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ABSTRACT

Targeted transcript profiling studies can identify sets
of co-expressed genes; however, identification of
the underlying functional mechanism(s) is a signific-
ant challenge. Established methods for the analysis
of gene annotations, particularly those based on
the Gene Ontology, can identify functional linkages
between genes. Similar methods for the identification
of over-represented transcription factor binding sites
(TFBSs) have been successful in yeast, but extension
to human genomics has largely proved ineffective.
Creation of a system for the efficient identification
of common regulatory mechanisms in a subset of
co-expressed human genes promises to break a
roadblock in functional genomics research. We
have developed an integrated system that searches
for evidence of co-regulation by one or more tran-
scription factors (TFs). oPOSSUM combines a pre-
computed database of conserved TFBSs in human
and mouse promoters with statistical methods for
identification of sites over-represented in a set of
co-expressed genes. The algorithm successfully
identified mediating TFs in control sets of tissue-
specific genes and in sets of co-expressed genes
from three transcript profiling studies. Simula-
tion studies indicate that oPOSSUM produces few
false positives using empirically defined thres-
holds and can tolerate up to 50% noise in a set of
co-expressed genes.

INTRODUCTION

DNA microarrays profile patterns of gene expression changes
on a genome-wide scale, elucidating sets of genes coordinately
expressed under specific conditions. Recent improvements
in bioinformatics methods for the analysis of sequences regu-
lating transcription have made it possible to elucidate poten-
tial factors involved in key regulatory networks underlying a
transcriptional response. The enumeration of such networks,
by identifying genes with similar patterns of expression and
shared cis-regulatory motifs, is crucial to advancing our under-
standing of biological pathways and processes.

Transcriptional regulation of gene expression is a tightly
controlled process that involves the synchronized binding of
trans-acting transcription factors (TFs) to numerous binding
sites in the regions surrounding a gene’s transcription start site
(TSS), as well as to enhancer regions that mediate gene activa-
tion from distal locations. The binding specificities of TFs
to their cognate DNA binding motifs are typically modeled
using position specific scoring matrices (PSSMs) (1), which
are constructed from alignments of binding site sequences that
have been characterized experimentally or identified in high-
throughput protein–DNA binding assays (2,3). These PSSMs
are catalogued in databases such as TRANSFAC (4) and
JASPAR (5). The use of PSSMs to detect individual transcrip-
tion factor binding sites (TFBSs) is well-established (6). How-
ever, application of these models typically yields a large
number of false positive predictions due to the short, degen-
erate nature of TFBS motifs. For example, a 6 bp long motif
has �1 in 4000 chance of occurring at random; while tolerance
of ambiguity at just one highly variable position can raise the
prediction rate to 1 in 1000.
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Dramatic improvements in the specificity of TFBS predic-
tion are attained by limiting the search space to regions of
conserved, non-coding DNA using a comparative genomics
approach known as phylogenetic footprinting (7–10). Based
on the assumption that functional DNA sequences are subject
to greater selective pressure, and therefore, are conserved across
moderately diverged organisms, comparison of sequences from
orthologous genes can highlight functional, non-coding DNA,
providing clues to where regulatory sequences may be located.
Phylogenetic footprinting eliminates, on average, 80% of
sequence (11), and estimates have placed the proportion of
TFBSs occurring within conserved regions when comparing
human and mouse sequences at �70% (11,12). Thus, while the
use of phylogenetic footprinting limits our ability to detect
binding sites that have evolved in a species-specific manner,
the drastic reduction in noise increases specificity, and far
outweighs the decrease in sensitivity.

Even with the improved performance conferred by phyloge-
netic footprinting, most predicted TFBSs are non-functional.
By incorporating gene expression data into the analysis pro-
cedures, we should improve capacity to discriminate func-
tional binding sites from potential false positive matches.

This paper describes a new method, oPOSSUM, which iden-
tifies statistically over-represented, conserved TFBSs in the
promoters of co-expressed genes. Based on the assumption
that some subset of the co-expressed genes is co-regulated
by one or more common TFs, we reason that the observed
number of binding sites for those TFs should be greater than
would be expected by chance. oPOSSUM integrates a pre-
computed database of predicted, conserved TFBSs, derived
from phylogenetic footprinting and TFBS detection
algorithms, with statistical methods for calculating over-
representation (Figure 1).

The oPOSSUM system was validated using curated regula-
tory region collections for genes expressed in a tissue-specific
manner, and published targets of the nuclear factor NF-kB.
oPOSSUM was then applied to two published transcript pro-
filing data sets, as well as to a new analysis of expression
addressing NF-kB inhibition. The results demonstrate that
oPOSSUM is able to identify the TFs expected to mediate
changes in gene expression through the detection of over-
represented TFBSs. Simulations using random sampling
gave low false positive rates and revealed tolerance for
some noise in the gene sets.

Figure 1. The oPOSSUM system for identifying over-represented TFBSs in sets of co-expressed genes. The system is built upon a database of conserved TFBSs for
human–mouse orthologs, derived from an analysis pipeline that combines phylogenetic footprinting with TFBS identification using the JASPAR library of PSSMs.
Given a set of human or mouse genes, the pipeline (1) retrieves the genomic DNA sequence for the human and mouse genes plus 5000 bp of upstream sequence,
(2) performs an alignment of the orthologous sequences and extracts non-coding DNA subsequences that are conserved above a predefined threshold, (3) searches
the subsequences for matches to TFBS profiles contained in JASPAR and (4) stores the results in the oPOSSUM database. Upon querying the web-based interface
with a list of co-expressed genes, oPOSSUM retrieves the TFBS counts for each gene in the list and computes two statistics (Z-score, Fisher exact test) to measure
over-representation of TFBSs in the set relative to a background comprising all genes in the oPOSSUM database.
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MATERIALS AND METHODS

Automated retrieval of human–mouse orthologs

The Ensembl software system (13) provides a flexible bio-
informatics framework to retrieve sequences and annotations
for genes from multiple organisms. Sets of orthologous human
and mouse genes are available via EnsMART, a computation-
ally convenient interface to genome annotations. To avoid
aligning paralogs (genes which have diverged due to gene
duplication in a common ancestor), human genes mapping
to more than one mouse gene (and vice versa) are filtered to
obtain a set of one-to-one orthologous pairs. For each human–
mouse orthologous pair, repeat masked sequences are
retrieved encompassing the region 5000 bp upstream of the
annotated TSS to either the 30 end of the gene or, in the case of
long genes, 50 000 bp downstream of the TSS. For genes with
multiple annotated TSSs, the 50-most TSS is selected.

