
RESEARCH ARTICLE

Deep reconstruction model for dynamic PET

images

Jianan Cui1☯, Xin Liu2☯, Yile Wang1, Huafeng Liu1*

1 State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang

University, Hangzhou, China, 2 Shenzhen Institutes of Advanced Technology, Chinese Academy of

Sciences, Shenzheng, China

☯ These authors contributed equally to this work.

* liuhf@zju.edu.cn

Abstract

Accurate and robust tomographic reconstruction from dynamic positron emission tomogra-

phy (PET) acquired data is a difficult problem. Conventional methods, such as the maximum

likelihood expectation maximization (MLEM) algorithm for reconstructing the activity distri-

bution-based on individual frames, may lead to inaccurate results due to the checkerboard

effect and limitation of photon counts. In this paper, we propose a stacked sparse auto-

encoder based reconstruction framework for dynamic PET imaging. The dynamic recon-

struction problem is formulated in a deep learning representation, where the encoding layers

extract the prototype features, such as edges, so that, in the decoding layers, the recon-

structed results are obtained through a combination of those features. The qualitative and

quantitative results of the procedure, including the data based on a Monte Carlo simulation

and real patient data demonstrates the effectiveness of our method.

Introduction

Positron emission tomography (PET) is a nuclear medicine, functional imaging method that

evaluates the body condition based on metabolism in living tissue. Annihilation occurs due to

the decay of a radio tracer such as 18F-Fluoro-2-Deoxy-glucose (FDG) after emission positron

encounters the electrons, which generates a pair of 511keV photons in the opposite direction.

Once the projection data are obtained by a photon detector, the static radioactivity distribution

can be reconstructed [1]. In contrast to static PET imaging, dynamic PET imaging detects data

in a series of frames. In clinical applications, the dynamic information has the potential to

improve early detection, the characterization of cancer and assessment of therapeutic response

after obtaining the spatial and temporal radioactivity distribution [2]. To guarantee that the

rapid change in tracer activity can be tracked immediately, the time interval between two

frames in earlier parts of a scan will not be long enough, leading to reduced photon accumula-

tion and lower spatial resolution. How to reconstruct the high-quality dynamic PET images

and guarantee the temporal resolution at the same time has become a challenging problem [3].

One popular method is to reconstruct the radioactivity map for each frame independently

based on several conventional statistical models such as maximum a posteriori (MAP) [4],
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maximum likelihood estimate (MLE) [5] and penalized weighted least square (PWLS) [6].

Because of the tradeoff between spatial resolution and temporal resolution, these frame-to-

frame strategies may lead to noisy results due to the low signal-to-noise ratio of the data. To

solve this problem, an attractive approach is to append the smoothness regularization terms

into the objective function. Compared with other approaches such as the filtering of wavelets

[7], total variation (TV) regularization can be suitable for edge-preserving imaging problems

in low signal to noise ratio (SNR) or few-view data sets; however, in the presence of noise, TV

tends to over smooth and deblur images with a natural gradient [8].

In this study, we aimed to reduce the noise while preserving the key features (such as the

boundary of a tumor) at the same time. Different from regularizations in the above methods,

we built a deep reconstruction framework for PET images based on the stacked sparse auto-

encoder (SAE) and the maximum likelihood expectation maximization (MLEM), which is

called MLEM+SAE in short. The SAE model comprised several auto-encoder templates,

where each template exploited self-similarity in PET images. To incorporate the information

in adjacent frames, temporal features were also learned by the single-layer sparse auto-

encoder. The essence of our MLEM+SAE model was to incorporate the PET images feature

automatically and boost the reconstruction accuracy.

Methods

The study was approved by the Research Ethics Committee of Zhejiang University. The

patients provided written informed consent.

Dynamic PET imaging model

After injecting the radio tracer into the body, the detected emission data represented the series

of photon pairs. The relationship between the detected photon pairs and radioactive distribu-

tion could be written as:

yiq
� Poissonð�yiq

Þs:t:�yiq
¼
X

p

Gpqxip ð1Þ

where xip
is the number of photons emitted from source voxel p for the ith frame, and Gpq is

the probability that a photon emitted from voxel p is detected at detector q. The emission data

yiq
is the number of photons detected at projection detector q for the ith frame. The overline

for yiq
indicates the expectation number of photon detections. For dynamic PET, the whole

collected emission data Y was modeled by:

Y ¼ GX þ E ð2Þ

where YT = [y1, y2� � �yN] is the collection of whole emission data, XT = [x1, x2� � �xN] is the col-

lection of original radioactive distribution images, and ET = [e1, e2� � �eN] is the collection of

noise in total N frames.

