± 0.5 7.6 ± 3.0 0.98 ± 0.01 1.6 ± 0.6 6.0 ± 2.3

Training
Set

# Samples
Knee Flex–Ext Knee Ad–Ab Knee Int–Ext Knee Average

r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE r RMSE (◦) nRMSE

Measured 3943 0.98 ± 0.01 3.6 ± 0.8 4.9± 1.0 0.91 ± 0.03 1.3 ± 0.2 10.1 ± 1.8 0.72 ± 0.12 5.9 ± 0.8 30.1 ± 3.9 0.87 ± 0.05 3.6 ± 0.6 15.0 ± 2.3
Synthetic 17,255 0.99 ± 0.01 2.1 ± 0.6 2.8 ± 0.8 0.95 ± 0.02 2.2 ± 0.5 16.9 ± 4.2 0.49 ± 0.24 7.3 ± 1.1 36.7 ± 5.8 0.81 ± 0.09 3.8 ± 0.8 18.8 ± 3.6
Measured

+ Synthetic
20,706 0.99 ± 0.01 1.4 ± 0.4 1.8 ± 0.6 0.98 ± 0.01 0.9 ± 0.3 6.5 ± 2.6 0.90 ± 0.09 4.0 ± 1.2 20.2 ± 5.9 0.96 ± 0.04 2.1 ± 0.7 9.5 ± 3.0
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