Phylogenetic footprinting

Orthologous sequences are aligned using ORCA
(D.J. Arenillas and W.W. Wasserman, manuscript under
preparation.), a pairwise global progressive alignment algo-
rithm similar to LAGAN (14). ORCA first identifies short
segments of high similarity between orthologous genes by
performing a local BLASTN alignment using the Bl2Seq algo-
rithm (Version 2.2.5) (15), and then aligns the regions between
such segments through the more time-consuming Needleman–
Wunsch algorithm (NW) (16) to obtain an overall global align-
ment of the two sequences. The process is recursive; regions
that are too long to align using NW are re-aligned with
BLASTN using less stringent parameters. The process
comes to a halt when either the regions are short enough to
perform NW successfully (the product of the input sequence
lengths does not exceed 100 Mb), or the minimum BLASTN
word size of seven has been reached. The first iteration of
BLASTN was performed using the following parameters: pen-
alty for a nucleotide mismatch = �7; expectation
value = 0.10; word size = 15; default values were used for
the remaining parameters. For each subsequent run of
BLASTN, the nucleotide mismatch score was incremented
by two and the word size was decremented by four. NW global
alignments used a match score = 3; mismatch score = �1; gap
open penalty = 20; and gap extension penalty = 0.

Three dynamically selected and progressively more strin-
gent conservation thresholds are applied. Specifically, each
alignment is scanned using a 100 bp sliding window, the
percent sequence identity within each window is calculated,
and the top 10, 20 and 30% of all windows (excluding those
overlapping a coding region) are retained. Minimum identity
thresholds of 70, 65 and 60% are required for the high,
medium and low conservation levels, respectively. The use
of dynamically computed thresholds versus fixed sequence
identity cutoffs is motivated by the variable rates of evolution
for each gene in each genome.

Detection of TFBSs

The conserved non-coding regions of the promoters are
searched for matches to all TFBS profiles in the JASPAR
database with information content >8 bits, using the TFBS
suite of Perl modules for regulatory sequence analysis (17).

Excluding low information content profiles (a measure of
the specificity of predictions) eliminates spurious hits. A pre-
dicted binding site for a given TF model is reported if the
site occurs in both the human and mouse sequences above a
threshold PSSM score of 75%, and at equivalent positions in
the alignment. Overlapping sites for the same TF are filtered
such that only the highest scoring is kept. The location, score,
orientation and local sequence conservation level of each
TFBS match in the human and mouse genes are stored in
the oPOSSUM database.

Discovery of over-represented binding sites

Two statistical measures were calculated to determine which,
if any, TFBS were over-represented in the set of promoters for
co-expressed genes. These represent two distinct models for
counting the occurrences of binding sites.

Z-score calculation for determining TFBS that occur more
frequently than expected. The Z-score uses a simple binomial
distribution model to compare the rate of occurrence of a TFBS
in the set of co-expressed genes to the expected rate estimated
from the pre-computed background set.

For a given TFBS, let the random variable X denote the
number of predicted binding site nucleotides in the conserved
non-coding regions of the co-expressed gene set. Let B be the
number of predicted binding site nucleotides in the conserved
non-coding regions of the background set. Using a binomial
model with n events, where n is the total number of nucleotides
examined (i.e. the total number of nucleotides in the conserved
non-coding regions) from the co-expressed genes, and N is the
total number of nucleotides examined from the background
gene set, then the expected value of X is m = BC, where
C = n/N (i.e. the ratio of sample sizes). Then, taking P = B/N
as the probability of success, the standard deviation is given
by s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nP 1�Pð Þ

p
.

Now, let x be the observed number of binding site nucle-
otides in the conserved non-coding regions of the co-expressed
genes. By applying the Central Limit Theorem and using the
normal approximation to the binomial distribution with a con-
tinuity correction, the Z-score is calculated as z ¼ x�m�0:5

s .
Thus the Z-score indicates a significant difference in the
rate of occurrence of sites, and is particularly good for detect-
ing increased prevalence of common sites.

One-tailed Fisher exact probability for determining TFBS
that occur in a significant number of the co-expressed genes.
In contrast to the Z-score, the one-tailed Fisher exact probab-
ility compares the proportion of co-expressed genes containing
a particular TFBS to the proportion of the background set that
contains the site to determine the probability of a non-random
association between the co-expressed gene set and the TFBS
of interest. It is calculated using the hyper-geometric probab-
ility distribution that describes sampling without replacement
from a finite population consisting of two types of elements
(18). Therefore, the number of times a TFBS occurs in the
promoter of an individual gene is disregarded, and instead, the
TFBS is considered as either present or absent. A significant
value for the Fisher exact probability indicates that there are a
significant proportion of genes that contain the site, and is
particularly good for rare TFBSs. Fisher exact probabilities
were calculated using the R Statistics package (http://www.
r-project.org).
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NF-kB microarray experiment