Dynamic PET reconstruction framework based on SAE

Our whole framework is summarized in Fig 1. Considering that images in different frame fol-

lowed the same biological metabolism process, we considered the adjacent reconstruction

images as prior knowledge to aid in the reconstruction of other data. The whole framework

included two parts, training and reconstruction. During the training step, the series of recon-

struction images x1, x2� � �xN were considered the input of a SAE model. The SAE model was

combined by several encoders and a decoder that using the ground truth of PET images in a
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selected ith frame as a label. After training, we got weights parameter W and bias parameter b.

In the reconstruction step, we firstly reconstructed the dynamic PET images �x1; �x2; . . . ; �xN

from sinograms �y1; �y2; . . . ; �yN by MLEM, and then we acquired the reconstruction images

�x1; �x2; . . . ; �xN as input importing into the SAE model with the corresponding parameter W
and b that have been trained in the training step. The estimate value of PET images in the ith
frame could be calculated from the Guassian weighted average of the output. The details are

elaborated in the following section.

Training data. Training data in the form of a carefully chosen set of images could be used

to represent samples of the prior, such as texture for the desired solution. Clearly, such images

must be reliable and application specific.

Auto-encoder template and SAE model. Generally speaking, directly performing medi-

cal image analysis is challenging because the dimensions of the medical images are usually

large and the structure of the biological tissue is complex. Traditional unsupervised learning

methods such as principal component analysis (PCA) [9] and sparse dictionary learning [10]

are widely used for data dimension reduction; However, both methods represent a single-layer

feature. To address the above problem, we constructed the auto-encoder structure to infer the

Fig 1. Overflow of the dynamic PET image reconstruction framework.

https://doi.org/10.1371/journal.pone.0184667.g001
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low-level feature in a lower dimension; indeed, the auto-encoder can be stacked layer by layer

and learn the intrinsic hierarchical feature representations [11].

Fig 2 (left) shows the auto-encoder template. An autoencoder is a three layer network

including an encoder and a decoder. We firstly reshaped the gray-level pixels of the two

dimension reconstruction image as the column vector, considered input x, and then obtained

the output o by the encoding and decoding processes:

h ¼ sðW1;2x þ b1;2Þ ð3Þ

o ¼ sðW 0

1;2
hþ b0

1;2
Þ ð4Þ

The objective function is:

min
W1;2 ;b1;2 ;W

0

1;2
;b0

1;2

ko � xk2
þ a1kWkF þ a2KLðrW k r0Þ ð5Þ

In the above equation, x, h and o represent the input layer, hidden layer and output layer,

respectively. σ is the sigmoid function, and W1,2, b1,2, W 0

1;2
, b0

1;2
are the encoding weight, encod-

ing bias, decoding weight and decoding bias, respectively. α1 and α2 are weighting parameters.

kWkF is the sum of the Frobenius norms of all of the weight matrices to regularize the value of

the matrix elements. KL(ρW k ρ0) is the penalty item of the Kullback-Leibler divergence

Fig 2. Left: Auto-encoder template. Right: SAE model. An autoencoder is a three layer network including an encoder and a decoder. The

SAE model is combined by several encoders and a decoder. The hidden layer of an encoder is the input of its next encoder.

https://doi.org/10.1371/journal.pone.0184667.g002
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between the weight matrix sparsity and the sparsity set in advance:

KL rW k r0ð Þ ¼
X

ij

rW log
rW

r0

þ 1 � rWð Þ log
1 � rW

1 � r0

ð6Þ

The first term in Eq (5) is the penalty for loss function; using this term, the auto-encoder tem-

plate actually learns a function F(W, b) that is an approximation to the identity function. In

other words, after learning the weights and bias, the calculated results are similar to the origi-

nal input:

FðW1;2; b1;2;W
0

1;2
; b0

1;2
; xÞ � x ð7Þ

The encoding step is to learn the feature from the original input where the basic elements are

gray-level pixels, and this particular structure makes the input compressed as represented by

the learned features after setting the number of hidden nodes less than the input layer.

