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Background-—The genetic basis of stroke susceptibility remains to be elucidated. STR1 quantitative trait locus (STR1/QTL) was
identified on rat chromosome 1 of stroke-prone spontaneously hypertensive rat (SHRSP) upon Japanese-style stroke-permissive
diet (JD), and it contributes to 20% of the stroke phenotype variance.

Methods and Results-—Nine hundred eighty-six probe sets mapping on STR1 were selected from the Rat RAE230A array and
screened through a microarray differential expression analysis in brains of SHRSP and stroke-resistant SHR (SHRSR) fed with either
regular diet or JD. The gene encoding Ndufc2 (NADH dehydrogenase [ubiquinone] 1 subunit), mapping 8 Mb apart from STR1/QTL
Lod score peak, was found significantly down-regulated under JD in SHRSP compared to SHRSR. Ndufc2 disruption altered complex
I assembly and activity, reduced mitochondrial membrane potential and ATP levels, and increased reactive oxygen species
production and inflammation both in vitro and in vivo. SHRSR carrying heterozygous Ndufc2 deletion showed renal abnormalities
and stroke occurrence under JD, similarly to SHRSP. In humans, T allele variant at NDUFC2/rs11237379 was associated with
significant reduction in gene expression and with increased occurrence of early-onset ischemic stroke by recessive mode of
transmission (odds ratio [OR], 1.39; CI, 1.07–1.80; P=0.012). Subjects carrying TT/rs11237379 and A allele variant at NDUFC2/
rs641836 had further increased risk of stroke (OR=1.56; CI, 1.14–2.13; P=0.006).

Conclusions-—A significant reduction of Ndufc2 expression causes complex I dysfunction and contributes to stroke susceptibility
in SHRSP. Moreover, our current evidence may suggest that Ndufc2 can contribute to an increased occurrence of early-onset
ischemic stroke in humans. ( J Am Heart Assoc. 2016;5:e002701 doi: 10.1161/JAHA.115.002701)
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I t is known that both environmental and genetic factors
contribute to increased stroke predisposition in

humans.1,2 Unraveling the genetic causes of stroke may take
significant advantage of the availability of an inbred animal

model, the stroke-prone spontaneously hypertensive rat
(SHRSP).3 The latter represents a suitable model for studies
on the human disease4 and, based on previous investigations,
carries at least 3 quantitative trait loci (QTL) for stroke
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susceptibility.5 One of them (STR1) maps on rat chromosome
1; it is included between Klk and Mt1pa markers, extending
for an overall 80 cM length, and shows a 6.7 Lod score peak
in correspondence of the anonymous marker, D1Mit3. STR1
contributes to 20% of overall stroke phenotype variance.5

Notably, its effect was confirmed by congenic experimenta-
tion.6 In fact, congenic animals carrying SHRSP/STR1 within
the stroke-resistant (SHRSR) genomic background had
increased stroke occurrence. However, no apparent suitable
candidate genes were initially discovered near the Lod score
peak area. In the attempt to identify the gene(s) responsible
for stroke phenotype within STR1, we performed, based on
previous literature,7 a microarray differential expression
analysis of all sequences contained inside STR1 in brains of
both SHRSP and SHRSR fed with either regular or stroke
permissive diet. One gene was found to be differentially
modulated (ie, down-regulated) in brains of SHRSP. This gene
was Ndufc2 (NADH dehydrogenase [ubiquinone] 1, subcom-
plex unknown, 2), mapping 8 Mb apart from the Lod score
peak.

Here, we report both in vitro and in vivo evidence of the
significant functional impact of Ndufc2-reduced expression on
mitochondrial function, oxidative stress accumulation, and
cell viability. We describe the stroke phenotype of SHRSR
carrying heterozygous Ndufc2 deletion. Moreover, we report
results of a genetic screening carried out in a human cohort of
subjects with early-onset ischemic stroke by testing available
NDUFC2 single nucleotide polymorphisms (SNPs), which may
generate the hypothesis that Ndufc2 is a genetic risk factor
for stroke also in humans.

