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Temporal dynamics of the neural representation of
hue and luminance polarity
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Hue and luminance contrast are basic visual features. Here we use multivariate analyses of
magnetoencephalography data to investigate the timing of the neural computations that
extract them, and whether they depend on common neural circuits. We show that hue and
luminance-contrast polarity can be decoded from MEG data and, with lower accuracy, both
features can be decoded across changes in the other feature. These results are consistent
with the existence of both common and separable neural mechanisms. The decoding time
course is earlier and more temporally precise for luminance polarity than hue, a result that
does not depend on task, suggesting that luminance contrast is an updating signal that
separates visual events. Meanwhile, cross-temporal generalization is slightly greater for
representations of hue compared to luminance polarity, providing a neural correlate of the
preeminence of hue in perceptual grouping and memory. Finally, decoding of luminance
polarity varies depending on the hues used to obtain training and testing data. The pattern of
results is consistent with observations that luminance contrast is mediated by both L-M and S
cone sub-cortical mechanisms.
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ARTICLE

he most basic computations performed by the visual sys-

tem yield hue and luminance contrast. Hue is that property

of color referred to by a color name (e.g., “blue”, “green”).
Luminance contrast is related to how light or dark a color is,
which is, importantly, distinct from absolute luminance.
Although hue and luminance contrast are often depicted as
independent dimensions!, the relationship between these features
is not well understood®3, and the extent to which luminance is
carried by both cone-opponent retinal mechanisms (L-M and S)
remains unclear®-7.

On the one hand, the demonstration of independent frequency
shifts for color and luminance® and the selective impact of
adaptation on detection thresholds®? suggest that hue and
luminance contrast are processed by separate neural channels,
which may be encoded by the separate magnocellular and par-
vocellular channels in the lateral geniculate nucleus!'!. Separate
encoding is also evident in convolutional neural networks trained
for object recognition, which show independent filters for hue
and luminance contrast in the earliest layer!2-15, Color and
luminance edges are also relatively independent in natural scene
statistics!®. Moreover, hue and luminance contrast are dis-
tinguished by their efficiency in visual memory tasks: short-term
visual memory is better for color than for luminance contrast
when stimuli are matched in cone contrast!”.

On the other hand, the many perceptual interactions of hue
and luminance contrast suggest these features are processed
together. These interactions are evident in the perception of
orientation!8, saturation!®20, judgments of brightness across
colors?!, color categorization??, color naming?3-2, steady-state
visual evoked potential measurements’, and color decoding with
magnetoencephalography?®. In addition, hue can mask changes
in luminance contrast?’. Consider eight colored spirals: four hues
of both light and dark luminance polarity (Fig. 1a). Most people
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will group them by hue (rows), not by the sign of luminance
contrast (columns). Taken together, these data underscore long-
standing questions about the extent to which hue and luminance
contrast are encoded by the same or separate neural mechanisms
and the timing of these operations.

A prominent theory, which reflects the interactions of hue and
luminance contrast evident in perception, is that within visual
cortex, hue information is processed not in isolation, but together
with information about luminance contrast?®. This theory is
supported by the observation that parvocellular neurons in the
lateral geniculate nucleus®® as well as most cells in V130-32
respond to both color and luminance contrast. Joint processing of
luminance and color would predict that these features are enco-
ded with the same timing. But a small population of V1 cells show
striking responses to color stimuli that lack luminance
contrast’2-3>, Thus the V1 neurophysiology cannot rule out the
possibility that hue and luminance contrast could be encoded by
parallel pathways®®, which may contribute differentially to pro-
cessing in parallel routes through extrastriate areas3’-4!, If hue
and luminance contrast are encoded separately, one might expect
luminance contrast to be computed earlier than hue because
magnocellular neurons have shorter latencies than parvocellular
neurons. But because there are relatively fewer magnocellular
neurons, their latency advantage may be lost through con-
vergence in visual cortex*2,

Clues to how color and luminance contrast are processed by
the brain have been provided by univariate visual evoked
potential measurements to equiluminant and achromatic
stimuli*344, But it has not been possible to infer from these
experiments the underlying neural mechanisms because all sub-
cortical channels respond to nominally equiluminant stimuli4°.
Moreover, such experiments are inconclusive about timing
because response latencies depends on stimulus contrast, and
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Fig. 1 Decoding luminance polarity and hue from MEG data: approach. a Decoding luminance polarity. Participants were shown four hues that varied in
luminance polarity (light/dark). Classifiers were trained (solid arrows) and tested (dashed arrows) using stimuli of the same hue (identity problems) or
different hue (generalization problems) to determine the extent to which the MEG response to a given color is informative of the luminance polarity carried
by the same hue (4 identity problems) or by other hues (12 generalizing-across-hue problems). Each binary classifier was trained to distinguish whether a
light or dark stimulus had been presented, given patterns of magnetoencephalography (MEG) sensor activations. For the four identity problems, classifiers
were trained and tested on brain responses to the same hue (all four identity problems are illustrated in the graphic). For the generalization problems,
classifiers were trained and tested on brain responses to different hues (half of the 12 generalizing-across-hue problems are illustrated). In the graphic,
solid lines indicate comparisons used for training and dashed lines indicate comparisons used for testing; line shading distinguishes different problems.
b Decoding hue. Format as in panel a. For stimuli of a given luminance polarity (e.g., dark), a binary classifier was trained to determine which of two hues
(e.g., pink or orange) had been presented. The classifiers were then tested, again on held-out trials in which the luminance polarity (e.g., dark) was the
same as at train time (12 identity problems) or in which the luminance polarity was opposite (e.g., light), requiring generalization of hue across luminance
polarity (12 generalizing-across-luminance-polarity problems).
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there is no single method for equating color contrast and lumi-
nance contrast®. Clues have also been provided by fMRI47-49,
but fMRI does not predict results from behavioral adaptation!®
and cannot uncover the relevant temporal dynamics because it is
limited by the relatively sluggish time course of blood flow>0,

In this work, we explore another approach to address the
neural mechanisms for color, analyzing the MEGco dataset2¢
(MEG color decoding dataset) using multivariate analysis to
isolate common and separable representations for hue and
luminance contrast. The MEGco dataset was obtained to address
two sets of questions. The first set of questions, addressed by
Rosenthal et al.2, concerns the similarity relationships of the
patterns of neural activity elicited by different colors. That ana-
lysis shows that hue and the sign of luminance contrast (light
versus dark) interact in the representation of color, and these
interactions are consistent with color-naming patterns: hues
labeled with different names for light and dark versions (e.g.,
yellow/brown) elicit less similar patterns of MEG activity for the
light and dark versions, compared to hues that are given the same
name across lightness (e.g., green). The second set of questions,
addressed presently, concerns the extent to which representations
of hue and luminance polarity are separable, and importantly, the
temporal dynamics of the representations for hue and luminance
polarity. One advantage of approaching these questions using a
multivariate analysis is that it uncovers information in a neural
representation independent of the magnitude of the response®!,
which mitigates confounds that might be introduced by differ-
ences in contrast among the stimuli used to elicit the repre-
sentations. Can hue be decoded independently of luminance
polarity, and if so with what timing? Can luminance polarity be
decoded independently of hue, and if so with what timing? To the
extent that hue contributes to representations of luminance
polarity, what is the relative contribution of the two subcortical
color channels (L-M and S)? And to what extent do separable
representations of hue and luminance polarity generalize across
time? Although these questions are related to ones addressed in
our previous report, they are distinct and cannot be answered
using previously published analyses. The results here show that
hue and luminance polarity can be decoded independently from
MEG activity, with hue reaching peak decoding about 20 ms after
luminance polarity and having slightly greater cross-temporal
decodability. We also report here source localization of the MEG
data to functionally defined regions identified with functional
magnetic resonance imaging (fMRI) in the same participants in
whom the MEG data were obtained.

Results

The experiments were designed to enable a decoding analysis to
answer two overarching questions. Given patterns of MEG
activity, is it possible to independently decode the hue and
luminance polarity (light or dark) of the stimulus that elicited the
activity? And what is the time course—that is, how long does it
take the brain to extract these features? We addressed these
questions by analyzing MEG responses obtained from 18 parti-
cipants while they were shown spirals that could appear in one of
eight colors that varied in hue and luminance polarity (either a
luminance increment or decrement) (Fig. 1).

The stimuli were suprathreshold and roughly matched in
absolute color contrast and luminance contrast, in terms of
detection-threshold units (contrasts were >30x detection
threshold, see “Methods” section). Equating stimuli in units of
detection threshold is one method among many for comparing
color and luminance responses®2~>>. The challenge in comparing
responses to color and luminance stimuli arises in part because
response magnitude can depend on stimulus contrast*3, especially

for near-threshold stimuli. Multivariate analyses of suprathres-
hold stimuli ameliorate this problem because they uncover any
difference in the pattern of response between a pair of variables,
providing insight about the information processed by the brain®!.

The colors were defined by the MB-DKL color space®®°7,
which is constructed from the cone-opponent dimensions that
correspond to retinal color-encoding mechanisms (Supplemen-
tary Fig. 1). The selection of stimuli was made not only to tease
apart the representations of hue and luminance polarity but also
to assess the relative contributions of the two subcortical channels
(L-M and S) to representations of luminance polarity. The stimuli
were located in the intermediate directions of the space; thus all
stimuli involved modulations of both L-M cone activity and
S-cone activity, and all stimuli had the same magnitude of
modulation of L-M, and the same magnitude of modulation of S.
Different colors were created by pairing different signs of these
modulations. The luminance contrast of all the stimuli was fixed
(25%) but varied in polarity (light or dark) relative to the
adapting background. If hue and the polarity of luminance con-
trast are encoded by separable neural mechanisms, it should be
possible to decode hue even if the MEG data used to train the
classifiers were elicited by stimuli that differed in luminance
polarity from the test stimuli; and it should be possible to decode
luminance polarity even if the classifiers were trained using data
elicited by stimuli that differed in hue from the test data. In other
words, the results should show evidence that hue decoding gen-
eralizes across luminance polarity, and luminance-polarity
decoding generalizes across hue. The time course should tell us
about the relative stage in the visual-processing hierarchy at
which hue and luminance polarity representations are encoded
and/or the relative amount of recurrent processing required for
each computation. Alternatively, if hue and luminance polarity
are encoded together, it should be possible to decode specific hue-
luminance combinations, but not each dimension invariant to the
other dimension. The relative contribution of the two subcortical
channels to luminance polarity should be evident using
luminance-polarity classifiers trained and tested with data elicited
by different hues. Given these various objectives, it was important
for the experiment to have enough power, which we ensured by
first conducting an extensive pilot experiment to determine the
number of trials needed to obtain reliable data (Supplementary
Fig. 2).