A list of genes differentially expressed during interruption
of the NF-kB pathway by a specific NF-kB inhibitor was
obtained from an unpublished microarray experiment. Supple-
mentary Table 1 contains sufficient information to reproduce
or challenge the in silico promoter analysis described in this
text, and the design of the experiment is briefly described here.
Human umbilical vein endothelial cells (HUVEC) in the treat-
ment condition were pre-treated with 10 mM of NF-kB inhib-
itor, followed by stimulation of the NF-kB signaling pathway
with 0.1 ng/ml IL-1B 1 h later (t = 0 h). A second sample of
the same culture was treated with 0.1 ng/ml IL-1B only at
t = 0. A third sample received only vehicle treatment (0.33%
dimethyl sulfoxide) at t = 0. From each condition, total RNA
was isolated at 6 h using the RNeasy midi kit (Qiagen, USA).
The entire paradigm was repeated three times on separate
batches of HUVEC, generating nine samples. Equal amounts
of RNA were pooled from the three IL-1B treated samples, as
the control channel. Each sample, i.e. the three inhibitor trea-
ted, the three vehicle treated, and the pool of IL-1B treatment
alone, was split in two and labeled with either the Cy3 or Cy5
fluorescent dye (Agilent, USA). Using a two-color microarray
system, the labeled cDNA from treatment and control con-
ditions was hybridized to an oligonucleotide microarray
representing 23 000 human genes (Agilent, USA) as follows:
(i) three replicates of individual vehicle treated samples
versus pool of IL-1B samples, (ii) three replicates of pool
of IL-1B samples versus individual IL-1B + NF-kB inhibitor
treated samples, (iii) same as (i) with fluors reversed and
(iv) same as (ii) with fluors reversed. After quantification
of the raw data, normalization and combination of the tech-
nical, fluor-reversed replicates using the Rosetta Resolver�

(version 3.0) gene-expression-data-analysis system (19), an
error-weighted ANOVA analysis was performed across rep-
licates in the two groups. Biological replicates were then com-
bined using the Rosetta Resolver� (version 3.0) error model.

For our analysis we focused on a list of 508 sequences
showing significantly decreased levels of expression in
inhibitor-treated cells, defined by an ANOVA P-value <0.01,
an error-model P-value <0.01 and a fold-change >1.3. The
508 sequences were mapped to 326 unique Ensembl gene IDs
by identifying gene models from Ensembl V19 (build 34a)
which overlapped with the probe sequences. The down-
regulated genes were submitted for analysis by oPOSSUM.

Simulations using random sampling

To estimate the false positive rate, we tested oPOSSUM on
randomly generated subsets of genes from the oPOSSUM
database to determine how frequently TFBSs are identified
as over-represented by chance, and to assess the validity of
the selected Z-score and Fisher P-value cutoffs of 10 and 0.01,
respectively. We created 100 independent sets, each contain-
ing 15 genes. These were submitted to oPOSSUM, and the
number of TFBSs significantly over-represented during each
trial was counted. The number of trials that generated signi-
ficant TFBSs over 100 independent trials gives us a measure
of the false positive rate. We repeated this process for gene
lists of 50, 100 and 200 randomly selected genes to see what,
if any, effect the number of genes in the list has on the false
positive rate.

Next we investigated the amount of noise oPOSSUM can
tolerate by adding increasing numbers of randomly selected
genes from the oPOSSUM database to our reference gene sets.
For the muscle- and liver-specific gene sets, we added 5, 10,
15, 20, 25, 30, 40, 50, 75 and 100 randomly selected genes,
and submitted them to oPOSSUM. Additional increments of
150 and 300 genes were tested for the larger set of NF-kB
target genes. This process was repeated 100 times for each
noise level. The average Z-scores and Fisher P-values for
the Mef-2, HNF-1 and NF-kB TFBS profiles over 100 inde-
pendent trials for each noise level were recorded.

Parameter selection for validation studies

For all of the analyses presented in this study, we examined
the promoter region encompassing 5000 bp upstream and
5000 bp downstream of the TSS, used the highest conservation
level to extract conserved, non-coding regions (top 10% of
conserved regions with a minimum of 70% sequence identity),
and required a PSSM score >85% for predicted binding sites,
using only the vertebrate-specific PSSMs in JASPAR.

RESULTS

The oPOSSUM database was constructed from an initial set of
14 083 orthologs from human and mouse, obtained by select-
ing only ‘one-to-one’ human–mouse orthologs from Ensembl
(20). Of these, 4921 (34.9%) of the ortholog sequence pairs
failed to produce reasonable alignments of the promoter
regions, due largely to an inability to reconcile TSS positions
as a result of alternative promoter usage by orthologs, and to a
lesser degree, as a consequence of low nucleotide sequence
similarity between assigned orthologous gene pairs, genes
within genes, and TSSs located within exons of upstream
genes on the opposite strand. Attempts to align a subset of
the failed promoter pairs using the LAGAN algorithm pro-
duced similar results (not shown). An additional 456 (3.2%)
ortholog pairs successfully aligned but did not contain con-
served, non-coding regions (minimum of 100 bp with >60%
identity) in the target region spanning from 5000 bp upstream
of the TSS to 5000 bp downstream of the TSS. Of the remain-
ing 8706 genes with conserved promoters, 8698 contained
matches to one or more TFBS profiles (PSSM cutoff of
75%), producing 2.4 · 106, 3.3 · 106 and 4.1 · 106 con-
served predicted binding sites at the high, medium and low
conservation levels, respectively (See Materials and Methods).

Validation using reference gene sets

The muscle and liver regulatory region collections catalogue
experimentally verified TFBSs that confer muscle- and liver-
specific gene expression, respectively (21,22). We searched
the literature for additional experimentally verified sites
in human and mouse, adding eight liver-specific and five
muscle-specific promoters to these collections (available at
http://www.cisreg.ca/tjkwon/). In addition to these tissue-
specific genes, we compiled a list of 61 known targets of the
nuclear factor NF-kB (23). We used these reference sets to
assess oPOSSUM’s ability to discriminate functionally relev-
ant TFBSs and to empirically determine appropriate thresholds
for our scoring measures.

