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Real neural system usually contains two types of neurons, i.e., excitatory neurons and
inhibitory ones. Analytical and numerical interpretation of dynamics induced by different
types of interactions among the neurons of two types is beneficial to understanding those
physiological functions of the brain. Here, we articulate amodel of noise-perturbed random
neural networks containing both excitatory and inhibitory (E&I) populations. Particularly,
both intra-correlatively and inter-independently connected neurons in two populations are
taken into account, which is different from the most existing E&I models only considering
the independently-connected neurons. By employing the typical mean-field theory, we
obtain an equivalent system of two dimensions with an input of stationary Gaussian
process. Investigating the stationary autocorrelation functions along the obtained system,
we analytically find the parameters’ conditions under which the synchronized behaviors
between the two populations are sufficiently emergent. Taking the maximal Lyapunov
exponent as an index, we also find different critical values of the coupling strength
coefficients for the chaotic excitatory neurons and for the chaotic inhibitory ones.
Interestingly, we reveal that the noise is able to suppress chaotic dynamics of the
random neural networks having neurons in two populations, while an appropriate
amount of correlation coefficient in intra-coupling strengths can enhance chaos
occurrence. Finally, we also detect a previously-reported phenomenon where the
parameters region corresponds to neither linearly stable nor chaotic dynamics;
however, the size of the region area crucially depends on the populations’ parameters.
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1 INTRODUCTION

Collective behaviours induced by random interaction networks
or/and external inputs are of omnipresent phenomena in many
fields, such as signal processing (Boedecker et al., 2012; Wang
et al., 2014), percolation (Chayes and Chayes, 1986; Transience,
2002), machine learning (Gelenbe, 1993; Jaeger and Haas, 2004;
Gelenbe and Yin, 2016; Teng et al., 2018; Zhu et al., 2019),
epidemic dynamics (Forgoston et al., 2009; Parshani et al., 2010;
Dodds et al., 2013), and neuroscience (Shen and Wang, 2012;
Giacomin et al., 2014; Aljadeff et al., 2015; Mastrogiuseppe and
Ostojic, 2017). Elucidating the mechanisms that arouse such
phenomena is beneficial to understanding and reproducing
crucial functions of real-world systems.

Particularly, neuroscience is a realm where collective
behaviours at different levels are ubiquitous, needing
quantitative explorations by using the network models that
take into account different types of perturbations,
deterministic or stochastic. Somplinsky et al. articulated a
general model describing autonomous, continuous, randomly
coupled neural networks in a large scale and investigated how
chaotic phase for this system is related crucially with the
randomness of the network structure applying typical theory
of mean-field and dimension reduction (Sompolinsky et al.,
1988). Rajan et al. studied a random neural model with
external periodic signals, where an appropriate amount of
external signal is able to regularize the chaotic dynamics of the
network model (Rajan et al., 2010). Schuecker et al. introduced
the external signal in a manner of white noise to the neural
network model, surprisingly finding a phase, neither chaotic nor
linearly stable, maximizing the memory capacity of this network
model (Schuecker et al., 2018). And some other computational
neuroscientists investigated the influence of the random
structures and stochastic perturbations positively or/and
negatively on synchronization dynamics or computational
behaviors in particularly coupled neural networks (Kim et al.,
2020; Li et al., 2020; Pontes-Filho et al., 2020; Yang et al., 2022;
Zhou et al., 2019; Leng and Aihara, 2020; Jiang and Lin, 2021).

Initially, the random neural network models studied in the
literature include only one group/type of mutually connected
neurons. However, physiological neurons usually have at least
two types, excitatory neurons, and inhibitory ones. They are the
elementary components in the cortex of the brain, where the
output coupling strengths of excitatory (resp., inhibitory)
neurons are non-negative (resp., non-positive) (Eccles, 1964;
van Vreeswijk and Sompolinsky, 1996; Horn and Usher,
2013). Emerging evidences show that two types of neurons
and their opposing coupling strengths are beneficial or
disadvantageous to learning the patterns in cortical cell (van
Vreeswijk and Sompolinsky, 1996), forming the working memory
(Cheng et al., 2020; Yuan et al., 2021), and balancing the energy
consumption and the neural coding (Wang and Wang, 2014;
Wang et al., 2015). Thus, neural networks containing two types or
populations of neurons, of practical significance, attract more and
more attentions. Introducing two or even more populations of
neurons in different types into the random network model
naturally becomes an advancing mode for investigating how

the types of neurons, together with the other physiological
factors, influence the neurodynamics as well as the realization
of the corresponding functions. For instance, the model that
contains two types of neurons partially-connected was studied in
(Brunel, 2000; Omri et al., 2015) and the model that contains
neurons independently-connected was systematically
investigated in (Hermann and Touboul, 2012; Kadmon and
Sompolinsky, 2015).

Experimental evidences further suggest that, for pairs of
clustered cortical neurons, the bidirectional connections are
hyper-reciprocal (Wang et al., 2006) and thus significantly
correlated with each other (Litwin-Kumar and Doiron, 2012;
Song et al., 2005). So, in this article, we intend to study the
noise-perturbed excitatory-inhibitory random neural
networks, in which the bidirectional synaptic weights
between any pair of neurons in both type of populations
are correlated, as showed sketchily in Figure 1. And we are
to analytically investigate how such correlations affect the
asymptotical collective behaviors of the coupled neurons in
two populations. As such, our work could extend the results in
(Daniel et al., 2017; Schuecker et al., 2018), where only one
population is taken into account.