Through visualizing the linear weights in the input-to-first layer weight matrix, which is also

called “filters”, the features extracted by the first layer can be represented directly. For the

smooth area, the representation are sparse; on the other hand, the representation could be

dense if the certain patch has rich information or complex structure. Fig 3 shows two physical

Fig 3. Visualization of filters learned with SAE. (a) (b) Different physical phantoms. (d) (e) Different features learned from above phantoms.

(c) Brain phantoms. (f) Features learned from brain phantoms.

https://doi.org/10.1371/journal.pone.0184667.g003
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phantom (a, b) and its visualization of corresponding filters (d, e) where the features are the

patches of gradually changed pixels in line and circular curves. The second term in (5) is a reg-

ularization of the values for each parameter to avoid over fitting, and the last term actually

decide how much of the main feature is retained; the sparsity setting ρ0 is larger when more

features are retained.

After initializing all of the parameters, we updated the weights and bias using the back

propagation algorithm [12]. The iteration progress gradually achieved convergence after mul-

tiple training samples. The information about the original input image is encoded in the hid-

den layer vector, which has learned the low-level feature of the original image into a lower

dimension space. Fig 3(f) shows the features of the brain phantom learned with SAE.

Similarly, we designed several auto-encoder templates and stacked them together to learn

more detailed features. The input layer of the next template is the hidden layer of the previous

one. The whole framework is shown in the right of Fig 2.

Given the series of reconstruction images for dynamic PET imaging x1, x2� � �xN, we

designed an SAE framework. First, we reshaped all of the adjacent reconstruction images x1,

x2� � �xN to a column vector and considered them the input of the first auto-encoder template.

After solving the parameters W1,2 and b1,2, we calculated the hidden layer h1 by Eq (3) and con-

sidered it the input of the second auto-encoder template. After several iterations, we obtained

the whole SAE. Next, we added the output layer after the last hidden layer, where the nodes of

output layer are the same as the dimension of the ith frame image. Using the back propagation

algorithm and ground truth of the middle frame i as a label, we computed the final parameters

Ws+1,s+2 and bs+1,s+2.

Implementation

Model initialization. The first preparation was to initialize the parameters to be solved in

the above auto-encoder templates. Random initialization does not always produce the optimal

solution due to following reasons. First, greater weights easily lead to the local optimal solu-

tion; on the other hand, the gradient may vanish during the back propagation with smaller

weights, a phenomenon called gradient diffusion. To avoid those situations, we adopted the

restricted Boltzmann machine (RBM) to initialize the parameters and solve it using the con-

trastive divergence algorithm [13].

As shown in Fig 4, the restricted Boltzmann machine comprises a visible layer{vi}, i = 1, 2,

. . ., Nv and a hidden layer {hj}, j = 1, 2, . . ., Nh. W is the Nx by Nh matrix connecting the visible

layer to the hidden layer, and the joint probability density of RBM is:

P v; hð Þ ¼
1

Z
exp � Eðv; hÞð Þ ð8Þ

where Z is the constant of normalization, E(v, h) is the energy function defined as:

Eðv; hÞ ¼
X

i

bivi �
X

j

cjhj �
X

ij
wijvihj ð9Þ

where b and c are the biases of the visible layer and hidden layer, respectively. By maximizing

the likelihood function, we can train the parameters θ = (W, b, c).

First, because there is no connection between nodes from the same layer, we can rewrite the

joint probability density function as follow:

Py v; hð Þ ¼
1

ZðyÞ

Y

ij

eWijvihj
Y

i

ebivi
Y

j
ecjhj ð10Þ
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Thus, we obtain the condition probabilities:

Pðhj ¼ 1jvÞ ¼
1

1þ expð�
X

i

Wijvi � cjÞ

Pðvi ¼ 1jhÞ ¼
1

1þ expð�
X

j

Wijhj � biÞ

ð11Þ

Given a training sample {v1, v2� � �vN} to satisfy the independent distribution, we need to maxi-

mize the following likelihood function:

LðyÞ ¼
1

N

XN

n¼1

logPyðvnÞ �
l

N
kWk2

F ð12Þ

where λ is the relative coefficient between the data items and regularization items. After

Fig 4. Restricted Boltzmann machine.

https://doi.org/10.1371/journal.pone.0184667.g004
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calculating the gradient of likelihood function to the parameters, we can solve the problem

using the gradient descent algorithm.