Nucleic Acids Research, 2005, Vol. 33, No. 10 3157

http://www.cisreg.ca/tjkwon/


oPOSSUM calculates two statistical measures for binding
site over-representation, one at the gene level (Fisher exact
test) and the other based on the ratio of TFBSs to nucleotides
(Z-score). Figure 2 shows the correlation between the scores
for each reference set. Clearly, scores for the majority of
TFBSs cluster at the bottom right corner of the graph for all
reference sets, with Z-scores ranging from �10 to 10 and
Fisher P-values ranging from 0.02 to 1. For each reference
set, we also ranked the top 10 binding sites, ordered by
Z-score, along with associated Fisher P-values (Table 1). In
each case, the TFs were further investigated for experimentally
verified evidence in the given tissue or system.

Muscle-specific regulatory region collection. Studies of skel-
etal muscle expression have revealed five primary classes of
TFs that contribute to skeletal muscle-specific expression: Myf
(MyoD), Mef-2, SRF, TEF-1 and Sp-1 (24). Submission of
the 25 genes of human, mouse or rat origin in the muscle
regulatory collection resulted in 14 pairs of orthologs being
analyzed. oPOSSUM ranked SRF, TEF-1, Mef-2 and Myf as
the top four most significant profiles (Table 1). In fact, all of
these TFs had Fisher P-values <0.01 and with the exception of
Myf, had Z-scores >10, considerably higher than for all other
TFs (Figure 2). Sp-1 was ranked tenth but without sufficien-
tly convincing scores to discriminate it from the remainder
of the TFBSs (Figure 2); this is not surprising given that it
is a ubiquitous activator of numerous genes in the human
genome (25).

Liver-specific regulatory region collection. Based on a collec-
tion of genes expressed either exclusively in liver hepatocytes
or in a small number of tissues including liver hepatocytes,
previous studies have found that hepatocyte-specific gene
expression can be governed by the combined action of four
primary TFs: HNF-1, HNF-3, HNF-4 and c/EBP (26). (There
are additional regulatory programs that are controlled inde-
pendently of these factors in hepatocytes.) Using this estab-
lished list of 22 genes, we were able to analyze 11 orthologous
gene pairs. Predicted HNF-1 sites were the most significantly
over-represented TFBSs in the promoters of genes from the

liver collection using both the Z-score and Fisher measures
(Table 1). In fact, with a Z-score of 32.5, which is almost three
times greater than the next most significant TFBS profile from
JASPAR, and a Fisher P-value of 1.5 · 10�4, HNF-1 clearly
segregates from the remaining TFBS profiles in this reference
set (Figure 2). c/EBP ranked third, but was not sufficiently
over-represented to exceed the significance cutoffs of 10 and
0.01 for the Z-score and Fisher measures, respectively.

Known NF-kB target genes. The NF-kB/Rel family of TFs,
which includes RELA (p65), NF-kB1 (p50, p105), NF-kB2
(p52, p100), c-REL and RELB, plays a central role in regu-
lating the immune response (27). oPOSSUM was applied to a
set of 61 known NF-kB-regulated genes (23), which include
a large number of cytokines and immunoreceptors, and to
a lesser extent, antigen presentation proteins, cell adhesion
molecules, acute phase proteins, stress response genes and
TFs. Of the 61 human genes submitted to oPOSSUM, 33
were mapped to mouse orthologs and subsequently analyzed.
The NF-kB, c-REL, p65 and p50 binding sites, which are
all members of the NF-kB-family of TFs, ranked as the top
four most over-represented TFBSs, using either the Z-score
or Fisher P-values (Table 1). Figure 2 shows that they were

Figure 2. Relationship between the Fisher P-values and Z-scores for the
muscle, liver and NF-kB reference sets. Based on the distribution of scores
for the reference sets, a Z-score cutoff of 10 and a Fisher P-value cutoff of
0.01 were empirically selected as threshold levels to be used for testing. TFBSs
that have functional relevance are labeled.