More precisely, this article is organized as follows. In Section
2, based on Somplinsky’s model of random neural networks, we
introduce excitatory and inhibitory populations of intra-
correlatively or inter-independently connected neurons, and
further include the external perturbations of white noise into
the model. Still in this section, we reduce this model of a large-
scale into a two-dimensional system using the moment-
generating functional and the saddle-point approximation
(Eckmann and Ruelle, 1985; Gardiner, 2004; Helias and
Dahmen, 2020). In Section 3, along with the reduced system,
we study the autocorrelation function, which describes the
population-averaged correlation of every state in the two-
dimensional system at different time instants, and reveal how

FIGURE 1 | A sketch of the noise-perturbed excitatory-inhibitory neural
networks. Here, based on the physiological evidences, JEj,Ei (resp., JIi,Ij and
JIj,Ii), the weights of the synapses connecting any pair of neurons in the same
population JEi,Ej and are supposed to be correlated in our model, and
JEi,Ii and JIi,Ei are supposed to be independent.
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the external noise, the coupling strength, and the quantitative
proportion of the neurons in two types together affect the
autocorrelation function evolving in a long term. Also in this
section, we specify some analytical conditions under which the
whole system can synchronize as one population in a sense that
the autocorrelation functions for the two populations of
neurons behave in a consensus manner. Additionally in
Section 4, we investigate the maximal Lyapunov exponents
for the two populations, respectively, determining whether
the system evolves chaotically (Eckmann and Ruelle, 1985),
and thus seek numerically out the parameter regions where
chaotic dynamics can be suppressed or enhanced. Still in this
section, akin to the results obtained in (Schuecker et al., 2018),
we numerically detect the parameters’ region where the system
evolves in neither linearly stable nor chaotic manner, and also
find that the size of such a region crucially depends on the
statistical parameters of the two populations of the coupled
neurons. We close this article by presenting some discussion
and concluding remarks.

2 MODEL FORMULATION: REDUCTION
FROM HIGH-DIMENSION TO
TWO-DIMENSION
To begin with, we introduce a neural network model constituting
two interacted populations, either of which contains intra- and
inter-interacted excitatory or inhibitory neurons. Such a model
reads:

dxEi

dt
� −xEi +∑NE

j�1 JEi,Ejϕ xEj( ) +∑NI

j�1 JEi,Ijϕ xIj( ) + σξEi t( ),
dxIi

dt
� −xIi +∑NE

j�1 JIi,Ejϕ xEj( ) +∑NI

j�1 JIi,Ijϕ xIj( ) + σξIi t( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1)

where xEi and xIi represent the states of the excitatory neuron and
the inhibitory one, respectively, and ϕ(·) stands for the transfer/
activation function. Additionally, each JKi,Lj is the element of the
random connection matrix specified below, and each ξKi(t), as the
external perturbation, is supposed to be a white noise with an
intensity σ and satisfying

〈ξKi t( )ξLj s( )〉 � δKLδijδ t − s( ),
where K, L ∈ {E, I}, i = 1, 2, . . . , NK, j = 1, 2, . . . , NL, δij is the
Kronecker delta notation, and δ(t − s) is the Dirac delta function
with ∫Rδ(x)f(x)dx = f(0).

On one hand, based on the experimental evidences (Song et al.,
2005; Wang et al., 2006; Litwin-Kumar and Doiron, 2012), we
suppose that the strength of the intra-coupling between any two
of the neurons in the same population is correlated, and further
that the mean strength of these couplings does not vanish.
Specifically, we suppose the couplings to obey the Gaussian
normal distributions as

JEi,Ej
JEj,Ei

( ) ~ N ME,AE( ), JIi,Ij
JIj,Ii

( ) ~ N MI,AI( ),

in which

ME � mEE/NE mEE/NE( )⊤, MI � mII/NI mII/NI( )⊤,
AE � g2

1
N

ηE
N

ηE
N

1
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, AI � g2

1
N

ηI
N

ηI
N

1
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Here, g is the gain parameter modulating the coupling strength of the
overall network, eachNE (resp.,NI) stands for the number of neurons
in the excitatory (resp., inhibitory) population withN =NE +NI, each
ηE (resp., ηI) describes the correlation between JEi,Ej and JEj,Ei (resp.,
JIi,Ij and JIj,Ii), two weights of the synapses connecting any pair of the
neurons in the same excitatory (resp., inhibitory) population, and
mEE (resp.,mII) characterizes the mean coupling strength among the
excitatory (resp., inhibitory) population.

On the other hand, as usual, we assume that the strength of the
inter-coupling between any pair of neurons, respectively, from
the two populations is independent of the other strength, and
further that they obey the following distributions:

JEi,Ij ~ N mEI/NI, g
2/N( ), JIi,Ej ~ N mIE/NE, g

2/N( ),
where mEI (resp., mIE) is the mean coupling strength from the
neurons in the inhibitory (resp., excitatory) population to the
ones in the excitatory (resp., inhibitory) population. In the
following investigations, we assume that NE/NI, the
proportion, does not change as N grows. Clearly, there are two
kinds of randomnesses simultaneously in this model: JKi,Lj, the
random coupling strengths, and ξKi, the external perturbations of
white noise. In fact, such a model is also suitable for describing
coherent or incoherent phenomena that are produced by any
system of two populations in addition to the neural populations
that are discussed in this article.