Parameter training. In the actual experiment for dynamic PET reconstruction, we did

not consider the whole image in the vector of input but only a small patch for the following

reasons. First, the dimension of the medical image is very large: assuming the size of one

image is l by k, the total nodes in the input layer is l × k × N, and too many input nodes makes

the training process become slow and difficult to obtain an accurate solution. Second, because

of the limitation of the number of training images, dividing the images into patches will

increase the sample quantity, avoiding under fitting. Algorithm 1 shows the detailed steps.

Algorithm 1. SAE Parameters Training
1. Initializethe numberof framesN, reconstructionframei, numberof hid-
den layerss, numberof nodesin each of the hiddenlayersh1, h2� � �hs, and size
of patchl × k.
2. For each PET phantom:
3. simulatethe corresponding dynamicPET emissiondata y1, y2� � �yN.
4. obtainthe reconstructionimagesx1, x2� � �xN from the emissiondata.
5. For each patch in x:
6. considerthe pixelsof patchesas the inputand initializethe parame-
ters W1,2, b1,2 using the RBM.
7. updatethe parametersW1,2, b1,2 using the back propagationalgorithm.
8. calculatethe hiddenlayer and considerit the next inputof the auto-
encoder.
9. performsteps6-8 untilW1,2, b1,2, � � �, Ws,s+1, and bs,s+1 have been updated
completely.
10. initializeand updateWs+1,s+2, bs+1,s+2 using the groundtruthof the
ith frame.
11. END
12. END
13. Return:W, b

PET image reconstruction. Given the new dynamic PET emission data, we firstly recon-

structed the original images, selected a patch position and applied all of the patches to the

input layer, and calculated the output vector through the trained parameters W and b. Finally,

we considered Gaussian average of the output vector the estimate value of the center of the

patches for the middle frame i. By changing the position and sweep through all of the patches,

we obtained the whole estimate image, which was the ith frame PET image reconstruction

result. The details are illustrated in Algorithm 2.

Algorithm 2. SAE PET image reconstruction
1. Initializeemissiondata.
2. Reconstruct the originalradioactivedistribution imagesby MLEM.
3. For each pixelposition(r, s):
4. selectthe l × k patchin each reconstructionimage.
5. reshapeall of the patchesinto the columnvectorand apply it to the
inputlayer.
6. calculatethe outputlayerthroughthe trainedparametersW and b.
7. considerthe Gaussianweightedaverageof the outputas the estimate
value.
8. END
9. Return:the ith framePET image reconstructionimage

Experiments

To confirm the accuracy and effectiveness of our method, we conducted several experiments

using Monte Carlo simulated data and real patient data, respectively. We compared our

method (shorthand for MLEM+SAE) with the traditional algorithm (MLEM) and total
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variation (TV) regularization based method. All of the codes were implemented and run in

MATLAB R2014a (MathWorks Corporation, USA) and personal computer with i5 Intel Core

CPU and 8GB memory.

In this paper, we used the following three quantitative indexes for comparison:

SNR ¼ 20� log
255

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðui � ûiÞ
2

s

0

B
B
B
B
@

1

C
C
C
C
A

Bias ¼
1

n

Xn

i¼1

ui � ûi

ûi

� �

Variance ¼
1

n

Xn

i¼1

ui � �un

ûi

� �2

ð13Þ

Fig 5. Reconstruction results. Reconstruction results of the brain phantom (left) and Zubal phantom (right)

for different size of patches.

https://doi.org/10.1371/journal.pone.0184667.g005
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Fig 6. Reconstruction results. Reconstruction results of the brain phantom (left) and Zubal phantom (right)

for different numbers of nodes in the hidden layers.

https://doi.org/10.1371/journal.pone.0184667.g006

Fig 7. Monte Carlo simulation results. Monte Carlo simulation brain phantom data (left) and Zubal phantom data (right).

https://doi.org/10.1371/journal.pone.0184667.g007
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where ui is our reconstruction value in the ith pixel, and ûi is value of ground truth in the ith
pixel. �un is the mean value and n is the number of pixels in interest region. The SNR reflects

the accuracy of the reconstructed image: a higher SNR indicates better results. The bias and

variance reflect the difference between the result and ground truth: a lower bias or variance

indicates better results.