Table 1. Statistically over-represented TFBSs in reference gene sets

Rank Z-score Fisher P-value

A. Muscle-specific (25 input; 14 analyzed)
SRFa 1 35.93 3.93 · 10�4

TEF-1a 2 15.84 5.48 · 10�5

MEF2a 3 15.26 2.77 · 10�4

Myfa 4 8.585 9.81 · 10�3

S8 5 8.168 1.49 · 10�1

Yin-Yang 6 6.396 6.79 · 10�2

RORalfa-2 7 5.697 8.70 · 10�2

deltaEF1 8 5.514 9.76 · 10�3

Nkx 9 5.492 1.17 · 10�1

SP1a 10 4.671 6.34 · 10�2

B. Liver-specific (22 input; 11 analyzed)
HNF-1a 1 32.46 1.51 · 10�4

FREAC-2 2 11.46 7.68 · 10�3

cEBPa 3 8.477 2.29 · 10�1

FREAC-4 4 7.522 1.86 · 10�1

c-FOS 5 6.286 2.73 · 10�2

HLF 6 5.454 4.20 · 10�2

Chop-cEBP 7 5.313 7.93 · 10�2

SRY 8 5.000 1.78 · 10�1

Tal1beta-E47S 9 4.338 6.30 · 10�1

Hen-1 10 3.117 5.19 · 10�1

C. Known NF-kB targets (61 input; 33 analyzed)
p65a 1 35.60 1.18 · 10�9

c-RELa 2 33.14 5.94 · 10�8

p50a 3 27.62 5.74 · 10�7

NF-kBa 4 27.00 1.62 · 10�7

SPI-B 5 13.92 1.92 · 10�2

Irf-2 6 12.88 8.69 · 10�2

NRF-2 7 6.468 1.22 · 10�1

Evi-1 8 5.959 2.04 · 10�1

Elk-1 9 4.912 2.49 · 10�1

MZF_5–13 10 4.908 1.06 · 10�1

TFBSs detected by oPOSSUM with the top ten mostly highly ranked Z-scores
or with Fisher P-value < 0.01.
aTFs with experimentally-verified sites in the reference sets. The number
of genes used as input and the number of genes analyzed by oPOSSUM (i.e.
genes that have an unambiguous mouse ortholog) are shown in brackets. See
Materials and Methods for how the Z-score and Fisher P-values were calculated.
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indeed the only TFBSs with significant scores discriminating
them from other sites, with Z-scores as high as 35.6 and Fisher
P-values as low as 1.2 · 10�9.

Based on the results obtained from the three reference gene
sets, we decided empirically to use a Z-score cutoff of 10 and
Fisher P-value cutoff of 0.01 to identify TFBSs for each of our
test sets.

Application to transcript profiling data

The reference collections used above are curated sets of genes.
In contrast, high-throughput transcript profiling studies typic-
ally produce clusters of hundreds of co-expressed genes, of
which only a small subset is likely to be co-regulated by a
given factor. We assessed oPOSSUM’s performance on three
sets of genes derived from transcript profiling experiments,
and report the results in Table 2. For each set of co-expressed

genes, we list the top ten over-represented TFBSs, as determ-
ined by the Z-score, as well as any additional TFBSs with
significant Fisher P-values (P < 0.01).

c-Myc SAGE experiment. The c-Myc TF, which dimerizes with
the Max protein, is a key regulator of cell proliferation, differ-
entiation and apoptosis (28,29). Using serial analysis of gene
expression (SAGE), Menssen and Hermeking (29) identified
216 different SAGE tags corresponding to unique mRNAs that
were induced after adenoviral expression of c-Myc in HUVEC.
The induction of 53 genes was confirmed using microarray
analysis and RT–PCR. We analyzed the 53 genes with oPOS-
SUM and found that the binding sites of Myc–Max heterodi-
mers are indeed the most significantly over-represented
(Table 2); Myc–Max sites were identified in seven of the
genes. Matches to the binding profile for homogeneous Max
dimers, c-Myc’s interacting partner, were also highly over-
represented (present in nine genes, giving a high Z-score of
21.9). The binding profile for a related protein, n-Myc, ranked
amongst the top ten most over-represented profiles.

c-Fos microarray experiment. In a study examining the role of
transcriptional repression in oncogenesis, Ordway et al. (30)
used microarrays to compare the gene expression profile of
208F fibroblasts transformed by c-Fos against the profiles for
the parental 208F rat fibroblast cell line. We mapped the list of
252 induced genes to 150 human orthologs, which were sub-
mitted to oPOSSUM. As expected, the c-Fos TFBS was ranked
as the most over-represented TFBS in the promoters of the
induced genes, with a Z-score of 11.0 and a Fisher P-value of
2.9 · 10�2 (Table 2). c-Fos sites were identified in 40 of the
co-expressed genes.

NF-kB microarray experiment. In HUVEC cells, interleukin
1B treatment precipitates an inflammatory response observ-
able as an induction of mRNA expression. This response
can be modulated by the inhibition of the NF-kB signaling
pathway (31). We assessed oPOSSUM’s performance on
326 genes that showed decreased levels of expression in
interleukin-1B-stimulated HUVEC cells treated with an
NF-kB inhibitor as compared to IL-1B-stimulated HUVEC
cells. Binding sites for the NF-kB/Rel family of TFs were the
most over-represented (present in �50 genes) in the inhibitor-
modulated genes (Table 2). Other over-represented TFBSs
included the immune-related genes Irf-1, Irf-2 and SPI-B.

Specificity assessment

Based on the reference gene sets and expression data,
oPOSSUM successfully identifies TFBSs that play a functional
role in the regulation of sets of co-expressed genes. In the
majority of cases, a Z-score >10 and a Fisher P-value <0.01
effectively discriminated the known sites within each set of
reference genes. To assess how many of the over-represented
TFBSs may be expected by chance and ascertain if the
qualitatively observed thresholds are appropriate, we tested
oPOSSUM on randomly generated subsets of genes from
the oPOSSUM database.

In Figure 3, we show the percentage of trials that produced
TFBS predictions for random sets of genes, providing a meas-
ure of the false positive rate. For a set of 15 genes, using the
Z-score alone, 23% of the trials produced one false positive
prediction, 19% produced two false positives, and so forth, for

Table 2. Statistically over-represented TF binding sites in gene expression

data sets

TF class Rank Z-score Fisher P-value No. genes

A. c-Myc-induced genes (53 input; 30 analyzed)
Myc-Maxa bHLH-ZIP 1 32.41 1.17 · 10�4 7
ARNT bHLH 2 23.82 1.56 · 10�4 12
Max bHLH-ZIP 3 21.89 7.40 · 10�3 9
SP1 ZN-finger, C2H2 4 20.90 2.04 · 10�2 14
USF bHLH-ZIP 5 17.01 2.39 · 10�2 10
MZF_1–4 ZN-finger, C2H2 6 14.96 1.35 · 10�1 20
Staf ZN-finger, C2H2 7 11.12 7.59 · 10�2 2
Ahr-ARNT bHLH 8 10.87 2.05 · 10�1 12
SAP-1 ETS 9 10.41 2.57 · 10�3 9
n-MYC bHLH-ZIP 10 9.821 4.71 · 10�1 11