Since the coupling matrices used in system (1) are randomly
generated during the numerical realizations, simulated dynamics
of this system are different almost surely for different selected
matrices. To obtain deep, analytical insights to the asymptotic
properties of this system as the number of populations N goes to
the infinity, we utilize a mean-field technique. Specifically,
applying the Martin–Siggia–Rose–de Dominicis–Janssen path
integral formula (Martin et al., 1973; De Dominicis, 1976;
Janssen, 1976; Chow and Buice, 2015), we transform system
(1), stochastic differential equations, into an Itô integral form,
and derive the following moment-generating functional:

Z l[ ] J( ) � ∫Dx∫D~x exp S x, ~x[ ] − ~x⊤Jϕ x( ) + l⊤x{ }. (2)

Here, for ease of reading, we include the tedious calculations for
obtaining this functional into Supplementary Appendix SA. The
notations in (2) are illustrated as follows:

S x, ~x[ ] � ~xT zt + 1( )x + 1
2
σ2~x⊤x

and x ≔ ( xE xI )⊤ represents the trajectories of the neurons with

xE ≔ xEi t( ), t ∈ R( )NE
i�1 , xI ≔ xIi t( ), t ∈ R( )NI

i�1.
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Moreover, after an inverse Fourier transformation of the Dirac
delta function, ~x ≔ ( ~xE ~xI )⊤ represents the response field with

~xE ≔ ~xEi t( ), t ∈ R( )NE
i�1 , ~xI ≔ ~xIi t( ), t ∈ R( )NI

i�1,

and l ≔ ( lE lI )⊤ represents the source field where

lE ≔ lEi t( ), t ∈ R( )NE
i�1 , lI ≔ lIi t( ), t ∈ R( )NI

i�1.

The formula

l⊤x ≔ ∑
K∈ E,I{ }

∑NK

i�1
∫
R

lK,i t( )xK,i t( )dt

denotes the inner product in time and two populations of
neurons. In addition, the measure here is denoted formally as

∫Dx � lim
M→∞

∏
K∈ E,I{ }

∏NK

i�1
∏M
t�1

∫+∞

−∞
dxt

Ki

and

∫D~x � lim
M→∞

∏
K∈ E,I{ }

∏NK

i�1
∏M
t�1

∫+i∞

−i∞
d~xt

Ki

2πi
.

Finally, J is an N × N matrix partitioned as

J � JEE JEI
JIE JII

( ),
where JKL � (JKi,Lj)NK×NL

.
With the moment-generating function Z obtained in (2), we

average it over the random coupling matrix J, perform a saddle-
point approximation method, and reduce the model into a two-
dimensional system, which reads

dxE

dt
� −xE + γE t( ) + σξE t( ) +mEE〈ϕ xE t( )( )〉 +mEI〈ϕ xI t( )( )〉,

dxI

dt
� −xI + γI t( ) + σξI t( ) +mIE〈ϕ xE t( )( )〉 +mII〈ϕ xI t( )( )〉.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

Here, for a concise expression, we still include the detailed
arguments into Supplementary Appendix SB. The notations
used in (3) are defined as follows: ξK(t) withK ∈ {E, I} are mutually
independent white noises, and γK(t) with K ∈ {E, I} are mutually
independent stationary Gaussian processes with their means as
zeros and their correlations satisfying

〈γE t( )γE t′( )〉 � g2

N
NE 1 + ηE( )〈ϕ xE t( )( )ϕ xE t′( )( )〉[

+NI〈ϕ xI t( )( )ϕ xI t′( )( )〉],
〈γI t( )γI t′( )〉� g2

N
NE〈ϕ xE t( )( )ϕ xE t′( )( )〉 +NI 1 + ηI( )〈ϕ xI t( )( )ϕ xI t′( )( )〉[ ].

3 DYNAMICS OF AUTOCORRELATION
FUNCTIONS

Here, we investigate the dynamics of the autocorrelation
functions for the reduced system (3). To this end, letting the
left hand side of system (3) equal to zeros yields a stationary
solution satisfying

〈xE〉 � mEE〈ϕ xE( )〉 +mEI〈ϕ xI( )〉,
〈xI〉 � mIE〈ϕ xE( )〉 +mII〈ϕ xI( )〉.{ (4)

For an odd transfer function, we immediately obtain that 〈xE〉 =
〈xI〉 = 0 is a consistent solution. Using the error dynamics as

δxE t( ) � xE t( ) − 〈xE〉,
δxI t( ) � xI t( ) − 〈xI〉,{

and assuming these dynamics as stationary Gaussian processes,
we define the autocorrelation functions as

CE τ( ) ≔〈δxE t( )δxE t + τ( )〉, CI τ( ) ≔〈δxI t( )δxI t + τ( )〉,
where, physically, these functions represent the population-averaged
cross-correlations between the dynamical quantities deviating from
the equilibrium states at t and t + τ, two different time instants. For a
given difference τ between the time instants, the larger the value of the
autocorrelation function, the more correlative manner the deviating
dynamics behave in. As will be numerically displayed in the following
investigation, with the increase of the difference τ, the value
sometimes drops down but sometimes exhibits a non-monotonic
tendency.