We used a maximum correlation coefficient classifier (as
implemented in the Neural Decoding Toolbox>®, see “Methods”
section). We performed within-participant decoding (trained and
evaluated classifiers on data in each participant), independently
for each timepoint (applied independent classifiers at each time
point relative to stimulus onset). All analyses involved pairwise
comparisons (Fig. 1) and were cross-validated (Fig. 2), yielding
plots that show how representations unfold over time. Partici-
pants were told to maintain fixation throughout stimulus pre-
sentation and to blink at designated times. Data during eye blinks
or breaks in fixation were removed (see “Methods” section). To
control fixation and attentional state, participants engaged in a
1-back hue-matching task: every 3-5 trials, the participants were
queried with a “?” on the screen to report via button press
whether the two preceding stimuli matched in hue. The impact of
task was assessed in a control experiment, in which two partici-
pants performed half the trials using a 1-back hue matching task
and the other half of the trials using a 1-back luminance-contrast
matching task. Task had no impact on the main conclusions, as
described in the section “Impact of task on decoding.” We used a
spiral-shaped stimulus to avoid cardinal or radial response
biases>-61.

The eight colors (“conditions”; Fig. 1) were presented in
pseudo-random order for 116 ms with 1 s of the gray background
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Fig. 2 Experimental paradigm. Participants were scanned with magnetoencephalography (MEG) while they looked at colored spirals that were flashed on
the screen for 116 ms (with 1s between flashes). The spirals were one of eight colors: four hues of either a luminance increment or luminance decrement
(Supplementary Fig. 1 provides the color specifications for the stimuli). Stimuli were pseudo-randomly interleaved, with 500 presentations of each stimulus
over two recording sessions for each of 18 participants. Trials during eye blinks or other artifacts were removed, and the remaining trials were randomly
subsampled to yield 375 trials per condition. Sensor data were averaged into 5 ms bins, 200 ms before stimulus onset to 600 ms after stimulus onset. The
figure depicts the experimental set up and simulated data to illustrate the analysis pipeline. Classifiers were trained at every time point, and individually for
each participant: at each time point (t) in the 800-ms time window, the 375 trials were divided into five sets of 75. Four sets were used to train the

classifier, and one set was used to test the classifier. The procedure was repeated for the five cross-validation splits; and the entire procedure was repeated
50 times, with different random assignments of the 375 trials into the five sets, yielding a decoding curve showing classification accuracy as a function of
time after stimulus onset (bottom right showing actual data for classifying luminance polarity using pink). The horizontal sequence of data points above the

x-axis shows the time points when decoding was significant for more than four consecutive time points (FDR-corrected; the gray arrow shows the
classification accuracy and the time point at which decoding became significant).

between presentations (1 s inter-stimulus interval). We collected
responses to a very large number of trials of each condition
(N=500), removed trials with artifacts such as eye blinks, and
randomly subsampled the remaining trials to obtain 375 trials per
condition. Figure 2 illustrates an analysis in which classifiers were
trained to decode luminance polarity given patterns of MEG data
elicited by bright and dark pink (the decoding curve at the bottom
right is real data, the rest of the figure is for illustration purposes).
The classifiers were tested on separate data elicited by the same
stimuli, bright and dark pink. The results reveal the classification
accuracy for luminance polarity carried by a specific hue (pink).

The decoding problem shown in Fig. 2 is referred to as a
luminance-polarity identity problem because the hue of the sti-
muli from trials used to train the classifier is identical to the hue of
the stimuli in the test trials. Figure 1a, left, shows schematically the
full set of luminance-polarity identity decoding problems: the
stimuli associated with the training of classifiers are indicated by
solid arrows, and the stimuli associated with the corresponding
tests are shown by dashed arrows; shading of the arrows links the
training and testing conditions for a given problem. In other
problems of luminance-polarity decoding, the hue of the stimuli
differed between the trials used to train and the trials used to test
the classifier. For example, classifiers were trained using patterns
of MEG activity elicited by light and dark pink but tested using

activity elicited by light and dark blue, or light and dark orange, or
light and dark green. We refer to these problems as generalizing-
across-hues since they uncover the extent to which luminance
polarity can be decoded independent of hue (Fig. 1a, right).

In other analyses, we determined the extent to which classifiers
could decode hue identity (Fig. 1b, left), and hue generalizing-
across-luminance-polarity (Fig. 1b, right). The generalization
problems provide a test of invariance: decoding lumi-
nance polarity invariant to hue, and decoding hue invariant to
luminance polarity. Supplementary Fig. 3 shows the test-retest
reliability of the data from the main experiments®2. All analyses
involved binary classifiers (chance is 50%) to facilitate a direct
comparison of the results among the different problems.

Decoding luminance polarity. Figure 3a shows the average
classifier performance across the four luminance-polarity identity
problems (solid line) and the 12 generalizing-across-hues pro-
blems (dashed line; shading around each trace shows the boot-
strapped standard error). The results show that classification
accuracy was significantly above chance for luminance polarity
for both types of problems. Thus it was possible to decode
luminance polarity independent of hue, which supports the
hypothesis that the brain has a representation of luminance
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Fig. 3 Decoding luminance polarity and hue from MEG data: results. a Classification accuracy as a function of time after stimulus onset for the luminance-
polarity problems (center of error shading shows the average of identity problems, solid line; average of generalization problems, dashed line). Traces were
generated by averaging 1000 bootstrapped samples across 18 participants. Shading shows the SE of the bootstrap samples. The stimulus duration was 116 ms
(gray bar). Inset shows the difference in peak for the 1000 bootstrapped comparisons: identity minus generalization (mean = —8 ms, p = 0.34; one-sided test
of the proportion of these differences that was less than or equal to zero, not corrected for multiple comparisons). Initial peak of the identity problems, solid
vertical gray line, 104.4 ms [100, 110]; initial peak of the generalization problems, dashed gray line, 96.5 ms [85, 100]. Open arrowhead shows the second
decoding peak, which corresponds to stimulus cessation. The horizontal sequence of data points above the x-axis, demarcated by asterisks, show time points
at which decoding was above chance (determined by a permutation test across subjects and cluster corrected, see “Methods” section); onset of significant
decoding for the identity problems was achieved at 65 ms [60, 801, and for the generalization problems at 55 ms [50, 70]. b The average performance across
12 sets of identity problems (solid line) and 12 sets of generalization problems (dashed line). The inset shows the difference in peak (for the 1000

bootstrapped comparisons across participants, identity minus generalization, mean = —3 ms, p = 0.82, proportion of differences that was less than or equal to
zero, not corrected for multiple comparisons). The time to peak was the same for the identity and generalization problems (identity problems: solid vertical

ling, 121.8 ms [120, 130]; generalization problems: dashed vertical line, 119.1ms [115, 130]). Onset of significant decoding for the identity problems was
achieved at 80 ms [75, 85], and for the generalization problems, at 115 [35, 355]. Other conventions as for panel b.

contrast that is independent of the representation of hue. The
magnitude of decoding does not provide a measure of the abso-
lute size of an effect, but it is nonetheless a valid measure of
relative effect sizes within a given study”!. Peak decoding accu-
racy was higher for the identity problems compared to the gen-
eralization problems (84% [81, 87] versus (69% [65, 74]; square
brackets contain the 95% CI obtained by bootstrapping). This
result supports the hypothesis that the brain not only has a
representation of luminance polarity that is generalized across
hues, but also has a representation of luminance polarity that is
combined with the representation of hue. In other words, these
results show that the brain has a representation of luminance
polarity carried by channels that are hue-selective.

Let us compare the time course of decoding for the identity
problems and the generalization problems. The latency at which
decoding became significant was not different for the identity
problems (65 ms [60, 80]) versus the generalization problems
(55 ms [50, 70], based on bootstrapping, n =18, p = 0.058). The
time to peak was not different for the identity problems compared
to the generalization problems (inset Fig. 3a, p =0.34; dashed
vertical line, 96.5 ms [85, 100], versus solid vertical line, 104.4 ms
[100, 110]; confidence limits computed by 1000 bootstrap draws
across participants). Close inspection of the data shows a trend in
favor of an earlier onset time and earlier time to peak for the
generalization problems (generalization problems showed equal
or earlier time to peak than identity problems, p = 0.002); this
observation implies that the time-to-peak is a reliable measure of
how much time the brain takes to generate a representation
because it does not vary in a trivial way with changes in the
amplitude of decoding (one might have expected time-to-peak to
be longer for curves with lower amplitude decoding; the data
show, if anything, the opposite). Following peak decoding, the

generalization problems showed a pronounced dip. Finally, both
the identity and generalization problems had a second prominent
decoding peak (open arrowhead) following the initial peak
(curved arrow; to facilitate comparison, the y-axis value of the
open arrowhead is the height of the initial peak of the identity
decoding problems). For the generalization problem, the second
peak had the same or greater amplitude as the initial peak. We
attribute the first peak to decoding the onset of the stimulus and
the second peak to decoding the cessation of the stimulus.

Decoding hue. Figure 3b shows the average performance across
the 12 hue identity problems (solid line) and the 12 generalizing-
across-luminance-polarity problems (dashed line). The plot
shows that hue was decodable in both cases. The fact that it was
possible to decode hue generalizing across luminance polarity
supports the hypothesis that the brain has a representation of hue
that is separate from the representation of luminance contrast.
The latency at which decoding became significant was 115 ms [35,
355] for the generalization problems, and 80 ms [75, 85] for the
identity problems (the latency of the generalization problems was
greater than the upper 95% CI limit for the latency of the identity
problems, but a direct comparison of the bootstrapped values was
not significant, p=0.09). As with the luminance-polarity
decoding problems, decoding had a higher peak magnitude for
the identity problems (78% [74, 82]) compared to the general-
ization problems (56% [53, 59]), which provides support for the
hypothesis that the brain also has a representation of hue that is
inseparable from the representation of luminance contrast. But
importantly, decoding of hue was substantially more impacted by
changes in luminance polarity, than decoding of luminance
polarity was by changes in hue. Nonetheless, the time to peak was
not different for the identity and generalization problems (solid
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vertical line, 121.8 ms [120, 130]; dashed vertical line, 119.1 ms
[115, 130]; p =0.82). Moreover, the time to peak was not sig-
nificantly different for identity problems among luminance-
contrast increments (122ms [115, 130]) compared to identity
problems among luminance-contrast decrements (123 ms [115,
130]); and the magnitude of peak decoding accuracy for these two
sets of problems also were not significantly different (for light
stimuli: 77% [73, 82]; for dark stimuli: 78% [74, 83]) (Supple-
mentary Fig. 4). These results show that any potential difference
in saturation between the light and dark stimuli does not influ-
ence the time course of decoding (saturation is ill-defined, but as
discussed in the “Methods” section, there is an argument that the
saturation of the dark stimuli was higher than the saturation of
the light stimuli). The results of Supplementary Fig. 4 also sup-
port the argument that the differences in timing of decoding hue
and luminance polarity cannot be attributed to subtle differences
in the contrast of the hue and luminance-polarity stimuli. Finally,
to the extent the solid line in Fig. 3b shows a second peak (open
arrowhead), it was less pronounced than the initial decoding peak
(curved arrow) (as in Fig. 3a, the y-axis value of the open
arrowhead is at the height of the initial peak for the identity
decoding problem).