B. c-Fos-induced genes (150 input; 98 analyzed)
c-FOSa bZIP 1 11.01 2.94 · 10�2 40
CREB bZIP 2 8.728 2.45 · 10�1 11
SP1 ZN-finger, C2H2 3 8.015 1.14 · 10�2 38
E2F Unknownb 4 3.995 1.12 · 10�1 15
Myc-Max bHLH-ZIP 5 3.898 3.21 · 10�1 5
HLF bZIP 6 3.249 1.84 · 10�1 10
Pbx HOMEO 7 2.878 1.38 · 10�1 6
FREAC-2 FORKHEAD 8 1.763 6.35 · 10�2 20
HLF bZIP 9 1.632 3.32 · 10�2 32
Myc-Max bHLH-ZIP 10 1.314 5.53 · 10�1 12

C. Genes downregulated by the NF-kB inhibitor (326 input; 170 analyzed)
p65a REL 1 27.73 7.78 · 10�11 46
NF-kBa REL 2 24.11 8.76 · 10�8 49
c-RELa REL 3 21.31 3.76 · 10�7 58
p50a REL 4 15.60 9.71 · 10�5 19
Irf-2 TRP-CLUSTER 5 13.30 1.30 · 10�2 3
Irf-1 TRP-CLUSTER 6 12.59 1.50 · 10�3 22
SPI-B ETS 7 12.45 9.06 · 10�4 117
FREAC-4 FORKHEAD 8 11.05 2.55 · 10�4 71
SRY HMG 9 10.52 2.81 · 10�4 85
Pbx HOMEO 10 9.79 8.58 · 10�2 10
Sox-5 HMG 12 9.00 2.50 · 10�4 72
cEBP bZIP 13 8.26 2.63 · 10�4 44
c-FOS bZIP 14 7.52 2.70 · 10�3 71
HFH-2 FORKHEAD 15 7.36 1.68 · 10�3 46
Nkx HOMEO 16 6.74 4.57 · 10�3 106
HNF-3beta FORKHEAD 28 2.77 4.70 · 10�3 46
deltaEF1 HMG 40 1.38 1.16 · 10�3 149

TFBSs detected by oPOSSUM with the top ten mostly highly ranked Z-scores or
with Fisher P-value < 0.01.
aTFs over-expressed or inhibited in gene expression studies. The number of
genes used as input and the number of genes analyzed by oPOSSUM (i.e. genes
that have an unambiguous mouse ortholog) are shown in brackets.
bAlthough E2F is annotated as ‘unknown’ in the JASPAR database, it is
structurally defined as a member of the ‘winged helix’ class of proteins.
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an overall false positive rate of 66%. Using only the Fisher
exact test for a set of 15 genes, we obtain an overall false
positive rate of 28%. Thus, when used in isolation, each of the
scoring measures result in surprisingly high false positive rates
(average of 63% for the Z-score and 31% for the Fisher test),
which are dramatically reduced by combining the scores. By
applying both the Z-score and the Fisher P-value cutoffs to the
randomly selected sets, we observed an average false positive
rate of 15%. The specificity when using the combination of
scores (Z and F) appears consistent across gene sets of differ-
ent sizes. Thus, with sets as large as 100–200 genes, which is
typical of clustered expression data, �86% of the time no
spurious results are observed.

Noise tolerance

Next we performed simulations to investigate the amount of
noise oPOSSUM can tolerate. To do this, we added from 5 to
300 randomly selected genes to the reference gene sets, and
applied oPOSSUM to determine what proportion of the sets
could be noise before losing our ability to elucidate the TFBSs
mediating tissue-specific and pathway-specific expression. We
considered the Mef-2, HNF-1 and NF-kB binding site profiles
to be representative of each set, and plotted their average
Z-scores and Fisher P-values over 100 trials against the pro-
portion of noise in the set. The muscle, liver and NF-kB data
sets can tolerate up to 60% of the gene list being noise using
the Z-score (Figure 4A) and up to 50% using the Fisher P-value
(Figure 4B). There is significant variation in the degree of
noise tolerance amongst the three sets of genes: the NF-kB
set is able to tolerate up to 80% of the set being noise versus
only 50% for the muscle set. Figure 4 shows that the Z-score
decreases quadratically and the Fisher P-value increases log-
arithmically with increasing noise for all three sets of genes.

Web implementation

The approach described for the detection of over-represented
conserved TFBSs in sets of co-expressed genes has been

implemented as a flexible, user-friendly website available
from www.cisreg.ca. The implementation allows for analysis
in default and custom modes. In the default mode, conserved
human and mouse TFBS counts have been pre-calculated and
stored using combinations of pre-defined values for the fol-
lowing three parameters: (i) the amount of sequence relative
to the TSS to be included in the analysis, (ii) the level of
interspecies conservation required and (iii) the PSSM score
required for a hit to be reported (Table 3). Users simply select a
pre-defined set of parameters, select a set of TFBS to be
included in the analysis, and submit a list of gene identifiers
(Ensembl, GenBank, RefSeq or LocusLink are presently
supported) for analysis. oPOSSUM retrieves the TFBS hits
matching the specified criteria for each gene in the list,

Figure 4. Noise tolerance. Increasing numbers of randomly selected genes
were added to the muscle, liver and NF-kB reference sets to assess the effect
of noise on (A) the Z-score and (B) Fisher exact probability statistical measures.
The amount of noise is represented as the fraction of all genes in the set that were
randomly selected. Average Z-scores and Fisher P-values for MEF2, HNF-1
and NF-kB over 100 trials for each noise level are shown to represent the
muscle, liver and NF-kB reference sets, respectively. Suggested cutoffs for
the Z-score and Fisher P-value are shown by the dotted grey lines.