Further define the variances by cE0≔CE(0) and cI0≔CI(0), and
define cE∞≔ limτ→∞CE(τ) and cI∞≔ limτ→∞CI(τ). Through
implementing the arguments performed in Supplementary
Appendix SC, we get two population-averaged autocorrelation
functions obeying the following second-order equations:

d2CE

dτ2
� CE − g2

N
NE ηE + 1( )〈ϕ xE t( )( )ϕ xE t + τ( )( )〉 +NI〈ϕ xI t( )( )ϕ xI t + τ( )( )〉[ ]

−σ2δ τ( ),
d2CI

dτ2
� CI − g2

N
NE〈ϕ xE t( )( )ϕ xE t + τ( )( )〉 +NI ηI + 1( )〈ϕ xI t( )( )ϕ xI t + τ( )( )〉[ ]

−σ2δ τ( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Notice that each element of system (3) is a Gaussian process and
that

〈ϕ xK t( )( )ϕ xK t + τ( )( )〉 � 1
2π

���
A| |√ ∫∫

R2
ϕ z1 + 〈xK〉( )ϕ z2 + 〈xK〉( )

exp −1
2
zTA−1z( )dz1dz2,

(6)
where

A � cK0 CK τ( )
CK τ( ) cK0

( ), K ∈ E, I{ }.

We thus introduce the notation
fϕ(·+〈xK〉)(CK(τ), cK0) ≔ 〈ϕ(xK(t))ϕ(xK(t + τ))〉 to represent
the function with respect to the autocorrelation and the
variance for each K.

In what follows, we analytically and numerically depict how the
dynamics of autocorrelation functions are affected by external noise,
the coupling strength, and the quantitative proportion of the neurons
in two populations. Also we establish conditions under which these
two populations of neurons can be synchronized. More precisely, the
analytical results are summarized into the following propositions and
the numerical results are illustrated after the propositions. The
detailed arguments and computations for validating these
propositions are included in Supplementary Appendix SD.
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Proposition III.1 Define the potentials of the population-
averaged motion for the two types of neurons by

VE CE, CI; cE0 , cI0( ) � −1
2
C2

E +
g2NE 1 + ηE( )

N
fρE CE, cE0( ) + g2NI

N
fρI CI, cI0( ),

VI CE, CI; cE0 , cI0( ) � −1
2
C2

I +
g2NE

N
fρE CE, cE0( ) + g2NI 1 + ηI( )

N
fρI CI, cI0( ),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (7)

where

ρK x( ) � ∫x

0
ϕ y + 〈xK〉( )dy, K ∈ E, I{ },

and assume that the external white noise contribute to the initial
kinetic energy of all the neurons. Then, the autocorrelation
functions satisfy

1
2
CE′ 2 + VE CE, CI; cE0, cI0( ) � const,

1
2
CI′2 + VI CE, CI; cE0, cI0( ) � const,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

and the consistent solutions of cK∞ and cK0 satisfy

σ4

8
+ VE cE0, cI0; cE0, cI0( ) � VE cE∞, cI∞; cE0, cI0( ),

σ4

8
+ VI cE0, cI0; cE0, cI0( ) � VI cE∞, cI∞; cE0, cI0( ).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (9)

Additionally, define the powers of the motions (i.e., the
derivatives of − VK as defined above) by

WE CE, CI; cE0, cI0( ) � CE − g2NE 1 + ηE( )
N

fϕ ·+〈xE〉( ) CE, cE0( ) − g2NI

N
fϕ ·+〈xI〉( ) CI, cI0( ),

WI CE, CI; cE0 , cI0( ) � CI − g2NE

N
fϕ ·+〈xE〉( ) CE, cE0( ) − g2NI 1 + ηI( )

N
fϕ ·+〈xI〉( ) CI, cI0( ),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10)

and suppose that these powers dissipate in a long timescale,
that is,

WE cE∞, cI∞; cE0, cI0( ) � WI cE∞, cI∞; cE0, cI0( ) � 0. (11)
Then, the two mean states 〈xK〉, the two self-variances cK0, and
the two correlations in a long term cK∞ for the two populations
are analytically existent provided that the equations specified in
(4), (9), and (11) are consistent.

Particularly, Eq. 8 is actually the energy conservation
equation with the potentials VE,I. Using Eq. 9 yields that
the intensity σ of the white noise contributes to the initial
kinetic energy 1

2CE′ 2(0) � 1
2CI′2(0) � σ4

8 with the initial velocity
CE′ (0) � CI′(0) � σ2

2 . Thus, the self-variance cK0 can admit a
higher value than cK∞.

The following proposition further describes the specific forms
of the solutions to the consistent equations in 4, 9, 11 under
particular conditions.
Proposition III.2 Suppose that all the assumptions set in
Proposition III. 1 are all valid. Then, we have the following results.

1) If the transfer function is odd, the two correlations in a long
term satisfy cE∞ = cI∞ = 0. If σ = 0 is further fulfilled, the two
self-variances satisfy cE0 = cI0 = 0.

2) If one of the following three conditions is satisfied:

i) all the coupling strengths are independent with each
other, i.e., ηE = ηI = 0.

ii) the transfer function is odd and NEηE = NIηI, and.
iii) the mean states satisfy 〈xE〉 = 〈xI〉 and the population

sizes with the coupling strengths fulfilling NEηE = NIηI,

then we have CE(τ) = CI(τ). This implies that the two populations
becomes synchronized in a sense that the two stationary
autocorrelation functions behave in the same manner.