Methods

Brain Expression Profiling of Potential Candidate
Genes Within STR1/QTL on Rat Chromosome 1 in
SHRSP
Ten 6-week-old SHR/molBbb (SHRSR) and ten 6-week-old
SHRSP/Bbb (SHRSP) rats, both inbred for 20 years at the
MDC center in Berlin and derived from the original colonies
established in Japan, were fed with either regular (RD; n=5)
or Japanese-style diet (JD; n=5) for 4 weeks and were then
sacrificed. Brains were removed, immediately frozen, and
subsequently extracted for total RNA by using the QIAGEN’s
RNeasy Total RNA Isolation kit (Qiagen GmbH, Hilden,
Germany). Preparation quality was assessed by agarose-
formaldehyde gel electrophoresis. For synthesis of double-
stranded cDNA from 15 lg of total RNA, the cDNA
Synthesis System kit (Roche Diagnostics, Indianapolis, IN)
was used. Biotinylated cRNA was synthesized with Perki-
nElmer’s (Waltham, MA) nucleotide analogs using Ambion’s
MEGAScript T7 kit (Ambion, Austin, TX). After fragmenting

the cRNA for target preparation using the standard
Affymetrix protocol, 15 lg of fragmented cRNA was
hybridized for 16 hours at 45°C to Rat Genome 230 A
Array. After hybridization, the arrays were washed and
stained with streptavidin-phycoerythrin in the Affymetrix
Fluidics Station 400 and further scanned using the
AFFYMETRIX GeneChip Scanner 3000 7G (Affymetrix Inc,
Santa Clara, CA). Image data were analyzed with GCOS 1.4
using Affymetrix default analysis settings and global scaling
as a normalization method. All arrays passed our formal
quality criteria (30–50 ratio of Gapdh <3; RawQ <3) and were
quantile-normalized using Robust Multiarray Average (RMA).8

Outliers in replicates were removed according to a Nalimov
test P-value threshold of 10�3.9 After removal of probe sets
located outside the major stroke QTL interval on rat
chromosome 1 (92–220 Mbps), the remaining 986 probe
sets were analyzed using ANOVA statistic followed by a false
discovery rate (FDR) multiple testing correction.10 Probes
that underwent 0.1% FDR (N=87) were k-means clustered.
The cluster analysis was done after applying probe-set
standardization using an average Euclidean distance func-
tion. K was selected according to the absolute minimum in
the Davies Bouldin cluster estimation procedure.11 Further-
more, to estimate contribution of treatment and strain
differences and the interaction to the general ANOVA effect,
a 2-way ANOVA was performed on probe sets representing
Ndufc2.

Data of microarray analysis are available online (https://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1102;
accession numbers: ArrayExpress acc#: E-MTAB-1102).

Sequencing of Ndufc2 in the 2 Parental Strains
As previously reported,12 genomes of SHR/NHsd (Harlan
Laboratories, Bethesda, MD) and of SHRSP/Gla (Western
Infirmary, Glasgow, UK) were sequenced on an Illumina
platform to a depth of at least 239 (Illumina, San Diego, CA).
In brief, 5 lg of DNA was used to construct paired-end whole-
genome libraries with 300- to 600-base-pair (bp) insert size.
Genomic DNA was prepared from liver or spleen and quality
checked before sequencing on an Illumina HiSeq2000,
following the manufacturer’s instructions. Quality-filtered
Illumina paired-end and/or mate pair reads were mapped to
the Brown Norway reference genome, RGSC-3.4,13 using the
read alignment software Burrows-Wheeler Aligner (BWA-
0.5.8c).14 Genomic variants (single-nucleotide variant and
short indels [1–15 bp]) were detected using the Genome
Analysis Toolkit (GATK version 1.0.6001).15,16 Sequence
differences between strains SHR/NHsd and SHRSP/Gla,
compared to other rat strains, were accessed using custom
Perl scripts.
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Determination of Ndufc2 Expression by Reverse-
Transcription Polymerase Chain Reaction in Brain
Tissue and in Cellular Extracts
Two micrograms of total RNA were used for cDNA synthesis
using Superscript III First-Strand (Invitrogen, Carlsbad, CA)
and random examer primers according to manufacturer’s
instructions. The following oligonucleotides were used:
Ndufc2: forward 50-GGCTTGTCTACATCGGCTTC-30; reverse
50- TGATGGTCCCTCACAGCATA-30; ß-actin: forward 50-AGATG
ACCCAGATCATGTTTGAGA-30; reverse 50-ATAGGGACATGCGG
AGACCG-30. Real-time quantitative polymerase chain reaction
(RT-PCR) was performed using a 29 SYBR Green PCR Master
Mix (Applied Biosystems, Forster City, CA) containing the
double-stranded DNA-binding fluorescent probe, Sybr Green,
and all necessary components except primers. Quantitative
PCR conditions included an initial denaturation step of 94°C/
10 minutes followed by 40 cycles of 94°C/15 seconds and
60°C/15 seconds. Standards, samples, and negative controls
(no-template) were analyzed in triplicate. Concentrations of
mRNA were calculated from serially diluted standard curves
simultaneously amplified with the unknown samples and
corrected for b-actin mRNA levels. Levels of Ndufc2 mRNA in
JD-fed rats were compared to levels of RD-fed rats. Levels of
Ndufc2 mRNA in Ndufc2-silenced cells were compared to
nonsilenced cells.