Figure 3. Percentage of trials that produced false positive (FP) predictions. Sets
containing 15, 50, 100 and 200 randomly selected genes were generated and
submitted to oPOSSUM (100 trials each). Each segment of the bar represents
the percentage of trials where n TFBSs were over-represented by chance
using the Z-score and Fisher P-value cutoffs. Symbols: Z = Z-score > 10;
F = Fisher < 0.01; Z&F = Z-score > 10 and Fisher < 0.01.

Table 3. Predefined values for phylogenetic footprinting and TFBS detection

available in oPOSSUM’s default mode

Level Conservationa PSSM
score (%)

Promoter regionb

1 Top 30th percentile (minimum 60%) 75 �5000 to +5000
2 Top 20th percentile (minimum 65%) 80 �2000 to +2000
3 Top 10th percentile (minimum 70%) 85 �2000 to 0

aConservation thresholds based on percentiles are determined by first calculat-
ing the amount of sequence identity for all windows of size 100bp, removing
coding regions, and then finding the value above which the top x% of scores
reside.
bRelative to the TSS.
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calculates a Fisher exact probability and Z-score for the classes
of TFBSs found in the set of genes, and returns ranked lists
of TFBSs for each statistical test (Figure 5A). This operation is
fast (<30 s for each of the reference sets) due to the pre-
calculation of background frequencies. Pop-up windows for
each TFBS display the genes in which the site has been loc-
ated, as well as the site’s co-ordinates and score (Figure 5B).
Furthermore, the TFBSs are linked to the JASPAR database for
easy access to information regarding the binding site profiles.

In the custom mode, users are not restricted to the pre-
defined parameter values for the PSSM score and promoter
region, and are given the option to supply user-defined back-
ground sets. Users might be motivated to introduce their own

background sets if there is prior biological evidence linking
sequence composition to expression in the tissue or condition
studied. The customization option provides users with more
control, and results in more variable processing speeds depend-
ing on the size of the background set and the parameters
selected.

The oPOSSUM application programming
interface (API)

The oPOSSUM API, based on a set of object-oriented Perl
modules, provides an interface to the oPOSSUM database and
defines data objects for facilitating statistical (Fisher and

Figure 5. The oPOSSUM result report for the identification of over-represented TFBSs in sets of co-expressed genes. (A) Results report showing the selected
parameters, genes included and excluded in the analysis, and summary tables containing the Fisher exact probability scores and Z-scores for each TFBS (only the first
five results are shown for each statistical test in this figure). (B) Pop-up window displaying genes that contain a particular TFBS (in this case, MEF2), as well as the
site locations and scores.
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Z-score) analysis. A set of modules at the top level of the API
tree model each of the data objects in the oPOSSUM database.
Briefly, the current version of the API includes modules for
connecting and retrieving gene indices, orthologous gene pairs,
conserved region information, TFBS matches, and other types
of data from the oPOSSUM database, running the Z-score and
Fisher analyses, and storing the input and output from these
analysis modules. The API with accompanying documentation
is available through the oPOSSUM website.

DISCUSSION

Regulatory analysis of the promoters of co-expressed genes
can give rise to hypotheses about the factors, TFBSs, and
putative pathways involved in generating the observed expres-
sion patterns. Our integrated approach to regulatory analysis
incorporates public data sources, cross-species conserva-
tion and complementary statistical methods to identify over-
represented motifs. We validate the method using updated
reference sets of muscle-specific and liver-specific regulatory
regions, and a new set of NF-kB-regulated genes. We dem-
onstrate the utility of this technique for analyzing experi-
mental data with three independent gene expression studies.
We show the robustness of this method through computation-
ally assessed rates of false-positives and noise tolerance. The
procedure has been implemented as a user-friendly, flexible
website called oPOSSUM and as a Perl API. In short, we
illustrate herein that oPOSSUM is a novel, validated, useful,
robust, user-friendly means for analysts to explore potential
regulatory mechanisms in their expression experiments.

Performance

In the case of the muscle regulatory collection, oPOSSUM
ranked four of the five documented TFBSs as the four most
over-represented sites. In fact, the only three profiles to surpass
the specified Z-score and Fisher P-value cutoffs were those for
the muscle-specific TFs SRF, TEF-1 and Mef-2. Similar res-
ults were obtained for the extended liver regulatory collection,
which contains genes with experimentally verified HNF1/3/4
and c/EBP binding sites. oPOSSUM analysis resulted in two
over-represented TFBSs, including the top-ranked HNF-1,
followed by forkhead related activator 2 (FREAC-2), a mem-
ber of the forkhead box family of eukaryotic DNA binding
proteins, which includes FREAC-2, FREAC-4, HNF-3b and
HNF-4. c/EBP, though not considered significantly over-
represented based on our empirical cutoffs, ranked third.
The JASPAR database does not currently contain a binding
profile for HNF-4, and so this TF could not be included in
the analysis. The liver set illustrates how the absence of high-
quality PSSM profiles to model all TFs in the human genome
represents a key limitation to this method for the entire field.

Application of oPOSSUM to a set of known targets of
NF-kB resulted in all four NF-kB-related profiles ranking
at the top of the list of over-represented TFBS profiles, with
markedly significant scores. Within the ranked list, though
not exceeding the thresholds, we observed other immune
response-related TFBS profiles. For example, the interferon
regulatory factors Irf-1 and Irf-2 (ranked numbers 8
and 6, respectively) are known regulators of the host defense
in response to viral infection or cytokine stimulation; they

regulate interferon (IFN) and IFN-inducible genes, and also
form interactions with SPI-1 and SPI-B (ranked number 5)
to induce the activity of various cytokines (32–34). It is worth
noting that the default threshold values are simply suggestions
and less conservative cutoffs may yield valuable insights
as well.