Comparing the temporal dynamics of decoding hue and
luminance polarity. To directly compare the timing of hue and
luminance-polarity problems, we subsampled the data to obtain
equal peak decoding across the two sets of problems®? (the height
of the initial decoding peaks of the blue and black traces are
matched in Fig. 4a, b). We note that the use of subsampling only
accounts for differences in the magnitude of peak decoding on the
onset of decoding accuracy, but other factors that could cause
differences in decoding onsets, such as trial temporal variability,
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may not be accounted for. But importantly, the main conclusions
about differences in timing of the representations of hue and
luminance-contrast polarity are based on the time-to-peak
decoding, not on the onset of significance of decoding, and the
time-to-peak decoding did not change following subsampling.
The times to peak for the subsampled luminance-polarity data
were 99.8ms [95, 110] for the generalization problem and
103.4 ms [100, 110] for the identity problem. The comparison of
the hue and luminance-polarity identity problems (Fig. 4a) and of
the hue and luminance-polarity generalization problems (Fig. 4b)
underscores three differences in time course of decoding. First,
hue was decodable after luminance polarity as assessed by the
time of peak decoding (identity problems: 18 ms delay, p = 0.003;
generalization problems: 19 ms delay, p = 0.017). Differences in
the latency of decoding onset showed a trend that reflects these
timing differences, but the differences in latency of decoding
onset were not significant (for identity problems, p =0.13; for
generalization problems, p = 0.09). Second, the time of peak hue
decoding corresponded to the dip in the luminance-polarity
decoding curve, and vice versa; the time point of peak luminance-
polarity decoding corresponded to a notch in the hue-decoding
curve. This was especially clear in the generalization curves,
where the black and blue traces in Fig. 4b are in counterphase
(quantified as the Spearman correlation of the derivative of the
decoding curves, computed for 116 ms following the average of
the onset latencies of the hue and luminance-polarity general-
ization problems; R= —0.53, p=0.01). Third, for the identity
problems, the second peak (open arrowhead) was larger for
luminance polarity than for hue (double-headed arrow, p < 0.001;
note that precise p values are stated throughout the paper except
when the p value must be smaller than p = 0.001. In those cases,
because the p values were derived from 1000 bootstrap iterations,
the precise p value is unknown and the p value is listed as <0.001).
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Fig. 4 Comparing the temporal dynamics of decoding luminance polarity versus hue. a Classification accuracy for the identity problems (see Fig. 3a, ©). The
data used to decode luminance identity was subsampled so that the maximum classification accuracy for luminance identity was the same as that of hue identity
(61% of the trials were used). With the subsampled data, luminance polarity decoding peaked at 103.4 ms [100, 110], which is not different from the time of peak
decoding of the complete data set (Fig. 3a). Inset shows the differences between the peaks across the 1000 bootstrapped samples across the 18 participants.
Accuracy for luminance polarity peaked 18 ms before hue (p = 0.003, one-sided test comparing the bootstrapped distribution of the times to peak; the p value
indicates that three of the 1000 bootstrapped times to peak of the hue problems were earlier or equal to the bootstrapped times to peak of the luminance
problems.). The magnitude of classifier accuracy corresponding to the cessation of the stimulus (open arrowhead) was greater for luminance polarity than hue
(p<0.007; exact p values not possible, see “Methods” section; not adjusted for multiple comparisons; p value indicates that none of the 1000 bootstrapped
decoding problems showed higher classification accuracy at stimulus cessation for hue compared to luminance polarity). Shading shows the SE of the bootstrap
samples. b Classification accuracy for the generalization problems. The data used to decode the generalizing-luminance-polarity problem was subsampled to match
the initial peak of generalizing hue (16% of the trials were used). The subsampled generalizing-luminance-polarity problem peaked at 99.8 ms [95, 1101, which is
not different from the time of peak decoding for the complete data set (Fig. 3a). Accuracy for luminance polarity decoding peaked 19 ms before hue (p = 0.017).
The magnitude of classifier accuracy corresponding to the cessation of the stimulus was not greater for luminance polarity than hue (p = 0.3). p-values in

b computed in the same way as for panel a.
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Fig. 5 Task had no impact on the time to peak decoding of hue or luminance polarity. a Tasks, 1-back luminance-polarity matching (left), 1-back hue
matching task (right); note that the sequence of stimuli illustrated is the same for both tasks but the correct answers are different. b Left panel, Decoding
luminance polarity (black trace) and hue (blue trace) using data from the luminance-polarity matching task. The data show the average of the identity decoding
problems (see Fig. 1). Traces represent the average of 1000 bootstrapped time courses across eight sessions (two participants, four sessions each). Shading is
SEM of the bootstrapped time courses. Vertical lines show the time to peak. The horizontal sequence of points above the x-axis show when decoding was
greater than chance for four or more consecutive time bins (determined using within-subjects null decoding distribution and FDR corrected, see “Methods”
section). Hue decoding peaked after luminance-polarity decoding (p < 0.001). Right panel, Decoding luminance polarity (black line) and hue (blue line) using
data from the hue-matching task. Hue decoding peaked after luminance-polarity decoding (p < 0.001). Other conventions as for the left panel. ¢ Left panel,
Decoding luminance polarity using data from the luminance-polarity matching task (bold line) and the hue matching task (thin line). Shading represents the
SEM. The time-to-peak for decoding luminance polarity identity was not impacted by task (p = 0.384). Right panel, Decoding hue using data from the

hue matching task (bold line) and luminance-polarity matching task (thin line); the time-to-peak for decoding hue was not impacted by task (p = 0.427; p values
reflect two-sided t-tests using a bootstrapping procedure, not adjusted for multiple comparisons). In all panels, the bolded traces show the decoding problems
that align with the task. Luminance-polarity decoding was significant for a longer duration for data collected during the luminance-polarity matching task (left
panel), while hue decoding was significant for a longer duration for data collected during the hue matching task (right panel).

The same trend was observed for the generalization problems, but
it was not significant (p =0.3). Fig. 4 shows that for both the
identity and generalization problems, the second peak was
temporally more precise for decoding luminance polarity than
for decoding hue (the black traces have a narrower, tighter second
peak compared to the blue traces).

relatively late after stimulus onset®®®”; nonetheless, we asked
whether the differences in timing for decoding hue versus lumi-
nance polarity could be attributed to the task that participants
performed during MEG data collection. We answered this ques-
tion in a control experiment conducted prior to the main
experiments. The control experiment was identical to the main
experiments except that for half the runs, the two participants
performed a 1-back hue-matching task, and for the other half of

Impact of task on decoding. Decoding accuracy of visual stimuli
from patterns of MEG activity could be impacted by task
engagement during MEG data collection®%%°. Task effects can
enhance task-relevant object features and reportedly arise

the runs they performed a 1-back luminance-polarity matching
task (Fig. 5a; each participant completed five sessions, one of
which was not analyzed because of a technical error in data
acquisition; each trial involved a 116 ms stimulus presentation
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and a 1s ISI; the task alternated between runs in each session).
Participants learned both tasks, achieving excellent accuracy
within the first MEG data-acquisition session and improving in
reaction time over consecutive sessions (Supplementary Fig. 5).
The time to peak decoding was quantified by training and
testing classifiers for each session and each participant (4 sessions
x 2 participants for each task type) and bootstrapping across the
eight curves for a given task. Peak decoding times were different
for hue than for luminance polarity, for data collected using both
tasks: decoding of hue peaked later than decoding of luminance
polarity (Fig. 5b; difference in time to peak for data obtained
using the 1-back luminance task, p < 0.001; difference in time to
peak for data obtained using the 1-back hue task, p < 0.001). The
time to peak for decoding hue was 112 ms [106, 119] using data
obtained with the hue task, and 111 ms [101, 121] using data
obtained with the luminance-polarity task; while the time to peak
for decoding luminance polarity was 89 ms [84, 95] for the hue
task, and 89 ms [81, 101] for the luminance-polarity task. These
results replicate the results from the main experiments, showing
that decoding luminance polarity reached a peak about 20 ms
earlier than decoding hue. The time to peak decoding of
luminance polarity was indistinguishable for data collected under
the two task conditions (Fig. 5¢, left panel; p = 0.384). Similarly,
the time to peak decoding of hue was indistinguishable for data
collected under the two task conditions (Fig. 5c, right panel;
p =0.427). These results show that task did not impact the time
to peak, for decoding hue or luminance polarity. The data
collected in the control experiment also show that the relative
timing difference for decoding hue versus luminance polarity was
apparent for each individual subject: combining data from both
tasks, the time to peak for decoding hue for subject 1 was 108 ms
[101, 117], and for subject 2 was 114 ms [110, 118]); the time to
peak for decoding luminance polarity for subject 1 was 88 ms [86,
90], and for subject 2 was 92 ms [84, 102]). The time to peak for

a Decoding luminance polarity b
generalizing across hue

[o2)

o Train time (after stim. onset, ms) 8
(o2}

o Train time (after stim. onset, ms) 8

0 Testtime (after stim. onset, ms) 600

Decoding hue (o]
generalizing across luminance polarity

0 Test time (after stim. onset, ms) 600

decoding hue was different from the time to peak for decoding
luminance polarity in both subjects (both S1 and S2, p =0.001).

The results of the control experiment provide evidence of one
possible impact of task: the duration of significant decoding.
Decoding of luminance polarity was significant for a longer
duration when participants were engaged in the 1-back
luminance-polarity task compared to when they were engaged
in the 1-back hue task (Fig. 5¢, left panel, horizontal lines below
the decoding trace show time points of significant decoding).
Similarly, decoding of hue was significant for a longer duration
when participants were engaged in the 1-back hue task compared
to when they were engaged in the 1-back luminance-polarity task
(Fig. 5¢, right panel). The results of the control experiment are
consistent with the manifestation of task-related effects arising
relatively late (>300 ms after stimulus onset), as documented by
others®®, and argue against the hypothesis that the difference in
time-to-peak for decoding hue and luminance polarity, which is
evident much earlier than 300 ms, be attributed to task.