The following numerical simulations further demonstrate the
above analytical findings on the synchronization of the two
populations of the neurons. More specifically, for the case
where the transfer function is set as an inverse of the tangent
function and ηENE = ηINI, the autocorrelation functions of the
two populations are equal all the time according to Proposition
III. 2. The fluctuating tendencies of the autocorrelation functions
CE,I(τ) plotted in Figure 2A validate such a case, although this
figure presents only one realization for each CK(τ). Thus, the
potentials VE,I for the two populations are all the same along the
time, which implies the occurrence of the synchronized dynamics
for the two populations. As seen in Figure 2B (resp., Figure 2C),
for the case where ηENE = ηINI (resp., 〈xE〉 = 〈xI〉) is not satisfied,
the dynamics of autocorrelation function for the two populations
become different completely. As shown by one realization of each
CK(τ) in Figure 2D, as the coupling correlation coefficient η
vanishes, the dynamics behave in a similar manner again.
Additionally, as indicated by Proposition III.2, for the transfer
function as an inverse of the tangent function, we have cE∞ = cI∞ =
0 (see Figures 2A,B); however, for the transfer function as a non-
odd function, their autocorrelation functions in a long term may
not ever vanish (see Figures 2C,D).

4 ROUTE TO CHAOS

Since chaos emergent in neural network models is often regarded as a
crucial dynamical behavior beneficial to memory storage and
association capacity (Lin and Chen, 2009; Haykin et al., 2006;
Toyoizumi and Abbott, 2011; Schuecker et al., 2018), it is of great
interest to investigate the route of generating chaos in the above system
(3) of two populations of neurons. To this end, we calculate the
maximal Lyapunov exponent, which quantifies the asymptotic growth
rate of the system dynamics for given initial perturbations (Cencini
et al., 2010). More precisely, for the two dynamics x1K(t) and x2K(t) in
one of the populations and with the same realization of the coupling
matrix J and thewhite noise ξ, themaximal Lyapunov exponent (MLE)
is defined by

λmax,K ≔ lim
t→∞

lim
‖x1K 0( )−x2K 0( )‖→0

1
t
ln

x1K t( ) − x2K t( )���� ����
x1K 0( ) − x2K 0( )���� ����,

where ‖ ·‖ stands for the Euclidean-norm, the number in the
superscript corresponds to the different group of the initial
values, and the notation (K ∈ {E, I}) in the subscript
corresponds to the different population of the neurons. Still
for the same realization of the coupling matrix and the white
noise, denote, component-wisely, by xαEi (resp., x

α
Ii) the state of
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the i-th neuron in the excitatory (resp., inhibitory) population with
the α-th group of initial values. Here, α = 1, 2, K ∈ {E, I} and i = 1, 2,
. . . , NK. Actually, the MLE quantifies how the sensitivity of a system
depends on its initial values. We, following the idea presented in Ref.
(Derrida and Pomeau, 1986), calculate the MLEs on the two
dynamics with only initial values different. Define the distance
between these two dynamics, in either population but with
different initial values, by

dK t( ) ≔ 1
NK

∑NK

i�1
x1
Ki t( ) − x2

Ki t( )[ ]2
� 1
NK

∑NK

i�1
δx1

Ki t( ) − δx2
Ki t( )[ ]2, K ∈ E, I{ }.

Clearly, if λmax,E > 0 (resp., λmax,I > 0), that is, the distance
between the two dynamics in the excitatory (resp., inhibitory)
population grows exponentially with arbitrarily-closed initial
values, the dynamics of this population become chaotic. In
order to show the conditions under which the chaos occurs,
we evaluate dK(t) as specified above. Thus, direct computation
and approximation yield:

dK t( ) ≈ C11
K t, t( ) + C22

K t, t( ) − C12
K t, t( ) − C21

K t, t( ),
where

Cαβ
K s, t( ) ≔ 〈δxα

K s( )δxβ
K t( )〉, K ∈ E, I{ }, α, β � 1, 2.

To study the dynamics of dK(t) more explicitly, we define

dK t, t′( ) ≔ C11
K t, t′( ) + C22

K t, t′( ) − C12
K t, t′( ) − C21

K t, t′( ),
where dK(t, t) = dK(t), each Cαα

K with α = 1, 2 is the
autocorrelation function of the dynamics starting from a
given group of initial values, and Cαβ

K is the cross-
correlation function of the two dynamics with C12

K � C21
K .

Then, we focus on the collective behaviours of the dynamics
starting from different groups of initial values. Particularly, we
apply the moment-generating functional, akin to the
arguments performed in Supplementary Appendix SA, and
obtain

Z l1, l2[ ] J( ) � ∏2
α�1

∫Dxα ∫D~xα exp S xα, ~xα[ ]{(
−~xα⊤Jϕ xα( ) + lα⊤xα})exp σ2~x1⊤~x2( ).

Analogously, averaging it over the random coupling matrix
and making a saddle-point approximation (see Supplementary
Appendix SE for details) give equivalent dynamical equations as
follows.