Western Blotting of Total Proteins Extracted From
Brain Tissue and Cellular Extracts
Brain total proteins were extracted as previously reported for
tissues.17 For cellular protein extraction, cells were washed
twice with ice-cold PBS and lysed with lysis buffer. Protein
concentrations were determined by the Bradford method.18

Then, 40 lg of total proteins were separated on 12% SDS-
PAGE and transferred to polyvinylidene difluoride (PVDF)
membranes (Amersham, Piscataway, NJ). Nonspecific binding
sites were blocked with 5% nonfat dried milk for 2 hours at
room temperature (RT). Membranes were then incubated
overnight with the following primary antibodies: anti-Ndufc2
(1:200) rabbit polyclonal (Catalog No.: NBP1-59610; Novus
Biologicals, Littleton, CO); anti-Nf-jBp65 (nuclear factor
kappa B; 1:200; Catalog No.: SC-8008; Santa Cruz Biotech-
nology, Santa Cruz, CA); anti-SOD2 (superoxide dismutase 2,
mitochondrial; 1:200; Catalog No.: S5569; Sigma-Aldrich,
Milan, Italy), anti-phospho-MAPKp38 (mitogen-activated pro-
tein kinase; 1:200) mouse monoclonal (Catalog No.: SC-
7973; Santa Cruz Biotechnology); anti-phospho-JNK1 (c-Jun
N-terminal kinase 1; 1:200) mouse monoclonal (Catalog No.:
SC-6254; Santa Cruz Biotechnology); anti-MAPKp38 (1:200)
rabbit polyclonal (Catalog No.: SC-535; Santa Cruz Biotech-

nology); anti-JNK1 (1:200) rabbit polyclonal (Catalog No.: SC-
474; Santa Cruz Biotechnology); anti-IjB (nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor;
1:200) rabbit polyclonal (Catalog No.: SC-945; Santa Cruz
Biotechnology); anti-c-Jun mouse monoclonal antibody
(1:200; Catalog No.: L70B11; Cell Signaling Technology,
Milan, Italy); anti-b-actin (1:5000; Catalog No.: A5441;
Sigma-Aldrich). Secondary antibodies were: 1:5000 antirabbit
(Catalog No.: SC-2004; Santa Cruz Biotechnology) and
1:5000 antimouse (Catalog No.: SC-2005; Santa Cruz
Biotechnology).

Signals were revealed with an enhanced chemilumines-
cence detection system (ECL; Amersham) and visualized
by a ChemiDoc XRS+imaging system (Bio-Rad, Richmond,
CA). Finally, protein levels were normalized using b-actin
levels. Protein bands were scanned and quantified densit-
ometrically.

Detection of Brain-Oxidized Proteins
To detect levels of brain-oxidized proteins from total proteins,
the Oxyblot Detection kit (Millipore, Milan, Italy) was used as
previously reported.17 Five selected protein bands from
immunoblots were scanned and quantified densitometrically.
Experiments were performed in triplicate.