Parameter setting

Before the experiments, we initialized our model with the number of frames N = 3, number of

hidden layers s = 2, number of nodes in the hidden layers h1 = 200, h2 = 100, and size of

patches l × k = 7 × 7. The aim of our model is to find the relation on temporal to help recon-

struction. For dynamic PET imaging, the previous frame and the next frame are the most

closely associated with the to be reconstructed frame. So we set N = 3 and in the input layer of

our model is the i − 1th, ith and i + 1th frame. Usually, the number of hidden layers in lots of

Fig 8. Brain phantom reconstruction results. From top to bottom: ground truth, reconstruction result by MLEM, MLEM+SAE and TV. From

left to right: the 1st, 3rd, 5th, 7th, and 9th frames.

https://doi.org/10.1371/journal.pone.0184667.g008

Deep reconstruction model for dynamic PET images

PLOS ONE | https://doi.org/10.1371/journal.pone.0184667 September 21, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0184667.g008
https://doi.org/10.1371/journal.pone.0184667


stacked autoencoder applications is set as two to four [14] [15] [16]. As our model is a low-

level vision task, which emphasizes more pixel level features, too deep network is not needed.

Therefore the number of hidden layers is set as s = 2. The number of nodes in the input layer is

decided by the defined patch size: small patches carry less information, and large patches make

the whole framework more difficult to train. By contrast, the total number of nodes in the hid-

den layers decides the learning ability of the framework: fewer nodes lead to under fitting, and

too many nodes make training difficult and promote over fitting. A different setting will influ-

ence the quality of the final results, and all of the parameters are decided by multiple tests. For

the framework of SAE, we considered two parameters, focusing on their complexity and capa-

bility, which are the total number of nodes in the input layer and hidden layer, respectively.

Figs 5 and 6 show the result of the influence of the patch size and total number of nodes in

the hidden layers. These two figures have some similarities, at the beginning; as the patch size

and number of nodes increase, the learning ability of the framework becomes stronger, and

the corresponding SNR results improve. After a certain time, the results for the larger patch

Fig 9. Zubal phantom reconstruction results. From top to bottom: ground truth, reconstruction result by MLEM, MLEM+SAE and TV. From

left to right: the 1st, 3rd, 5th, 7th, and 9th frames.

https://doi.org/10.1371/journal.pone.0184667.g009
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worsen, the framework shows over fitting, and the corresponding SNR results worsen quickly.

Overall, the best patch size was approximately 7 × 7, and the number of nodes in the hidden

layer is approximately 400.

Accuracy

Monte Carlo simulation. We conducted our experiment for the brain phantom [17] and

Zubal phantom [18] using the toolbox GATE [19] to perform Monte Carlo simulation.The

benefits of Monte Carlo simulation are that we could simulate physical and physiological pro-

cesses to compare our method with other reconstruction algorithms and the ground truth. In

this paper, the dynamic PET scanner simulated was Hamamatsu SHR74000, and the corre-

sponding radio tracer was 18F − FDG. The sinogram of the brain phantom had 64 × 64 projec-

tions, and the number of frames was 18. The sinogram of Zubal phantom had 128 × 128

projections, and the number of frames was 16. We also obtained data with different counting

rates-i.e., the count number of coincidence events set as 5 × 104, 1 × 105, 5 × 105 and 1 × 106.

During reconstruction, we also considered random correction, attenuation correction, scatter

correction and normalization correction. The ground truth and different ROIs for the brain

phantom and Zubal phantom are shown in Fig 7. The network was trained on 700 sets of

Monte Carlo simulated data and tested on 100 sets of Monte Carlo simulated data. Each set

had more than 20000 patches.

Fig 10. Brain phantom reconstruction results for the local patch. First row: ground truth for the 3rd

frame, ground truth for the local patch. Second row: reconstruction result for local patch by MLEM,

reconstruction result for local patch by MLEM+SAE.

https://doi.org/10.1371/journal.pone.0184667.g010
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Figs 8 and 9 show the reconstruction results by MLEM, MLEM+SAE and TV for the differ-

ent brain phantom and Zubal phantom frames. Figs 10 and 11 display selected areas of the

reconstruction results by MLEM and MLEM+SAE. From the images, the reconstruction

results of our method demonstrated sharper edges and higher pixel values in the radiation

area. The MLEM algorithm leads to much noise due to the chessboard effect during iterations;

however, by fusing multiple image data, our method provides a clearer and smoother result.