FIGURE 2 | The autocorrelation functions CE,I(τ) change with an increase of the time difference τwhen the system goes over the time duration from t = 0 to 100. (A)
The parameters are set as ηENE = ηINI = 500 with NE = 1,500, NI = 1,000, mEE = 1, mIE = 0.75 mEI = −0.25, mII = −0.5, g = 1.4, σ = 0.8, ηE � 1

3, and ηI � 1
2. The transfer

function is set as ϕ(x) = arctanx. (B) All the configurations are the same as those set in (A) except for ηI = 0. (C) All the configurations are the same as those set in (A)
except for the transfer function set as ϕ(x) = max(arctanx, 0) and the parameters changed asmIE = 75 andmII = −50. (D) All the configurations are the same as those
set in (C) except for ηE = ηI = 0. Here, only one realization for each functions are numerically presented.
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dxα
E

dt
� −xα

E + γαE t( ) + σξαE t( ) +mEE〈ϕ xα
E t( )( )〉 +mEI〈ϕ xα

I t( )( )〉,
dxα

I

dt
� −xα

I + γαI t( ) + σξαI t( ) +mIE〈ϕ xα
E t( )( )〉 +mII〈ϕ xα

I t( )( )〉,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

where α = 1, 2, ξαi (t) is the independent white noise and γαi (t) is
the stationary Gaussian process with its mean as zero and its
correlation satisfying

〈γαE t( )γ β
E t′( )〉 � g2

N
NE 1 + ηE( )〈ϕ xα

E t( )( )ϕ xβ
E t′( )( )〉 +NI〈ϕ xα

I t( )( )ϕ xβ
I t′( )( )〉[ ],

〈γαI t( )γ β
I t′( )〉 � g2

N
NE〈ϕ xα

E t( )( )ϕ xβ
E t′( )( )〉 +NI 1 + ηI( )〈ϕ xα

I t( )( )ϕ xβ
I t′( )( )〉[ ]

with α, β = 1, 2. Now, inspired by the ansatz proposed in
(Schuecker et al., 2018), we expand the cross-correlation
functions as

C12
K t, t′( ) � CK t − t′( ) + ϵGK t, t′( ), (12)

where CK(t − t′) � C11
K (t, t′) � C22

K (t, t′) and K ∈ {E, I}. Hence,
we get dK(t) = −2ϵGK(t, t) and the dynamical equations for the
error dynamics of the cross-correlation functions from the
autocorrelation functions as follows:

zt′ + 1( ) zt + 1( )GK t, t′( ) � g2

N
NE 1 + δKEηE( )fϕ′ ·+〈xE〉( ) CE t − t′( ), cE0( )GE t, t′( )[

+NI 1 + δKIηI( )fϕ′ ·+〈xI〉( ) CI t − t′( ), cI0( )GI t, t′( )] (13)

with K ∈ {E, I}. Refer to Supplementary Appendix SF for the
detailed arguments on obtaining the above equations. Based on
these equations, we can obtain the conditions under which the
two populations of the neurons have the same asymptotic
behaviours of the MLEs, and specify the critical value of the
coupling strength coefficient g where the two populations
simultaneously behave in a chaotic manner. We summarize
the main conclusion into the following proposition and
include the detailed arguments into Supplementary
Appendix SG.

Proposition IV.1. Suppose that either one of the conditions
assumed in conclusion (2) of Proposition III.2 is satisfied. Then,
we have that GE(t, t′) = GI(t, t′) and that the MLEs are the same for
the two populations. Particularly, gK,c, the critical value for
generating chaos in the two populations, are the same and satisfy

cK0 − g2
K,c 1 + NKηK

N
( )fϕ cK0, cK0( ) � 0, K ∈ E, I{ }. (14)

We use the numerical simulations to further illustrate the
analytical results obtained in Proposition IV. 1. As shown in
Figure 3A, when the transfer function is odd and the condition
ηENE = ηINI is satisfied, the MLEs for the two populations are
the same. This implies that the sensitivity of two populations
depending on the initial values are the same, and also that the
critical values for generating chaos in the two populations are
the same. However, as shown in Figure 3B, when this
condition is not satisfied, the MLEs for the two populations
are different, which also indicates that the critical values for
chaos emergence are likely different. Particularly, there are
some coupling strengths for g (e.g., g = 1.9) such that one
population behaves chaotically while the other one does not.

This can be illustrated by the chaotic inhibitory population and
the non-chaotic excitatory population, which are depicted in
Figures 4C,D using the setting g = 1.9. Indeed, as shown in
Figure 3C, the MLEs are the same although the transfer
function is changed as a non-odd function. The same
activation function is used in Figure 2C, where, however,
the autocorrelation functions for the two populations are
different. This reveals that, for calculating the MLEs, the
condition ηENE = ηINI is probably robust against the
selection of the transfer function. In addition, formula (14)
is only a sufficient condition for chaos emergence in the two
populations that behave in the same manner, and it cannot be
expressed in a closed form and hard to be determined, since cK0
and 〈xK〉 satisfy Eqs 4, 9, 11. It is also worthwhile to mention
that the MLEs, shown in Figure 3, for the two populations is
not monotonically change with g, which is different from the
previous results obtained in (Schuecker et al., 2018).
Correspondingly, a more systematic view on how the
dynamical behaviors of the two types of neurons change
with g are depicted, respectively, in Figure 4.