Cross-temporal decoding for hue and luminance polarity. The
results discussed so far evaluate the classifiers’ performance using
test data obtained at the same time point after stimulus onset as
the data used to train the classifier. The classifiers show significant
decoding for a substantial amount of time, hundreds of milli-
seconds, following stimulus onset. One possibility is that the
pattern of activity is relativity sustained over this time period;
another possibility is that it is dynamic and transient®8. To dis-
tinguish between these alternatives, we trained classifiers on the
patterns of activity at each point in time and evaluated the extent
to which they could predict activity at all other time points. If
activity patterns are dynamic, the cross-temporal analysis will
recover strong decoding performance only for situations in which
the training and testing data sets were obtained at the same
timepoint relative to stimulus onset, i.e., along the diagonal in a

Decoding hue versus
luminance polarity

o Train time (afte_r stim_. qnset, m_s) =1

0 Testtime (after stim. onset, ms) 600

Fig. 6 Cross-temporal generalization of decoding luminance polarity versus hue. a Classifiers were trained using the pattern of MEG activity elicited at
time points from —200 ms to 600 ms after stimulus onset (y-axis) and tested using data not used in training across the same time interval, on the set
of problems decoding luminance polarity generalizing across hue. The best decoding performance was achieved with classifiers that were trained and
tested using data from the same time point after stimulus onset, indicated by the strong performance along the x = y diagonal. The peak classification time
was at 100 ms; there was a dip in classification performance at about 120 ms. The black contours show regions in the heatmap that were p < 0.05 cluster
corrected. The p values were obtained using a sign-permutation test. b Data as in a, but for classifiers trained and tested on the set of problems decoding
hue generalizing across luminance polarity. The peak classification time was 119 ms; the cluster-corrected regions of significance extended further from the
diagonal compared to a. ¢ Comparison of results in a and b. The time points where the classifiers were more accurate for luminance polarity compared to
hue are shown as dark blue (white contours show cluster-corrected significant results), while the time points where the classifiers were more accurate for
hue compared to luminance polarity are shown as yellow (red contours show cluster-corrected results). The p values were obtained using a permutation
test on the difference in accuracy between hue and luminance polarity decoding. The p values are cluster corrected. Decoding of hue showed greater
generalization across time compared to decoding of luminance polarity, and the greater cross-temporal generalization for hue began relatively early after
stimulus onset (~119 ms).
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cross-temporal decoding plot. Alternatively, if activity patterns
are sustained, the analysis will show strong decoding performance
at time points away from the diagonal.

Figure 6 shows the cross-temporal plots for decoding luminance
polarity generalizing across hues (Fig. 6a, left), and for decoding hue
generalizing across luminance polarity (Fig. 6b, right); the figures
show the results averaged over the 12 individual problems for
luminance polarity and hue using the subsampled data shown in
Fig. 4, which ensures that any differences in cross-temporal decoding
cannot be not attributed to absolute differences in peak decoding.
The color scale in the heatmap shows the percent classification—the
values along the diagonal are the same as those shown in Fig. 4b. The
black contours identify data that were deemed significant by a
permutation test (significance threshold p<0.05) and cluster
correction (cluster defining threshold p<0.01, see “Methods”
section). The cluster correction in two dimensions did not recover
as significant all the same values along the diagonal that were deemed
significant by the cluster correction in one dimension in Fig. 4b
because it is more stringent. Despite the greater stringency, the cross-
temporal generalization for decoding hue showed greater significance
further away from the diagonal compared to the cross-temporal
generalization for luminance polarity (compare Fig. 6a, b). Figure 6¢
quantifies this comparison: yellow regions in the plot indicate where
hue decoding was greater than luminance-polarity decoding, while
dark blue regions indicate where luminance-polarity decoding was
greater than hue decoding (the comparison was determined through
a permutation test on the difference between luminance-polarity and
hue decoding accuracy; red and white contours show cluster-
corrected results). The relatively stronger cross-temporal general-
ization for hue, indicated in the plot as the yellow flanks around the
diagonal, began relatively quickly after stimulus onset, emerging at
about the same time as the initial peak in hue generalization decoding
(119 ms). The cross-temporal decoding plots also show evidence for
faint bands of decoding parallel to the diagonal corresponding to a
reactivation time of ~50 ms, as described previouslyZ°.

These results support the hypothesis that the patterns of
activity in the brain associated with hue are more sustained than
the patterns of activity associated with luminance polarity.

Luminance-polarity decoding with different combinations of
hue for training and testing. The decoding analysis in Fig. 3
shows that luminance polarity can be decoded from the pattern of
MEG data but does not address the variability in the extent to
which luminance-polarity information can be decoded using
different combinations of hues for training and testing the clas-
sifiers. We were interested in addressing this question because the
extent to which the brain relies on both L-M and S cone
mechanisms for encoding luminance contrast is unclear*-%, and
because some behavioral data suggest that luminance is less
reliably extracted from colors associated with the daylight locus
(orange/blue) compared to the anti-daylight locus (pink/
green)®-74, For example, the chromaticity of natural lights is
linked to relative luminance contrast: direct sunlight has a warm
spectrum (e.g., orange), and is associated with a luminance
increment, whereas indirect light, such as in shadows, has a cool
spectrum (reflecting skylight) and is associated with a luminance
decrement. If the visual system is adapted to natural statistics, we
predicted that luminance polarity carried by orange and blue
would be less meaningful about object boundaries than lumi-
nance polarity carried by green and pink, because luminance
contrasts linked to orange and blue chromaticity are more likely
to be attributed to the illumination.

Individual luminance-polarity decoding problems averaged
over participants were variable both among the four identity
problems (Fig. 7a) and among the twelve generalization problems

(Fig. 7b). The color scale of the heatmap in Fig. 7c indicates the
luminance-polarity decoding performance for each of the
16 subproblems during the 5ms time bin at the time of the
initial peak decoding determined separately for each subproblem
(these results are similar to those obtained during the 5 ms time
bin set by the average peak decoding for the luminance-polarity
identity problems). Data along the inverse diagonal correspond to
the identity problems (recall the identity problems are those in
which the hue was the same for training data and testing data).
Data off the diagonal correspond to decoding problems for
luminance polarity generalizing across hue, and these data allow
us to test ideas about how S and L-M signals contribute to the
representation of luminance polarity. The time bin of peak
decoding for each problem is indicated in each entry. The bolded
numbers are the total number of 5ms time bins in which
decoding was significant (cluster-corrected, cluster-defining
threshold p < 0.01). Luminance polarity could be decoded above
chance with data obtained in all combinations of training and test
hues (significance of decoding was determined by a permutation
test, see “Methods” section), but there was variability in the
magnitude and duration of decoding depending on the hue used
to obtain data for training versus testing the classifiers (the 95%
CI of peak decoding accuracy values obtained by bootstrapping
are shown in square brackets).

The data in Fig. 7 support three findings. First, luminance-
polarity decoding was strongest when the carrier (training) hue
was the same as the test hue (paired two-sided Wilcoxon signed-
rank test on average peak decoding values comparing on-diagonal
to off-diagonal Fig. 7c, p = 0.0002). Second, among these identity
problems, classification performance was higher for warm colors
(pink, orange) than cool colors (blue, green; repeated measures
one-way ANOVA, Fig. 7c¢, p=0.003; supporting our prior
analysis2®). Third, for a given pair of hues used to obtain the
training and testing data, the performance of the classifiers was
consistent regardless of which data set was used for training and
which was used for testing; this is reflected in a similar pattern in
the upper and lower triangles of the heat map formed across the
inverse diagonal in Fig. 7c. For example, the accuracy for training
on orange, testing on pink, is comparable to the accuracy for
training on pink, testing on orange. But the magnitude of the
classification accuracy and the number of significant time points
recovered by the classifier varied with different combinations of
hues for training/testing; for example, training (or testing) with
orange and testing (or training) with pink yielded different results
than training (or testing) with orange and testing (or training)
with blue. We had hypothesized that classifiers trained and tested
using hues associated with the daylight axis (blue and orange)
would be less successful at decoding luminance polarity than
classifiers trained and tested using hues associated with the anti-
daylight axis (pink and green). The results show a trend
supporting this hypothesis (Fig. 7c), but it was not significant
(repeated measures one-way ANOVA, Fig. 7c, p =0.076).

Perhaps the appropriate test of our hypothesis should examine
not the magnitude of decoding but rather the duration over which
each problem could be decoded. The number of 5-ms time bins
that showed significant decoding was lower for problems
involving hues of the daylight axis (34 or 36 time bins, bolded
numbers, Fig. 7c) compared to problems involving hues of the
anti-daylight axis (42 or 45 bins), but this difference was not
significant (Fig. 7d shows the 95% CI of these values). Instead the
prominent result of these analyses is that classifiers trained and
tested with hues that differ in both their L-M and S cone
modulation were worse than classifiers trained and tested with
hues that differ in modulation of only one cone system (L-M or
S). Figure 7d shows the results on the cone-opponent axes that
define the color space, in which the color of the letters and arrows
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Fig. 7 Decoding luminance polarity carried by different hues. a Accuracy of classifiers trained to decode luminance polarity on the identity problems
(individual problems, thin lines; average, thick line). b Accuracy of classifiers trained to decode luminance polarity across hues (12 generalizing-across-hue
problems, thin lines; average, thick dashed line; shading shows SE across subjects). The thickness of the horizontal line above the x-axis shows the number
of decoding problems (maximum in a, 4; maximum in b, 12) that were significant in each 5ms bin (cluster corrected). ¢ Heatmap showing classifier
performance [95% Cl, by bootstrapping] for each binary classifier at the initial peak decoding for each problem. Bold numbers show the total number of
5ms time bins with significant classification performance. The time stamps show when the classifier performance reached the initial peak in decoding
accuracy. d Duration of significant decoding of luminance polarity plotted in the cone-opponent color space used to define the stimuli; B, P, O, and G
demarcate within this space the location of the blue, pink, orange, and green hues of the stimuli. The color scalebar indicates the number of 5 ms time bins
that were significant, and the arrow direction points from the hues used for training to the hues used for testing. For example, the arrow from P to G
corresponds to classifiers trained on luminance polarity using data obtained with light/dark pink stimuli and tested using data obtained with light/dark
green stimuli. For the four identity problems (the letters B, P, O, and G), the hue was the same for training and testing. For each type of problem, the precise
number of significant time bins is shown, along with the [95% CI] obtained by bootstrapping. Problems that cross the color space, in which the hues for
training and testing varied in both L-M and S activation, showed lower numbers of significant time bins than problems around the perimeter of the color

space, in which the hues for training and testing varied in only L-M or S.

corresponds to the number of significant time bins for each
problem (P, B, G, and O correspond to the four hues of the
spirals: pink, blue, green, and orange; each problem is labeled
with number of significant time bins and the 95% CI obtained by
bootstrapping). The direction of the arrows indicates which data
was used to train and test the classifiers; for example, the arrow
from P to B shows the number of time bins in which the
luminance polarity problems were significant when training on
data obtained using light and dark pink, and tested on data
obtained using light and dark blue. The arrows connecting hues
through the color space, in which the hues for training and testing
differ in both L-M and S modulation, showed a lower number of
significant time bins compared to problems around the color
circle, in which the hues for training and testing differ in only one
or the other cone-opponent mechanism (the arrows through the
origin of the space are bluish, while all the problems around the
perimeter are pink or gray). Thus the results do not provide
strong support for our initial hypothesis that neural mechanisms
encoding luminance polarity are strongly impacted when the hues
of the stimuli correspond to the daylight locus, but they do
support the idea that luminance polarity is encoded by a
combination of both L-M and S chromatic mechanisms.