The reconstruction results by TV show a good performance when the photon counting rates

are high in the 1st, 3rd and 5th frames, but when in the 7th and 9th frames, there are much

noise which leads to over smooth and fuzzy boundaries. However, the reconstruction process

of our method does not smooth the boundary because the SAE learns the features of the edges

and corners in images, resulting in more image details.

Different regions in our simulated data have different physiological and physical properties

that may lead to different reconstruction results. For further analysis, we also performed com-

parisons among different regions of interest. Fig 12 shows the results of SNR, bias and variance

comparison among different regions of interest. From Fig 12, we can conclude that, regardless

of the region of interest, our method can improve the SNR and suppress bias and variance in

all of the frames.

Real data. The patient heart data were obtained from the local hospital using a Hamama-

tsu SHR-22000 whole-body PET scanner, which has 32 crystal rings and a trans axial

Fig 11. Zubal phantom reconstruction results for the local patch. First row: ground truth for the 3rd

frame, ground truth for the local patch. Second row: reconstruction result for local patch by MLEM,

reconstruction result for the local patch by MLEM+SAE.

https://doi.org/10.1371/journal.pone.0184667.g011
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resolution of the central FOV of 3.7 mm/p. The size of the collected sinogram is 96 × 96 × 18.

The reconstructed results are shown in Fig 13.

From the real patient data reconstruction results, much noise appears in the results using

the MLEM algorithm again. By fusing the series of frames, our method produces a cleaner and

smoother result. Moreover, the high-concentration radio region remains bright and distinct,

Fig 12. Brain phantom and Zubal phantom reconstruction result. Brain phantom (left) and Zubal phantom (right) reconstruction result comparison for

different regions of interest. From top to bottom: SNR, bias and variance comparison curves.

https://doi.org/10.1371/journal.pone.0184667.g012
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and the boundary stays sharper. In summary, our results are more suitable for clinical applica-

tion obviously.

Robustness

To test the robustness of our results, we set different counting rates-i.e., the number of coinci-

dence events during Monte Carlo simulation. Fig 14 shows the reconstruction result under dif-

ferent counting settings. The detail index comparisons are illustrated in Tables 1 and 2. From

these figures and tables, we can conclude that the MLEM algorithm causes much more noise

when the counting rate is low: the quality of the reconstruction image improves with the

increasing counting rate. However, by learning how to fuse the adjacent reconstruction

images, our method can also produce a high-accuracy reconstruction result with much less

noise and a clearer boundary.

Discussion and conclusion

We have developed an SAE model for dynamic PET reconstruction. Compared with the exist-

ing method, our algorithm outperforms in three main aspects: i)by using the multiple frames

as the input, much noise is smoothed and suppressed in the non-radioactivity area and contin-

uous radioactivity area; ii) due to the multi-layer model for feature learning, our algorithm can

recover many more details in the boundary or complex area; iii) by processing the image patch

by patch, our algorithm can work on dynamic PET emission data regardless of the original

size. To demonstrate the effectiveness of our method, we have tested our algorithm for differ-

ent numerical indexes based on Monte Carlo simulation data and real patient data.

One of the major concerns is the tissue specificity or patient specificity. Because our param-

eters are trained in advance, our model may not learn the features when they come from new

different test tissue PET images, which will influence the quality of the reconstruction images.

As shown in Fig 15, the top row represents the reconstruction results by the MLEM algorithm

for the Zubal phantom, and the bottom row represents the reconstruction results by MLEM

+SAE; however, we only used the patches of the brain phantom in the training step. From the

figure, our method still produces better results than the traditional MLEM algorithm; however,

Fig 13. Real heart data reconstructed results. From left to right: Reconstruction result by the MLEM

algorithm for the 2nd, 3rd and 4th frames, our result for the 2nd, 3rd and 4th frames.

https://doi.org/10.1371/journal.pone.0184667.g013
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due to the limitation of the training data, the results are not as good as our results in Fig 9,

regardless of the noise reduction or edge preservation. Table 3 shows the detailed index com-

parisons where our method could effectively obtain a higher signal to noise and suppress the

bias and variance. With the development of computer ability and appearance of increasing

medical data, we believe a stronger computation model can be pro-posed.