Figures 5, 6 depict how the intensity of white noise σ and
the correlation coefficient ηK of the intra-connection
influence the MLEs in addition to the coupling strength g.
More precisely, as shown in Figure 5, the white noise with
the intensity σ can suppress the onset of chaos for both
populations of neurons. As for the noise-free case (i.e., σ = 0),
the critical values gK,c for chaos emergence are close to one;
however, for the case with noise, gK,c are larger than 1, which
is consistent with the results obtained in (Schuecker et al.,
2018). As shown in Figure 6, increasing correlation
coefficient ηK of the intra-connection can promote chaos
emergence. This is consistent with the findings for the single-
population network where increasing the correlation
coefficients of the connections yields a broader spectrum
distribution of the adjacent matrix along the real axis and
leads to chaos emergence (Girko, 1984; Sommers et al., 1988;
Rajan and Abbott, 2006). As shown still in Figure 6,
enlarging ηK renders the curve of the MLE more
monotonously increasing. Additionally, changing ηK in
one population can influence dynamics of both
populations, but its impacts on the two MLEs are
different. In particular, as shown in Figure 7, when ηE is
above the value determined by the equation ηENE = ηINI, it is
more likely to enhance the chaos in the population of
excitatory neurons.

Also, we are to study how the setting in the activation function
ϕ affects the phase transition of the studied neuronal networks.
To this end, we introduce a parameter a into the transfer function
as ϕa(x) = arctan(ax). Clearly, the value of a determines the slope
of the transfer function at the equilibrium. The larger the slope,
the larger the absolute values of the eigenvalues in the vicinity of
the equilibrium. As such, increasing the slope likely results in the
instability of the neuronal network and promotes the chaos as
well. This relation between the slope and the occurrence of chaos
is demonstrated in Figure 8, where the numerical simulations on
the MLEs and the critical value gK,c for generating chaos are
presented.
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Finally, the coexistence of linear instability and non-chaos,
another interesting phenomenon, was reported for neural models
having single population (Schuecker et al., 2018). Here, we validate
that such a phenomenon is also present for the above two populations
model, but it is crucially related to the selection of several parameters.
More precisely, in order to analyze the linear stability of themodel, we
use its first-order approximation as follows:

dzEi
dt

� −zEi +∑NE

j�1 JEi,Ejϕ′ xEj( )zEj t( ) +∑NI

j�1 JEi,Ijϕ′ xIj( )zIj t( ),
dzIi
dt

� −zIi +∑NE

j�1 JIi,Ejϕ′ xEj( )zEj t( ) +∑NI

j�1 JIi,Ijϕ′ xIj( )zIj t( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(15)

where xKi is the reference trajectory. The whole network is
said to be linearly unstable as ρ is non-negative, where we
denote by ρ ≔ max(Re(κ) | κ the real part of the eigenvalue of
the adjacent matrix specified in (15)). As numerically shown
in Figure 9, the whole system is linearly stable until the
coupling strength coefficient g goes beyond 1.3. However, as
shown in Figure 3B, the populations of the excitatory and the
inhibitory neurons display chaotic dynamics, respectively, at
the critical points of g = gE,c = 2 and g = gI,c = 1.8, which are
larger than 1.4. Hence, the phases of neither linear stability nor
chaos exist still for the two populations model. Figure 10
shows the dynamical behaviors of the neither linearly stable
nor chaotic phase and the linearly stable phase. Particularly,
the regions of g for such phases in the respective populations

are different: The population of the excitatory neurons having
a larger value of the critical point corresponds to a broader
range of g.

5 DISCUSSION AND CONCLUDING
REMARKS

In this article, inspired by Sompolinsky’s framework on
analyzing random neural networks, we have investigated a
random neural network model containing both excitatory
and inhibitory populations in large scales. We have taken into
consideration not only the external perturbations of white
noise, but also the randomness of inter- and intra-
connections among the neurons. By applying the path
integral formalism and the saddle-point approximation, we
have reduced the model in large scales into a two-
dimensional system with external Gaussian input. Based
on the reduced model, we have depicted analytically and
numerically how the parameters of populations and
randomness influence the synchronization or/and chaotic
dynamics of the two populations. Also, we have found
different regions of the parameters with which the
respective populations have dynamical behaviors of neither
linear stability nor chaos.

As for the directions for the further study, we provide the
following suggestions. First, although, along with the path integral,
the methods used here are applicable to studying population

FIGURE 3 | TheMLEs, respectively, for the two populations, change with the coupling strength coefficient g. (A) The parameters are set as:NE = 1,500,NI = 1,000,
mEE = 1,mIE = 0.75mEI = −0.25,mII = −0.5, σ = 0.8, ηE � 1

3, and ηI � 1
2. The transfer function is selected as ϕ(x) = arctanx. (B) All the configurations are used in the same

manner as those used in (A) except for ηE = −1. (C) All the configurations are used in the same manner as those used in (A) except for the parameters set asmEI = −25
and mII = −50 and the transfer function set as ϕ(x) = max(arctanx, 0).
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FIGURE 4 | Different dynamical behaviors, respectively, for the excitatory (A,C,E) and the inhibitory (B,D,F) populations, change with different coupling strengths
for g, where g = 3 [(A,B): both populations are chaotic], g = 1.9 [(C,D): the inhibitory population is chaotic while the excitatory one is non-chaotic], and g = 1.5 [(E,F): both
populations are non-chaotic]. Here, the parameters are set as: NE = 1,500, NI = 1,000, mEE = 1, mIE = 0.75 mEI = −0.25, mII = −0.5, σ = 0.8, ηE = −1, and ηI = 0.5. The
transfer function is selected as ϕ(x) = arctanx.