The statistical analysis shown in Fig. 7 was obtained by
comparing and averaging results across participants, but the time
course of decoding accuracy may show individual differences that
will not be apparent in these averages. One possibility we
considered is whether the somewhat weaker luminance-polarity
decoding for blue and orange reflects variability in the timing and
amplitude of decoding across participants. To address this
possibility, we first determined the average decoding accuracy
throughout the decoding time course (0-600ms) for each
problem, for each participant (72 problems total: 18 participants
x 2 daylight-axis problems x 2 anti-daylight-axis problems). The
average peak decoding accuracy after stimulus onset was not
different for daylight colors and anti-daylight colors (55% [53.8,
57.0] versus 56% [54.1, 57.8], p=0.68, repeated measures
ANOVA). Next, for each problem, we calculated the Spearman
correlation of the decoding time course after stimulus onset for
each of the 18 participants with the average time course of a
sample of 17 subjects drawn with replacement from the other
participants, to estimate the temporal correlation of the decoding
curves. We repeated this 1000 times and averaged across the
repetitions to obtain a mean estimate of the temporal correlation
of each participant’s time course to those of the others. If the time
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course of decoding shows the same structure across participants,
the analysis will yield high temporal correlations. The average
correlation for problems across the daylight colors versus across
anti-daylight colors was not different (0.33 versus 0.30; p = 0.62
repeated measures ANOVA). Problems involving daylight colors
were not different from problems involving anti-daylight colors
in both their mean accuracy and temporal correlation (MAN-
OVA, p =0.37; note that the correlation of the average decoding
accuracy with the temporal correlation, Supplementary Fig. 6, is
not surprising, because when decoding is higher, the temporal
correlation will be more apparent).

fMRI-guided MEG source localization. We were interested in
evaluating the extent to which MEG signals arising from func-
tionally defined regions in the cortex could support decoding of
hue and luminance polarity. To address this question, we ran
fMRI experiments in 14 of the same participants in whom we
collected MEG data, and we performed the MEG analyses using
subject-specific source localization. Our goal was to use functional
data to define regions of interest in the ventral visual pathway
(VVP) in each participant, controlling for individual differences
in the absolute location of functional domains across people. In
each subject we used fMRI to identify regions biased for faces,
places, colors, and objects, using a paradigm we previously
implemented in which fMRI responses to short movie clips of
faces, bodies, objects, and scenes were measured’>7°. The para-
digm involved measuring responses to intact and scrambled
versions of the clips, and to clips in full color and black-and-
white. As described in Lafer-Sousa et al.”®, the results can be used
to define regions of interest: face-biased regions (including the
FFA); place-biased regions (including the PPA); and color-biased
regions. The results also recover area LO (lateral object area),
defined by stronger responses to intact versus scrambled
movie clips.

Figure 8a shows the fMRI results for one participant: greater
responses to colored movie clips compared to black-and-white
versions of the movie clips is shown by the heat map, apparent on
the ventral view (Fig. 8a, right panel); functional domains for
faces (faces>objects), objects (intact objects>scrambled objects),
and places (places>objects) are indicated by contour maps drawn
at p=0.001 threshold. Color-biased activity was found sand-
wiched between place-biased activity (medially) and face-biased
activity (laterally), confirming prior observations’®. By aligning
each participant to a standard atlas’”>’3, we also generated regions
of interest for V1, V2, and MT, and for frontal cortex and the
precentral gyrus (control regions).

MEG signals source-localized to V1 and V2 yielded the highest
magnitude modulation in current source density averaged across
all stimulus presentations (Fig. 8b). The magnitude of the CSD
was different among the functional regions identified in the VVP
(p=0.002, repeated measures one-way ANOVA): the color-
biased regions were not different from face-biased regions
(p = 0.12; paired two sided ¢-test, uncorrected); but were different
from LO (p=0.01), and from place-biased regions (p =0.02)
(Fig. 8c). These results provide a direct measure of neural activity,
and confirm the indirect measurements obtained with fMRI
suggesting that fMRI-identified color-biased regions (and possibly
face-biased regions) play an important role in color processing’®.

Luminance polarity generalized across hue was decodable to
some extent in all visual regions except the face-biased regions
and the color-biased regions; it was most decodable in V1 and V2;
to a lesser extent in MT and LO; and to an even lesser extent in
the place-biased regions; it was not decodable in the two control
regions (Fig. 8d). Hue generalized across luminance polarity was
not reliably decodable in any region, but with a hint of decoding

in V1 and/or V2 (Fig. 8e). The distribution of sensors used in the
decoding analysis is shown in Fig. 8f, g (see legend and methods
for details).

Discussion

The experiments here produced five results: first, hue and lumi-
nance polarity could be decoded independently. Luminance
polarity could be decoded even if the training and testing stimuli
differed in hue; and hue could be decoded even if the training and
testing stimuli differed in luminance polarity. Second, classifica-
tion accuracy was higher for problems in which the stimuli used
to train and test the classifiers were identical (identity problems,
Fig. 3), compared to problems that required generalization across
hue or luminance polarity (generalizing problems, Fig. 3). Third,
the time course of decoding was different for hue compared to
luminance polarity (Fig. 4). The peak for decoding hue was
~20 ms after the peak for decoding luminance polarity. Control
experiments showed that these timing differences could not be
attributed to the task that participants performed during MEG
data collection (Fig. 5). Fourth, representations of hue showed
subtly greater cross-temporal generalization than representations
of luminance polarity (Fig. 6). And fifth, representations of
luminance polarity varied depending on the hues used to obtain
the training and testing data (Fig. 7). Decoding of luminance
polarity was most reduced when the hues used to obtain the
training and testing data varied in both L-M and S, suggesting
that both cone-opponent retinal mechanisms contribute to
luminance encoding. Together, the results have implications for
our understanding of the different roles that luminance polarity
and hue play in visual perception, and how encoding these fea-
tures is implemented by the neural circuitry.

Multivariate analyses of MEG and EEG data uncover impor-
tant information about color processing in the brain26-80-85, We
interpret the decoding results as evidence of the temporal evo-
lution of the neural representations in the brain, an interpretation
we will return to in the discussion below. But first we are
prompted to ask whether the recognized fine temporal structure
of MEG (and EEG data) is sufficient to explain the decoding
analyses without requiring information about the spatial pattern
of MEG signals across sensors. For example, two stimuli that elicit
the same temporal profile of response but with slightly different
latencies, will be decodable from a single electrode (so long as the
response is not uniform across time), because at any given time
point there would be a predictable difference in the amplitude of
the signals. Is temporal structure sufficient to explain the results,
or do the results imply that there is a spatial representation of
color that gives rise to distinct spatial activation patterns in
response to different colors? Each analysis, e.g., of hue identity,
depends on averaging many separate decoding problems to
extract the common decodable information across the spatial
pattern of sensors at each time point. Such averaging would
obscure any decoding dependent solely on latency differences,
because the difference in univariate response time course would
likely be different for any given pair of stimuli. For latency dif-
ferences to be the sole explanation, the brain would need to
respond with different timing to different hues, and the differ-
ences in timing between any pair of hues would need to be the
same (and immune to changes in hue and/or luminance contrast)
to yield the present results. These considerations raise the pos-
sibility that the decoding reflects differences in the spatial
representation of the stimuli. Yet that explanation might be
surprising given EEG and MEG are thought to show coarse
spatial resolution, and the spatial scale of color columns, in early
visual cortex36-8? or in higher visual cortex”, is relatively fine.
The paradox could be resolved either if the spatial scale of color
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columns is coarser than currently estimated, or if the multivariate
analyses are able to detect the existence of rather fine spatial
patterns, even if the analyses cannot recover the precise spatial
organization of them, as suggested by others2691,
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generalizing across hue, first presented in preliminary form8081,
is consistent with results of a recent independent report®2.
Decoding of hue was substantially more impacted by changes in
luminance polarity, than decoding of luminance polarity was by
changes in hue. This evidence shows that either luminance con-
trast and hue are encoded to some extent by different neural
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Fig. 8 Source localization of regions defined using fMRI. a Functional anatomy from one participant, on the inflated cortical surface (left panel, side view,
anterior to left; right panel, ventral view, anterior at top; similar results were obtained in 14 participants). Regions of interest were defined using fMRI
responses to movie clips, in color and black-and-white, of faces, bodies, objects, scrambled objects’®. The activation map (yellow-orange) shows voxels
with higher responses to color clips compared to black-and-white clips. Contours show ROls for faces > objects (including the fusiform face area, FFA),
intact shapes > scrambled shapes (lateral object area, LO), and places > objects (including parahippocampal place area, PPA). Regions of interest for V1,
V2, MT (middle temporal area), frontal, and precentral ROls were defined using an anatomical atlas. b Source localization estimates of the current source
density (CSD) of magnetoencephalography (MEG) responses to color arising from each functional ROI, averaged across participants and calculated with
dynamical Statistical Parametric Mapping (dSPM; see “Methods"” section). O on the x-axis is stimulus onset. Values on the y-axis are unitless. Transparent
shading shows SEM. ¢ Maximum amplitude of CSD in each ROI of the ventral visual pathway, calculated as distance from peak to trough of the time course
in b. Error bars are SEM (n=14). There was a significant effect of ROl on response magnitude (repeated measures one-way ANOVA, p=0.002).
Responses source-localized to the color-biased regions were different from those of LO (two-sided paired t-test, p=0.01) and place-biased regions
(p=0.02), but not face-biased ROIs (p =0.12). d Average classifier performance on decoding luminance polarity generalizing-across-hue (12 problems
averaged together; see Fig. 1a) trained using only those MEG data localized to the MRI-defined ROIs (N =14 participants). Each line shows the average
accuracy of one ROl-restricted classifier averaged across participants (color key in a). e Average classifier performance on decoding hue generalizing-
across-luminance-polarity (12 problems averaged together; see Fig. 1b). f The distribution of sensors used as features for the classifiers across participants
(N =18). Color bar shows the percent likelihood that any given sensor was selected as a feature. g As in f, but for decoding hue generalizing across

luminance contrast.

populations, or if they are encoded by entirely the same popu-
lation, the encoding must involve temporal multiplexing. Either
possibility argues against the notion that luminance polarity and
hue are necessarily multiplexed simultaneously by the same
neural population. The relatively earlier timing of the luminance-
polarity representation is consistent with univariate analyses of
electroencephalography data showing that the early onset P1
component is driven by luminance, and the subsequent N1 peak
is delayed by about 20ms when elicited by equiluminant
stimuli4393.94,

The difference in the time to peak of decoding hue versus
luminance polarity was not impacted by task. The lack of an
impact of task is consistent with prior work showing that atten-
tional tasks involving sequential stimuli do not impact the feed-
forward flow of information®?, and task effects typically emerge
200-300 ms after stimulus onset®®%7. Consistent with the late
arrival of task effects, at times >300 ms we observed subtly higher
decoding of luminance polarity compared to hue for data
obtained with the 1-back luminance-polarity task; and subtly
higher decoding of hue compared to luminance polarity for data
obtained with the 1-back hue task (Fig. 5c¢).