In Vitro Ndufc2 Silencing in A10 Cells
A vascular smooth muscle cell line (A10) obtained from rat
embryonic thoracic aorta (purchased from LGC Promochem,
Milan, Italy) was cultured in DMEM containing normal
glucose (5.5 mmol/L), 10% FBS, and supplemented with
penicillin (100 U/mL)/streptomycin (100 lg/mL) at 37°C in
95% O2 and 5% CO2. Cells were plated in 100-mm-diameter
dishes (49105) and 60-mm-diameter dishes (1.59105),
passaged upon reaching confluence with 2 mL of trypsin
and used at the 12th passage and 70% confluence. Cells
were washed with PBS, and then OPTI-MEM–reduced serum
medium (Invitrogen, Carlsbad, CA) was added to the cells.
Ndufc2-specific siRNA (Mission siRNA; Sigma-Aldrich) and a
nucleic acid transferring agent, Lipofectamine 2000 (Invit-
rogen) were incubated in OPTI-MEM–reduced serum medium
for 20 minutes at RT to form a siRNA-Lipofectamine
complex. The siRNA-Lipofectamine complex-containing med-
ium was added to cells to a final siRNA concentration of
33 nmol/L. Five hours later, the complex-containing
medium was replaced with DMEM supplemented with 10%
FBS. Cells transfected with Lipofectamine and no-target
siRNA (Sigma-Aldrich) were used as controls. Seventy-two
hours later, both silenced and nonsilenced cells were used
for all analyses described below. Six experiments were
performed.
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Determination of Reactive Oxygen Species
Production in Ndufc2-Silenced A10 Cells
Intracellular production of superoxide was evaluated by
dichlorodihydrofluorescein ester (DCHF), as previously
reported.17 For this purpose, A10 cells were incubated in 1 mL
of 0.05 mmol/L of PBS solution of the permeable agent, DCHF
(Sigma-Aldrich), for 30 minutes. Cells were lyzed with 2% Triton-
X. Lysates were collected on ice, centrifuged at 13 800 g at 4°C
for 10 minutes, and then fluorescence intensity was read. In this
assay, oxidative stress is quantified by monitoring intracellular
DCF content by a fluorometer (Mithras LB 940; Berthold
Technologies GmbH & Co. KG, Bad Wildbad, Germany) with
excitation at 495 nm and emission at 525 nm. Fluorescence
intensity measurements are expressed as arbitrary units.

Characterization of Inflammatory Pathway in
Ndufc2-Silenced A10 Cells
RNA extracted from both silenced and nonsilenced cells was
analyzed by quantitative RT-PCR using an RT2Profiler PCR
array (Rat Inflammation array; SuperArray Bioscience Corpo-
ration, Frederick, MD). Procedure and data analysis have been
previously described.19 Results are expressed as relative
levels of each gene mRNA under condition of either presence
or absence of Ndufc2 referred to the expression of this gene
in control cells (that were chosen to represent 19 expression
of each gene). Results were considered significant when
mRNA expression was 2.5-fold higher or lower than that of
control cells. Experiments were performed in triplicate.

Assessment of Necrosis by Flow Cytometry With
Propidium Iodide Staining
Cells were harvested by incubation with 2 mL of trypsin for
5 minutes. After addition of 10% FBS DMEM medium, the
suspension was centrifuged at low speed at RT. Each pellet was
washed with PBS. After washing, 59105 cells were resus-
pended in 2 mL of cold PBS and centrifuged at 4°C at 500g for
5 minutes. The supernatant was removed, pellets energically
vortexed, and then gently resuspended in 400 lL of hypotonic
solution of propidium iodide (PI; 50 mg/mL in 0.1% sodium
citrate plus 0.1% Triton X-100; Sigma-Aldrich). Cells were
incubated in the dark at 4°C for 20 minutes. Then, fluores-
cence-activated cell sorting (FACS) was performed by a FACS
Calibur flow cytometer (BD Biosciences, San Jose CA). For this
assay, red fluorescence was measured corresponding to the
red color of PI (FL-3 detector). To exclude doublets and cell
aggregates from the analysis, a doublet discrimination module
was used. Peak width was estimated using the coefficient of
variation of the signals within each peak. Cells treated with a
high dose of H2O2 were used as positive control.