FIGURE 5 | The MLEs change with g, the coupling strength coefficient, and σ, the intensity of white noise, respectively, for the population of excitatory neurons (A)
and the population of inhibitory neurons (B). The black lines mark gK,c, the critical points of two populations with given σ. The parameters are set as: NE = 1,500, NI =
1,000, mEE = 1, mIE = 0.75, mEI = −0.25, mII = −0.5, ηE = −1, and ηI = 0.5, and the transfer function is selected as ϕ(x) = arctanx.
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dynamics in neuroscience (Zinn-Justin, 2002; Buice and
Cowan, 2007; Chow and Buice, 2015), it is of tremendously
tedious calculation to deal with systems having more than two
populations. Thus, for multi-population, we suggest to seek
additional mean-field methods (Ziegler, 1988; Olivier, 2008;
Kadmon and Sompolinsky, 2015) for correspondingly deriving

the closed-form equations for autocorrelation functions,
obtaining the equivalent stochastic differential equations for
the population-averaged Gaussian process, establishing the
analytical conditions for synchronization emergence, and
finding the phase diagram characterizing the regimes of
multi-dynamics.

FIGURE 6 | TheMLEs change with g, the coupling strength coefficient, and ηE, the correlation coefficient of excitatory population, respectively, for the population of
the excitatory neurons (A) and the population of the inhibitory neurons (B). The parameters are set as: NE = 1,500, NI = 1,000, mEE = 1, mIE = 0.75, mEI = −0.25, mII =
−0.5, σ = 0.8 and ηI = 0, and the transfer function is selected as ϕ(x) = arctanx.

FIGURE 7 | The MLEs change with g, the coupling strength coefficient, and ηE, the correlation coefficient of excitatory population, respectively, for the two
populations. The parameters are set as:NE = 1,500,NI = 1,000,mEE = 1,mIE = 0.75mEI = −0.25,mII = −0.5, σ = 0.8 and ηI = 0, and the transfer function is selected as ϕ(x)
= arctanx. (A) The comparison between ηE = −1 and ηE = 0. (B)The comparison between ηE = 1 and ηE = 0.

FIGURE 8 | TheMLEs change simultaneously with g, the coupling strength coefficient, and a, the slope in the transfer function ϕa(x) = arctan(ax), respectively, for the
population of excitatory neurons (A) and for the population of inhibitory neurons (B). The black curves correspond to gK,c, the critical values for chaos occurrence in the
two populations for different a. Here, the parameters are set as: NE = 1,500, NI = 1,000, mEE = 1, mIE = 0.75, mEI = −0.25, mII = −0.5, ηE = −1, and ηI = 1.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 91551110

Peng and Lin Dynamics of Random Neural Networks

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Second, in light of the spectrum theory of random matrices
(Ginibre, 1965; Girko, 1984; Sommers et al., 1988; Tao et al.,
2010; Nguyen and O’Rourke, 2014), for single population
dynamics with or without external white noise, analytical

criteria have been established for stable dynamics (Wainrib
and Touboul, 2012) and for chaos emergence (Daniel et al.,
2017) as well. In this article, we only use the numerical
methods to roughly find the stability regions for the
parameters, which suggests that, to obtain more accurate
regions, we need to implement the analytical methods using
the spectrum theory for random matrices even possessing
some particular structures.

Thirdly, we make an assumption that the process is
stationary during our analytical investigation and
characterize how neurons deviate from their stable states.
During the numerical simulations, we treat this assumption
through using the data of the processes after a sufficiently
long period. As shown in Figure 11, such kind of treatments
are reasonable as the processes go eventually stationary.
However, the study of the transition to the stationary
process or even the non-stationary processes, though
rather difficult, could be the potential direction. Indeed,
data-driven methods (Hou et al., 2022; Ying et al., 2022)
could be the potential tools for studying these transition
processes.

Finally, the coexistence of linearly instability and non-chaos is
reported to be beneficial to enhance the information-processing
capacity of the model of the single population neural network
(Jaeger, 2002; Jaeger and Haas, 2004; Dambre et al., 2012;
Schuecker et al., 2018). Here, we also find such a phenomenon
in two populations model, and thus suggest to elucidate the

FIGURE 9 | The quantity ρ changes with the parameters g and ηE for the
two populations model. The parameters are set as: NE = 1,500, NI = 1,000,
mEE = 1,mIE = 0.75,mEI = −0.25,mII = −0.5, σ = 0.8, ηE = −1 and ηI = 0.5, and
the transfer function is selected as ϕ(x) = arctanx.

FIGURE 10 |Different dynamical behaviors, respectively, for the excitatory (A,C) and the inhibitory (B,D) populations, changewith different coupling strengths for g,
where g = 1.5 (the first row: the linearly instability phase) and g = 0.8 (the second row: the linearly stable phase). Here, the parameters are set as: NE = 1,500, NI = 1,000,
mEE = 1, mIE = 0.75 mEI = −0.25, mII = −0.5, σ = 0.8, ηE = −1, and ηI = 0.5. The transfer function is selected as ϕ(x) = arctanx.
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relation between this phenomenon and the information-
processing capacity in two populations model in the future study.
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