In object perception, the decoding time course reflects the
perceptual and categorical dissimilarity of stimuli, with more
perceptually dissimilar stimuli (i.e., higher levels of abstraction)
decodable later, and associated with computations performed by
areas further along the visual-processing hierarchy®®-%8. (An
increase in category abstraction is Doberman—dog—anima-
l—animate.) One way of thinking about the relatively later
decoding of hue, then, is that (1) hue discrimination involves
greater perceptual dissimilarity (greater category abstraction)
compared to luminance polarity; and (2) it is computed either by
circuits downstream of those that compute luminance polarity or
requires more recurrent processing. The time course for decoding
hue (peak 118-119 ms; Fig. 3b) is comparable to that for decoding
shape-independent object category’® and face identity!%,
operations that probably reflect activity in area LO and the
fusiform face area (FFA). The decoding time course for hue is
therefore consistent with the hypothesis that hue is computed at
about the same distance from the retina along the visual pro-
cessing hierarchy as LO and the FFA, which implicates the pos-
terior color-biased region of the VVP, part of the V4
Complex’6101-103 Cells in this region are spatially organized
according to hue and their hue selectivity is tolerant to changes in
luminance polarity3*104105 Another way of thinking about the
results is that the relatively later decoding of hue depends on a
more sluggish channel from the retina through the lateral

geniculate nucleus up to visual cortex. This hypothesis is con-
sistent with the idea that parvocellular neurons underlie hue
decoding, while magnocellular neurons underlie luminance-
polarity decoding. Measurements of decoding in patients with
cortical lesions that impact color perception may prove instruc-
tive in addressing these alternative explanations!0°,

Neural representations related to object vision that emerge
earliest, as determined by classifiers tested using the same images
on which they were trained (i.e., not requiring perceptual dis-
similarity), reflect the encoding of “low-level visual features™—
decoding in these classifiers peaks early (<100ms), and is
attributed to operations implemented early in the visual-
processing hierarchy, perhaps V19%-107-109 Byt it has not been
clear what constitutes the low-level visual features that determine
the early decoding performance. It is often implied that the low-
level features consist of both oriented luminance-contrast edges
and color, as implied by separate luminance-contrast edge filters
and color filters in the earliest layer of convolutional neural
networks!2. But the timing discovered here suggests that (1)
luminance contrast (and not hue) is the first feature to be
encoded; and (2) luminance contrast is implemented at an earlier
stage in the visual-processing hierarchy, before hue. The relative
timing difference for decoding hue and luminance polarity may
be relatively small—just tens of milliseconds—but it is not only
robust, evident within individual subjects (Fig. 5), but also long
enough to encompass 7-10 synapses given monosynaptic trans-
mission latencies of ~2.5 ms in the visual pathway!10.

Knowledge of the timing of the neural events may provide
clues to the different roles that luminance contrast and hue play
in vision!!l. The visual system is confronted with a constant
stream of retinal images, each of which is associated with a cas-
cade of neural activity lasting hundreds of milliseconds®4. How
does the visual system parse this stream of information to encode
new content? It must do so while retaining some representations
for longer durations to enable recognition and memory. In any
situation in which information is encoded in time, it is advan-
tageous to have clear signals indicating the start and end of the
code, such as in genetics where gene sequences are parsed by
canonical start and stop codons. In object vision, dynamical
systems modeling predicts the existence of observable update
mechanisms that signal new content!!2. The luminance-polarity
decoding time course showed clear peaks corresponding to both
the onset and cessation of the stimulus (Figs. 3, 4), and limited
cross-temporal generalization (Fig. 6a). The time course for
decoding hue, meanwhile, showed a weaker secondary peak and
relatively stronger cross-temporal generalization (Fig. 6b, c). This
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pattern of results is consistent with the idea that the brain more
likely uses luminance contrast, rather than hue, as the updating
signal, to encode discrete events embedded in the constant stream
of visual information.

What, then, does the timing for decoding hue suggest about its
role in vision? People with normal color vision find it difficult to
make heterochromatic brightness matches?” (see Supplementary
Fig. 5). Moreover, humans are more likely to retain visual
memory for hue than for luminance contrast!”. Thus hue is a
more salient dimension than luminance contrast, and more sus-
tained. The present results provide a plausible neural correlate for
these behaviors. They may also help resolve a paradox in visual
neurophysiology. In the earliest studies of V1 single-unit
responses, Hubel and Wiesel remarked that “it was surprising
to us, however, that the great majority of cells [in V1] could
discriminate precisely the orientation or direction of movement
of a stimulus, but had no marked selectivity regarding wave-
length”113. The seemingly weaker response of V1 cells to color
compared to luminance contrast has fueled a lot of research since
this early observation!!4. The present results open the possibility
that hue is encoded by more sustained patterns of response to
color across the population, which would not necessarily be
evident using traditional single-cell recording methods.

Despite the simplicity of conventional representations of color
space, which depict luminance contrast as an orthogonal to hue,
substantial psychophysical work shows these dimensions interact
(see “Introduction” section). Decoding luminance polarity was
most reduced when the hues for training and testing varied in
both L-M and S (the diagonals in Fig. 7d), suggesting that the
brain encodes luminance polarity with both S and L-M
mechanisms, which informs a long-standing discussion about
which retinal mechanisms support the perception of luminance
contrast?~7.

Interactions between luminance and color might reflect an
adaptation to natural lighting conditions. The chromaticity of
natural lights covaries with relative luminance contrast, ranging
from warm and bright (e.g., direct sunlight) to cool and dark (e.g.,
shadow). Luminance contrast signals associated with blue and/or
orange chromaticities could be less reliable indicators of object
boundaries since they may arise from boundaries introduced by
cast shadows. The experiments were designed to test the
hypothesis that luminance-contrast polarity is less readily enco-
ded by the brain when carried by hues that align with the daylight
axis (orange/blue) versus when carried by colors that do not
(pink/green)”!=73115, Prior physiological work has examined the
interaction of hue and luminance; this work has often tested
colors aligned with the cardinal cone-opponent mechanisms (S
and L-M)>743, which is insufficient to test the hypothesis since
the daylight locus does not fall along the cardinal axes. If lumi-
nance representations are impacted by the S-cone mechanism,
then the impact should be comparable for colors that have the
same sign and magnitude of S-cone modulation, even if the L-M
contribution differs. Alternatively, if luminance representations
reflect an interaction with the daylight locus, the results should
show an asymmetry in luminance polarity decoding that reflects
an additional interaction of S and L-M. The results were con-
sistent with this second prediction: decoding of luminance-
contrast polarity was strikingly different for +S + (M-L) versus
+S + (L-M) stimuli (these stimuli appear bluish and pinkish, are
both S increments yet differ in the sign of L-M modulation). The
results showed comparable luminance-polarity decoding accuracy
for -S+ (M-L) and -S + (L-M). Note that these results are not
explained by the well-documented asymmetry in neural responses
to S-increments versus S-decrements!1®, which would predict
similar decoding for S-increments regardless of the contribution
of the sign of L-M. Thus the results show that one pole of the

daylight axis is compromised in encoding luminance contrast, the
pole associated with the +S + (M-L) axis, which may relate to
asymmetries in blue-yellow color perception’2. We do not
interpret the present data as evidence of neural adaptation to the
daylight locus rather than as correlates of perception; instead, we
argue that perception reflects adaptation to the daylight locus as
implemented by neural representations.

There are substantial gaps in knowledge regarding the con-
nection between fMRI and neural events. We leveraged the
comparitively high spatial resolution of fMRI and the more direct
access to neural events of MEG by obtaining both fMRI and MEG
in the same participants. We used source localization to estimate
MEG signals arising from fMRI-identified regions defined in each
individual subject (Fig. 8). The results provide a way of inde-
pendently testing conclusions drawn from fMRI experiments. For
example, within the VVP, cortical regions showing the strongest
fMRI responses to color are sandwiched between more lateral
regions responding most strongly to faces and more medial
regions responding most strongly to places’®; this pattern was
described earlier in macaque monkeys!®l. Among regions of the
VVP, the MEG signals assigned to color-biased regions showed
the largest current-source density in response to the stimuli used
in the MEG experiments—these stimuli differed only in color and
not shape. Thus the present results support the idea that the VVP
comprises parallel streams characterized by differential sensitivity
to color information*!. Source-localized analyses did not recover
significant luminance-polarity-invariant hue representations,
which may not be surprising given fundamental limitations of
source localization!!”. In future work, we intend to use search-
light analyses to probe for hue and luminance-polarity
representations.

In summary, the present work used multivariate analyses of
MEG data to quantitatively uncover the independent repre-
sentations of hue and luminance polarity and their timing, which
complements our previous analyses of the combined, interacting,
representations of hue and luminance polarity that underlie the
geometry of the neural representation of color®. The work
reveals complex temporal dynamics that mediate the repre-
sentation of color, which presumably reflect the involvement of
color in many visual computations.

Methods

Visual stimuli. Stimuli were eight square-wave spiral gratings on a neutral gray
background (Fig. 1a)>-61. The eight stimulus colors, four hues at two luminance-
contrast levels, of matched absolute cone contrast, were defined in DKL color
spacel7°657 ysing implementations by Westland and Brainard: the axes of this
color space are defined in terms of activation of the two cone-opponent post-
receptoral chromatic mechanisms (Supplementary Fig. 1). The z-axis is defined by
luminance contrast. The four hues were defined by the intermediate axes of DKL
space: at 45° (pink), 135° (blue), 225° (green), and 315° (orange). The absolute L-M
cone modulation of the stimuli were matched; and the absolute S cone modulation
of the stimuli were matched. Different colors were created by pairing different signs
of modulation along L-M and S. Two spirals—one positive luminance contrast
(420° elevation; “light”) and one negative luminance contrast (—20° elevation;
“dark”)—were created at each hue. The neutral adapting background was 33.5 cd/
m2. The luminance contrast of the stimuli was 25%, computed as Weber contrast
because the stimuli were brief and not full field. Modulation of the cone-opponent
mechanisms, shown in Supplementary Fig. 1, was computed relative to the
adapting background gray. Using MATLAB scripts of Westland et al., the xyY
values of the stimuli were converted to LMS values using xy2MB, and the LMS
values were converted to DKL values using Ims2dkl.