While the system behaved well for the validation collec-
tions, we desired to assess the utility for the analysis of larger,
more heterogeneous experimental data. In each of the two
published gene expression data sets, derived from the ectopic
expression of c-Myc and c-Fos respectively, oPOSSUM
clearly and appropriately ranked the corresponding TFBSs
as being the most significantly over-represented. Further evid-
ence of oPOSSUM’s utility in analyzing gene expression data
was presented by applying oPOSSUM to a set of genes that
showed decreased expression in an experiment examining the
effect of a known inhibitor of the NF-kB signaling pathway.
This set of genes is distinct from the NF-kB reference
set in that the experiment examines an interleukin-induced
immune–response in a cellular system, and potentially
contains a large number of mRNAs that are independent of
NF-kB signaling. Still, oPOSSUM identified the NF-kB bind-
ing sites (NF-kB, c-REL, p50 and p65) as being significantly
over-represented, as well as the same TFs involved in the
immune response that were identified in the NF-kB test set
(Irf1, Irf2 and SPI-B). Taken together, the three experimental
analyses illustrate the power of promoter sequence analysis to
identify the TFs governing gene expression changes observed
in heterogeneous microarray and SAGE data.

Challenges

A common problem for promoter analysis is circularity. Bind-
ing sites that have been experimentally verified in genes are
used to construct binding site profiles, which in turn, are used
to search for binding sites in sets containing the original genes.
In this study, the Mef-2, SRF, c-REL, p50, p65, Myc–Max and
c-Fos binding site profiles were constructed based on SELEX
experiments, in which in vitro binding experiments are used to
isolate suitable binding sites for a particular TF from random
oligonucleotides (35). Thus, we can be sure that at least for the
SELEX-based profiles, we have avoided any circularity.

At present, a key limitation to the oPOSSUM analysis is
the scarcity of annotated binding site profiles. JASPAR, the
underlying database supporting oPOSSUM, contains 111
high-quality binding site profiles representing 25 structural
classes. When analyzing expression data sets, it is worth keep-
ing in mind that although the TF mediating the observed
response may not be present in the sparse JASPAR database,
it is possible that a TF that recognizes a similar motif may be
identified as being over-represented. For example, looking at
the results for the c-Myc experiment in Table 2, it is evident
that the over-represented TFBSs we observe are predomin-
ately bound by TFs containing the basic helix–loop–helix
(bHLH) domain, and in particular, by TFs within the
bHLH-ZIP (basic helix–loop–helix/leucine zipper) structural
class. In fact, four of the five TFs in JASPAR that belong to
the bHLH-ZIP class rank amongst the top ten profiles. This is
also true for the NF-kB-related data sets where we see a clear
over-representation of TFs belonging to the Rel class of TFs
(Tables 1 and 2). It is important to consider whether a match
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may be indicative of a member of a structural class, rather than
the specific profiled TF. A major challenge, however, is that
zinc-finger proteins make up the largest class of TF proteins,
comprising �47% of the estimated 1445 TFs identified in
mammalian genomes (36). Cys2–His2 zinc-fingers are the
most versatile of the DNA-recognition domains, and vari-
ations in amino acid sequence enable them to bind to a diverse
range of DNA sequences. In addition, zinc-finger proteins in
mammalian genomes use multiple, tandem fingers to interact
with arrays of subsites, providing a degree of modularity and
exceptional adaptability (37). JASPAR currently contains only
17 zinc-finger binding profiles. We will continue our ongoing
efforts to expand the JASPAR collection and incorporate new
information as it becomes available.

Analysis of the false positive rates using random sampling
revealed that, when used in isolation, the Z-score and Fisher
tests result in high false positive rates that can be reduced
by combining the two scoring measures. While it’s true that
applying a multiple testing correction could possibly improve
performance for the Fisher measure, the Z-scores we obtain are
extremely large, such that a correction for the 100 or so TFBS
profiles being tested has negligible impact on the Z-score
results. Instead, we have opted to empirically derive threshold
cutoffs based on our reference data. Furthermore, our experi-
ence with oPOSSUM suggests that it is the ranks of the bind-
ing site profiles rather than the specific values of the scores
that are indicative of functionally relevant TFBSs. For these
reasons, and in light of the binding similarities within factor
families, we have abstained from making a Bonferroni cor-
rection to adjust for multiple testing. In the future, we may
introduce an option for users to make this adjustment that is
based on an improved statistical model.

oPOSSUM is the first integrated, web-based tool for ana-
lyzing sets of co-expressed genes that incorporates cross-
species comparisons, PSSM-based promoter motif detection,
and statistical methods for the identification of over-
represented TFBSs with a pre-computed database. Other
resources are available for detecting and visualizing binding
sites within the conserved regions of human genes [Consite
(11), rVISTA (38), dbTSS (39), CONREAL (40), CORG (41)],
as well as for identifying statistically over-represented motifs
in the promoters of related sequences [Clover (42), OTFBS
(43), PRIMA (44)]. Other comparable tools that integrate all of
these approaches include the Toucan workbench for regulatory
sequence analysis (45), CONFAC (46), and CRÈME (47).
Unlike Toucan, oPOSSUM employs a pre-computed database
of conserved TFBSs, eliminating the need for long processing
times involved in retrieving sequences, performing align-
ments, and detecting motifs via PSSMs. Furthermore, the
use of two complementary statistical tests to determine over-
represented TFBSs is unique to oPOSSUM, and attempts to
address the inherent problems involved in analyzing conserved
regions of promoters for TFBSs, which include variation in
conservation properties from one orthologous gene pair to
another and multiple occurrences of a particular TFBS in
the promoter of a single gene.

The oPOSSUM system is under continued development. As
new information accumulates, we intend to expand the ortho-
logy mapping, increase the number of TFBS profiles supported
in JASPAR, include the option for users to specify alternat-
ive promoters (TSSs), and improve the over-representation

analysis. We believe that this approach to regulatory analysis
will be helpful to researchers hoping to elucidate transcrip-
tional pathways from gene expression data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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