Fig 14. Reconstruction results under different counting rate settings. From left to right: the counting rates are 5 × 104, 1 × 105,

5 × 105 and 1 × 106. Top row: reconstruction results by MLEM. Second row: reconstruction results by MLEM+SAE. (a) Brain phantom. (b)

Zubal phantom.

https://doi.org/10.1371/journal.pone.0184667.g014
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In contrast to the traditional reconstruction algorithm that works on the emission data

directly, our method needs an initial training step, and then, reconstruction is performed for

multiple frames in the reconstruction step. Thus, our method requires much more computa-

tional time. Usually, the MLEM algorithm needs 0.8-1.5 seconds for convergence, but our

method needs approximately 40-50 seconds, including training and reconstruction. When the

data and image dimension increase, we can use more advanced optimization methods, such as

Table 1. Brain phantom reconstruction results comparison with different counting rates.

Counting Rate ROI SNR Bias Variance

MLEM MLEM+SAE MLEM MLEM+SAE MLEM MLEM+SAE

5 × 104 Total 66.39 69.30 0.0516 0.0409 0.0146 0.0076

ROI 1 66.49 68.98 0.0860 0.0715 0.0148 0.0082

ROI 2 56.58 61.70 0.3588 0.1638 0.1428 0.0439

ROI 3 76.01 76.37 0.0317 0.0295 0.0016 0.0014

1 × 105 Total 65.76 69.20 0.0548 0.0410 0.0172 0.0078

ROI 1 66.28 69.18 0.0872 0.0721 0.0153 0.0077

ROI 2 55.83 61.66 0.3952 0.1639 0.1698 0.0443

ROI 3 76.65 77.37 0.0290 0.0272 0.0014 0.0012

5 × 105 Total 67.69 69.60 0.0434 0.0378 0.0100 0.0071

ROI 1 66.54 67.69 0.0780 0.0737 0.0144 0.0111

ROI 2 59.04 62.21 0.2559 0.1533 0.0809 0.0391

ROI 3 73.19 77.88 0.0484 0.0251 0.0031 0.0011

1 × 106 Total 69.17 70.42 0.0387 0.0365 0.0079 0.0073

ROI 1 66.97 69.81 0.0782 0.0573 0.0132 0.0068

ROI 2 59.75 61.73 0.2325 0.1640 0.0687 0.0436

ROI 3 79.57 80.19 0.0218 0.0162 0.0027 0.0017

https://doi.org/10.1371/journal.pone.0184667.t001

Table 2. Zubal phantom reconstruction results comparison with different counting rates.

Counting Rate ROI SNR Bias Variance

MLEM MLEM+SAE MLEM MLEM+SAE MLEM MLEM+SAE

5 × 104 Total 63.09 68.06 0.0901 0.0428 0.0319 0.0101

ROI 1 55.78 64.62 0.3973 0.0995 0.1716 0.0224

ROI 2 66.25 67.03 0.1138 0.0950 0.0154 0.0129

ROI 3 58.57 64.62 0.2391 0.1280 0.0904 0.0224

1 × 105 Total 64.21 68.16 0.0766 0.0395 0.0247 0.0099

ROI 1 56.76 63.83 0.3486 0.1050 0.1370 0.0267

ROI 2 68.28 69.97 0.0712 0.0643 0.0097 0.0065

ROI 3 59.50 62.25 0.2108 0.1798 0.0729 0.0387

5 × 105 Total 65.34 68.41 0.0661 0.0369 0.0190 0.0094

ROI 1 58.14 64.41 0.2887 0.0962 0.0997 0.0235

ROI 2 67.91 71.12 0.0607 0.0581 0.0105 0.0050

ROI 3 59.45 61.17 0.2109 0.2083 0.0737 0.0497

1 × 106 Total 63.09 68.06 0.0901 0.0428 0.0319 0.0101

ROI 1 55.78 64.62 0.3973 0.0995 0.1716 0.0224

ROI 2 66.25 67.03 0.1138 0.0950 0.0154 0.0129

ROI 3 58.57 64.62 0.2391 0.1280 0.0904 0.0224

https://doi.org/10.1371/journal.pone.0184667.t002
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batch acceleration gradient reduction, or more complicated structures, such as a convolution

neural network. Regarding the hardware, the graphic processing unit can promote high

computational efficiency.
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