We designed the experiment such that (i) the stimuli were well above detection
threshold, and (ii) the absolute cone contrasts of different hues (e.g., light pink
versus light green) were comparable to the absolute cone contrasts of different
luminance contrast levels (e.g., light pink versus dark pink). We can estimate the
contrast of the stimuli in units of detection threshold, using detection data
provided by Sachtler and Zaidi!”. It is important to do this separately for color and
luminance contrast because, as Sachtler and Zaidi showed, detection thresholds
(measured in absolute cone contrast) are over 9x higher for luminance contrast
than for color. The cone contrast is computed as the absolute value of the contrast
in L, plus the absolute value of the contrast in M. For example:
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We compute the luminance contrast carried by the pink hue as follows:

|(Lconeligm,pink - Lconedark,pink)/ (Lconeug}n,pink + Lconedark,pink)\

+ |(Mconeygh,_pinr — McOn€ gy pink)/(Mconeygy pin + Mconegu pin)!
= [(27.6333 — 16.5006)/(27.6333 + 16.5006)|

+1(14.2617 — 8.1970)/(14.2617 + 8.1970)| = 0.5225

()

The detection threshold (|L|-+[M]|) for luminance contrast is 0.014 (from Sachtler
and Zaidil7). Thus the contrast of the stimuli was (0.5225/0.014), ~37x detection
threshold.

We can compute the color contrast between pink and green at a given
luminance contrast as follows:

[(Leoneygh pink — Leoneygn; green)/(Leoneygh pinc + Leoneygn green)|

+ |(Mconeygn i — Mconeyg green)/(Mconejgp iy + Mconeygy green)| = 0.0525
(2)

The detection threshold (|L|+|M]) for color contrast is 0.001724 (from Sachtler and
Zaidi'7). Thus the contrast of the light pink and green stimuli we used is (0.0525/
0.001724), ~30x detection threshold. Comparable calculations for the dark pink
and dark green stimuli show these stimuli to be ~51x detection threshold. The two
values of color contrast (for light stimuli and dark stimuli) straddle the absolute
contrast (in detection units) across luminance (37x, as calculated above). The
possible difference in color contrast of light versus dark stimuli had no impact on
the time course for decoding hue (see Supplementary Fig. 4), showing that at the
supra-threshold values used, decoding strength is not likely influenced by stimulus
saturation.

MEGe acquisition and preprocessing. Participants were scanned in the Athinoula
A. Martinos Imaging Center of the McGovern Institute for Brain Research at the
Massachusetts Institute of Technology (MIT) over the course of 2 sessions, on an
Elekta Triux system (306-channel probe unit consisting of 102 sensor triplets, with
204 planar gradiometer sensors, and 102 magnetometer sensors). The experimental
paradigm was created using Psychtoolbox!!8; stimuli were back-projected onto a
44” screen using a SXGA + 10000 Panasonic DLP Projector, Model No. PT-
D10000U (50/60 Hz, 120 V). Data was recorded at a sampling rate of 1000 Hz,
filtered between 0.03-330 Hz. Head location was recorded by means of five head
position indicator (HPI) coils placed across the forehead and behind the ears.
Before the MEG experiment began, three anatomical landmarks (bilateral pre-
auricular points and the nasion) were registered with respect to the HPI coils, using
a 3D digitizer (Fastrak, Polhemus, Colchester, Vermont, USA). During recording,
pupil diameter and eye position data were collected simultaneously using an
Eyelink 1000 Plus eye tracker (SR Research, Ontario, Canada) with fiber optic
camera.

Once collected, raw data was preprocessed to offset head movements and
reduce noise by means of spatiotemporal filters! %120, with Maxfilter software
(Elekta, Stockholm). Default parameters were used: harmonic expansion origin in
head frame = [0 0 40] mm; expansion limit for internal multipole base = 8;
expansion limit for external multipole base = 3; bad channels omitted from
harmonic expansions = 7 s.d. above average; temporal correlation limit = 0.98;
buffer length = 10s). In this process, a spatial filter was applied to separate the
signal data from noise sources occurring outside the helmet, then a temporal filter
was applied to exclude any signal data highly correlated with noise data over time.
Following this, Brainstorm software!?! was used to extract the peri-stimulus MEG
data for each trial (—200 to 600 ms around stimulus onset) and to remove the
baseline mean.

Participants and task. All participants (N = 18, 11 female, age 19-37 years) had
normal or corrected-to-normal vision, were right-handed, spoke English as a first
language, and provided informed consent. Participants received financial com-
pensation ($30/h). One participant was an author and thus not naive to the pur-
pose of the study and was not paid for participating. During participants’ first
session, they were screened for colorblindness using Ishihara plates; they also
completed a color-naming task as part of a separate study. After this task, parti-
cipants completed a 100-trial practice session of the 1-back hue-matching task that
would be used in the MEG experimental sessions. Once this was complete, parti-
cipants were asked if they had any questions about the task or the experiment; eye-
tracking calibration was performed; and MEG data collection began.

During the MEG data collection, participants were instructed to fixate at the
center of the screen. Spirals were presented subtending 10° of visual angle for
116 ms, centered on the fixation point. The fixation point was a white circle that
appeared during inter-trial intervals (ITTs, 1s). In addition to the spirals, the words
“green” and “blue” were presented in white on the screen for the same duration,
and probe trials were presented with a white “?”. (Responses to the words were
analyzed as part of a separate study.) During the probe trials, which occurred every
3-5 stimulus trials (pseudo-randomly interspersed, 24 per run), participants were
instructed to report via button press if the two preceding spirals did or did not
match according to hue (1-back hue task). Maximum response time was 1.8 s, but
the trials advanced as soon as participants answered.

Participants were encouraged to blink only during probe trials, as blinking
generates large electrical artifacts picked up by the MEG. Each run comprised
100 stimulus presentations, and participants completed 25 runs per session over
the course of approximately 1.5 h. Between each run, participants were given a
break to rest their eyes and speak with the researcher if necessary. Once 10s had
elapsed, participants chose freely when to end their break by button-press. Over the
course of both sessions, participants viewed each stimulus 500 times. Individual
runs were identical across subjects, but the order of runs was randomized between
subjects. The sequence of stimuli within each run was random with the constraint
that the total number of presentations was the same for each stimulus condition
over the set of runs obtained for each participant.

In the main experiments, data from all participants was used (no data was
excluded because of poor behavioral performance).

All experimental procedures involving human participants, including the main
experiment and all pilot and control experiments, were approved by the Wellesley
College Institutional Review Board, the Massachusetts Institute of Technology
Committee on the Use of Humans as Experimental Subjects, and the National
Institutes of Health Intramural Institute Clinical Research Review Committee.
Participants involved in all experiments, including the main experiment and all
pilot and control experiments, provided informed consent to participate and to
having their data published.

Pilot experiment to determine number of trials per condition. Prior to con-
ducing the main experiments, we collected data in four participants (three females),
using four colored stimuli (two hues, blue and orange, at light and dark contrast
levels). Participants were instructed to fixate a small spot at the center of the
display; besides this passive fixation, there was no task. Eye movements were
monitored to ensure passive fixation. The goal of this pilot was to determine the
number of trials needed to successfully decode color. As in the main experiment,
the stimuli were spirals, subjects viewed each color 500 times, and each stimulus
appeared for 100 ms followed by a 1's ISI. Other details of experimental paradigm
were the same as for the main experiment, except that the stimuli included only
two hues at two luminance polarity values (four conditions total). The two hues
were MB-DKL angles 150 and 300, which are intermediate colors corresponding
roughly to blue and yellow; the luminance of the stimuli were: background gray,
41 cd/m?; positive luminance-contrast stimuli, 48-50 cd/m? and negative
luminance-contrast stimuli, 30-32 cd/m?2). To evaluate the experimental power, we
set out to present each stimulus with what we thought was an excessive number of
trials: 500 (leaving 375 after rejecting trials with eye blinks or other artifacts).
Supplementary Fig. 2 shows the data reliability for the pilot experiment. The figure
was generated by subsampling independent pairs of N% of data, computing the
decoding for each independent set of data, and computing the correlation coeffi-
cient between the sets of data at each time point in the decoding curve. As
expected, the test-retest curves plateau; but the plateau occurs only with substantial
numbers of trials. Informed by these pilot experiments, we performed the main
experiment with 500 trials. Preliminary results of these experiments have been
presented and provide to our knowledge the first evidence for decoding color from
MEG data80:81. The four participants who took part in this pilot experiment did not
participate in the main experiments or the control experiment.

Control experiment to measure impact of task. Before launching the main
experiments, we deployed a control experiment to determine the decoding para-
meters for the main experiments and to evaluate the task effects on decoding. This
experiment was conducted in two participants (one female, age 20-30 years) who
completed five sessions of 20 runs each, one of which had a technical glitch and was
discarded. Each run had 100 stimulus presentations. Every 3-5 stimulus pre-
sentations, participants saw a “?” that prompted a response regarding the preceding
two stimuli; the correct answer depended on the task for the run. For one half of
the runs, the participants performed a 1-back hue matching task, and during the
other half of the runs they performed a 1-back luminance-polarity matching task
(Fig. 5a). Participants performed the same task for trials in a run, with the task
alternating between runs for a given session. The results from the control
experiment showed no impact of task performance on the latency or time-to-peak
of decoding (Fig. 5b, ¢). For consistency in the main experiment, we had partici-
pants perform the same task. The decoding analysis shown in Fig. 5b, c, is for the
identity problems illustrated in Fig. 1. The two participants who took part in the
control experiment did not participate in the main experiments or the other pilot
experiment. Exact p values are reported throughout, except in for tests based on
bootstrapping, where the number of bootstrap comparisons is zero. In those cases,
the p value can only be said to be less than 0.001 because there were 1000
bootstraps.

MEG data processing and analysis. Brainstorm software was used to process
MEG data. Trials were discarded if they contained eyeblink artifacts, or contained
out-of-range activity in any of the sensors (0.1-8000 fT). Three participants
exhibited sensor activity consistently out of range, so this metric was not applied to
their data as it was not a good marker of abnormal trials. After excluding bad trials,
there were at least 375 good trials for every stimulus type for every participant.
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Data were subsampled as needed to ensure the same number of trials per condition
were used in the analysis.

Decoding was performed using the Neural Decoding Toolbox (NDT)8. We
used the maximum correlation coefficient classifier in the NDT to train classifiers
to associate patterns of MEG activity across the sensors with the visual stimuli
presented. This classifier computes the mean population vector for sets of trials
belonging to each class in the training data and calculates the Pearson’s correlation
coefficient between those vectors and the test vectors. The class with the highest
correlation is the classifier’s prediction. The main conclusions were replicated when
using linear support vector machine classifiers. The classifiers were tested using
held-out data—i.e., data that was not used in training. Data from both
magnetometers and gradiometers were used in the analysis, and data for each
sensor was averaged into 5 ms non-overlapping bins from 200 ms before stimulus
onset to 600 ms after stimulus onset.

Custom MATLAB code was used to format MEG data preprocessed in
Brainstorm for use in the NDT and to combine the two data-collection sessions for
each participant. Decoding was performed independently for each participant, and
at each time point. As illustrated in Fig. 2, for each decoding problem, at each
timepoint (a 5 ms time bin), the 375 trials for each stimulus condition were divided
into five sets of 75 trials. Within each set, the 75 trials were averaged together. This
process generated five cross-validation splits: the classifier was trained on four of
these sets, and tested on one of them, and the procedure was repeated five times so
that each set was the test set once. This entire procedure was repeated 50 times, and
decoding accuracies reported are the average accuracies across these 50 decoding
“runs”. This procedure ensured that the same data was never used for both training
and testing, and it also ensured the same number of trials was used for every
decoding problem. The details of the cross-validation procedure, such as the
number of cross-validation splits, were determined during the pilot experiments to
be those that yielded a high signal-to-noise ratio (SNR) and high decoding accuracy
in both participants on the stimulus identity problem.

On each run, both the training and test data were z-scored using the mean and
standard deviation over all time of the training data. Following others, we adopted
a de-noising method that involved selecting for analysis data from the most
informative sensors®3; we chose the 25 sensors in the training data whose activity
co-varied most significantly with the training labels. These sensors were identified
as those with the lowest p-values from an F-test generated through an analysis of
variance (ANOVA); the same sensors were then used for both training and testing.
The sensor selection was specific for each participant. The sensors chosen tended to
be at the back of the head (Fig. 8f, g). Analyses using all channels, rather than
selecting only 25, yielded similar results.

All classification problems were binary (see Figs. 1 and 2). For each problem, a
classifier was trained and tested in 5 ms bins from time # = 200 ms before stimulus
onset to t =600 ms after stimulus onset (Fig. 2). The classifiers’ performance
shown in Figs. 3 and 4 were generated through a bootstrapping procedure. First,
the problems were evaluated for each participant, resulting in 18 independent
decoding time courses for each unique problem. The decoding time courses for
each problem were sampled 18 times with replacement and averaged, and this
procedure was repeated 1000 times to produce 1000 time courses, which were
averaged to generate the decoding traces in Figs. 3 and 4.

The 95% CI around the time to peak was determined from the times to peak for
each of the 1000 bootstrapped time courses. Statistical tests on the difference in
time to peak between two problems were performed using the bootstrap
distributions of the differences in time to peak values. If the 95% confidence
interval did not include 0, we rejected the null hypothesis, and p values were
calculated based on the proportion of values that did fall below 0. To determine at
which time points decoding accuracy was significantly above chance, a permutation
test was used to calculate p values!?2. This was done by permuting the sign of the
decoding accuracy data on a participant basis 1000 times. For each permutation
sample, the mean accuracy was recomputed, resulting in an empirical distribution
of 1000 mean accuracies. This distribution was used to convert the real mean
accuracies across subjects over time to p-value maps over time. The significance
threshold was p < 0.05, and significant regions were determined using a cluster-
based approach (cluster defining threshold p < 0.01)?123, Onset of significance was
calculated as the first time point where accuracy was significant for four continuous
5ms time bins—the requirement that the accuracy be significant for four
consecutive bins was adopted to minimize false positives. Reported p values for
paired comparisons of the timing and magnitude of the decoding accuracy are
uncorrected.

For the control experiment, classifiers were trained and tested for each session
individually to yield eight decoding time courses; the five cross validation splits
consisted of 15 trials. The 95% confidence intervals on the times to peak and the
statistical tests used to compare the peak times were produced similarly to those of
the main experiment, by sampling from the eight decoding curves to produce 1000
bootstrapped time courses (shading in Fig. 5 shows the 95% CI at each time point).
To estimate the significance of decoding at each time point, shown as the
horizontal line of data points above the x-axis in the curves in Fig. 5, we used a
within-subjects approach instead of the across-subjects approach used in the main
experiment. A null distribution was produced to test whether the decoding at each
time point was greater than what one would expect by chance. In each null
decoding run, the stimuli identities were shuffled, and the classifier was trained and
tested on the shuffled data. There were 1000 null decoding runs, and p values at

each time point were calculated based on the proportion of null decoding
accuracies that exceeded the real decoding accuracy. These p values were then FDR
corrected.

The test-retest curves to evaluate experimental power (Supplementary Figs. 2
and 3) were obtained by drawing pairs of independent samples of 10, 25, 40, and
50% of the trials (from a total of 375 trials), determining the correlation of the
classification performance among the subproblems between the pairs, and
repeating the procedure five times to generate error bars. For example, for the
“10%” data point in the graph, we drew two sets of 10% of the trials at random—no
trials were common to both sets. We trained separate classifiers on each of the
independent sets and computed the temporal correlation between the two decoding
time courses. We repeated this procedure 5x. We then averaged the correlation
coefficients from the five repeats to obtain error bars.

In Fig. 6, we tested the performance of the classifiers across time: each classifier
trained using data obtained at each time bin was tested using data obtained at every
5ms time bin from —200 to 600 ms after stimulus onset creating a 2-dimensional
matrix of decoding results. Significant time points were determined using a sign-
permutation test and cluster correction (cluster-defining threshold p < 0.01)%8:123,
In Fig. 6¢ to compare the decoding of hue and luminance, the sign-permutation
was carried out on a subproblem basis.

In Fig. 7, the 95% CI of the classification performance for each problem (the
entries in Fig. 7b, c) were generated by bootstrapping across participants
(1 = 1000).

Note that decoding using pupil diameter and eye position cannot account for
decoding of color, as discussed in a previous analysis of the MEGco data set20.

MRI dynamic localizer task. To localize shape, place, face, and color-biased
regions of interest (ROIs), 14 of 18 participants were scanned using the fMRI
dynamic Localizer (DyLoc) described in Lafer Sousa et al,, with the same para-
meters described there. In brief, participants passively viewed full color and
grayscale (achromatic) versions of natural video clips that depicted faces, bodies,
scenes, objects, and scrambled objects. Scrambled objects clips were clips in the
object category that were divided into a 15 by 15 grid covering the frame, the boxes
of which were then scrambled. Participants completed eight runs of the task, each
of which contained 25 blocks of 18 s (20 stimuli and five gray fixation blocks). The
stimuli were a maximum of 20° of visual angle wide and 15° tall. A Siemens 3 T
MAGNETOM Prisma fit scanner (Siemans AG, Healthcare, Erlangen, Germany)
with 64 RF receivers in the head coil was used to collect MRI data in 8 of 14
participants, while a Siemens 3 T MAGENTOM Tim Trio scanner with 32 chan-
nels in the head coil was used for the other six subjects.

For both groups, following Lafer-Sousa et al. a T2*-weighted echo planar
imaging (EPI) pulse sequence was used to detect blood-oxygen-level-dependent
(BOLD) contrast. Field maps (2 mm isotropic, 25 slices) were collected before each
DyLoc run for the purpose of minimizing spatial distortions due to magnetic
inhomogeneities in the functional volumes during analysis. Functional volumes
(2 mm isotropic, 25 slices, field of view [FOV] = 192 mm, matrix = 96 x 96 mm,
2.0s TR, 30 ms TE, 90° flip angle, 6/8 echo fraction) were collected on a localized
section of the brain, aligned roughly parallel to the temporal lobe. The volumes
covered V1-V4 in occipital cortex as well as the entirety of the temporal lobe
ventral to the superior temporal sulcus (STS), and in some cases including parts of
the STS. To allow for T1 equilibration, in each run, the first five volumes were not
used during analysis.

High-resolution T1-weighted anatomical images were also collected for each
subject by means of a multiecho MPRAGE pulse sequence (1 mm isotropic voxels,
FOV = 256 mm, matrix = 256 x 256 mm).

MRI analysis. MRI data were processed following Lafer-Sousa et al (2016). Using
Freesurfer (https://surfer.nmr.mgh.harvard.edu) and custom MATLAB scripts, the
anatomical volumes were segmented into white-matter and gray-matter
structures!'24-126, Functional data, processed on an individual subject basis, were
field- and motion-corrected (by means of rigid-body transformations to the middle
of each run), normalized for intensity after masking non-brain tissue, and spatially
smoothed with an isotropic Gaussian kernel (3 mm FWHM) for better SNR.
Subsequently, Freesurfer’s bbregister was used to generate a rigid-body transfor-
mation used to align the functional data to the anatomical volume.

Whole-volume general linear model-based analyses were performed for all eight
runs collected for each participant, using boxcar functions convolved with a
gamma hemodynamic response function as regressors'?’; each condition’s boxcar
function included all blocks from that condition, as well as nuisance regressors for
motion (three translations, three rotations) and a linear trend to capture slow
drifts.

Brain regions used to restrict decoding analyses of MEG source data were
defined using two methods. Anatomically defined regions were defined using
surface-based Freesurfer atlases: “precentral” and “frontal” regions corresponded
respectively to the “precentral” and “rostralmiddlefrontal” bilateral regions in the
Desikan-Killiany atlas’’; V1 (BA 17), V2 (BA 18), and MT regions were defined
using the Brodmann atlas (https://surfer.nmr.mgh.harvard.edu/fswiki/
BrodmannAreaMaps; Brodmann, 1909). Functionally defined regions were defined
individually using Lafer-Sousa et al.”® as a reference. FFA was selected from voxels
where face response > object response (p < 0.001), using data from all eight runs.
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The same procedure was followed for VVP-c from voxels where color response >
grayscale response, PPA from voxels where scene response > object response, and
LO from voxels where object response > scrambled object response.

Source localization and decoding within fMRI regions of interest. Current
source density is a metric representing the current at each point on the surface of
the brain, defined by the source grid. First, using Brainstorm, a minimum norm
estimate (MNE) was calculated, which was “depth-weighted”, to compensate for a
bias in current density calculations that results in more activity being placed on
superficial gyrii, neglecting regions of cortex embedded in deeper sulci. The MNE
at a given source was normalized by the square root of a local estimate of noise
variance (dynamical Statistical Parametric Mapping; dSPM)128, yielding a unitless
z-scored statistical map of activity. Once a source map was created, ROI analysis
was performed by restricting the features of the classifiers to the top 25 sources
within the bounds of a given ROI whose activity covaried most with the training
labels, using custom code. Additionally, the sources within an ROI were averaged
together within subjects to yield the average sensor response by ROL

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with the paper. The MEGco dataset?® is published and can be
accessed at the OpenNeuro data base!? (https://doi.org/10.18112/0openneuro.ds003352.v1.0.0)
and at NEICOMMONS!3? (https://neicommons.nei.nih.gov/#/MEGco). Source data are
provided with this paper.

Code availability

The procedures and code used to produce all the figures and statistical analyses are
available at NEICOMMONS!3! (https://neicommons.nei.nih.gov/
#/TempDynamicsHueLum).
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