Analysis of Mitochondrial Function

Complex I assembly evaluation

Mitochondria were isolated from whole rat brains using the
Mitochondria Isolation Kit for Rodent Tissue (Abcam, Cam-
bridge, MA). Preparation of total mitochondrial extracts for Blue
Native (BN)–PAGE (BNG) analysis was performed as described
previously.20,21 Mitochondrial pellet was resuspended at a
protein concentration of �1 mg/mL in a solubilization buffer
containing 50 mmol/L of Bis-Tris (pH 7.0), 1% (v/v) n-dodecyl-
b-d-maltoside, and 750 mmol/L of e-amino-N-caproic acid. The
suspensionwas kept on ice for 1 hourwith occasional vortexing
and was then clarified by centrifugation at 14 000g for
30 minutes. Then, 0.9 mL of the resulting supernatant,
containing both membrane and water-soluble proteins, was
mixed with 0.1 mL of concentrated BN-PAGE loading buffer
(109) containing 0.75 mol/L of e-amino-N-caproic acid and 3%
(w/v) Serva blue G-250. Samples were stored at �20°C until
analysis. Protein concentrations were determined by bicin-
choninic acid protein assay using BSA as a standard. Intact
mitochondrial complexes were then separated by electrophore-
sis using a minigel system (Bio-Rad Mini-Protean 3) and a 4% to
15% gradient acrylamide gel (Mini-Protean Precast GelS; Bio-
Rad). Mitochondrial protein complexes were transferred to a
methanol-activated PVDF membrane (Bio-Rad) using the
BioRad Mini Trans-blot System. Membranes were then blocked
overnight at 4°C in 5% milk/PBS solution, washed for 10 min-
utes in PBS0.05% Tween-20, and incubated for 3 hourswith the
primary antibodies (MitoProfile Total OXPHOS Rodent WB
Antibody Cocktail; Abcam) to a final concentration of 6.0 lg/
mL in 1% milk/PBS solution. Membranes were washed in PBS
0.05% Tween-20 and incubated for 1 hour with the secondary
antibody at RT (goat anti-mouse, 1:5000, HRP-linked). Rabbit
polyclonal Hsp60 was used as loading control (Anti-Hsp60
antibody-Loading Control; Abcam) at a concentration of 1 lg/
mL in 1% milk/PBS solution at 1:3000 dilution. Bands were
detected using ECL Luminata Crescendo (Millipore), and images
were acquired using the ChemiDoc XRS+imaging system.
Experiments were performed in triplicate.

Ndufc2-silenced cells were harvested using trypsin and
washed twice with PBS. After removal of residual PBS, cells
were immediately treated with the Mithochondria Isolation Kit
for Cultured Cells (Abcam). Samples were then treated as
reported above for brain tissues.

Complex I activity

Brains were dissected out, weighted, wetted from blood, and
placed in ice-cold respiration medium (sucrose 250 mmol/L,
MgCl2 5 mmol/L, EDTA 1 mmol/L [pH 7.4], HEPES 20
mmol/L [pH 7.4], and KH2PO4 2 mmol/L). Tissue was
chopped finely with a pair of scissors and rinsed in new
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respiration medium to remove any blood. Disrupted tissue
was then homogenized on ice by 20 to 30 passes in a tight-
fitting glass/Teflon power-driven Potter-Elvejhem homoge-
nizer in �25 mL of respiration buffer. Homogenate was
centrifuged at 600 rpm for 10 minutes at 4°C. The super-
natant, rich with mitochondria, was then centrifuged at 4°C at
12 000 rpm for 10 minutes. The external part of the pellet,
which is the cleaner part, was resuspended in a small volume
of respiration buffer by a miniglass/Teflon power-driven
Potter-Elvejhem. Mitochondrial protein concentrations were
determined as stated above.18

Silenced cells were washed once with cold PBS 19 and
treated with lysis buffer.

Activity of mitochondrial complex I was analyzed using an
ELISA microplate assay kit (Abcam). Capture antibody for
complex I was precoated in the wells of the microplate, and
samples containing 50 lg of brain mitochondrial extracts and
40 lg of cell lysates were added to wells. In this assay,
complex I activity is measured by oxidation of NADH to NAD+,
which leads to increased absorbance at 450 nm. Absorbance
was read by a Benchmark microplate reader (Bio-Rad). All
tests were done in triplicate.

Mitochondrial membrane potential assessment

Brain mitochondrial membrane potential was determined by a
fluorescent probe, TMRE (Abcam). Briefly, TMRE reagent was
warmed to room temperature and diluted with PBS 19 0.2%
BSA to obtain a final TMRE staining working solution at a
concentration of 500 nmol/L. Isolated mitochondria (100 lg)
were incubated with 80 lL of TMRE staining working solution
for 10 minutes at 37°C. Fluorescence was determined using a
fluorometer (Mithras LB 940; Berthold) microplate reader at
549 nm excitation/575 nm emission. Data are expressed as
fluorescent units per lg protein. Mitochondrial membrane
potential of silenced cells was determined by use of the TMRE
Mitochondrial Membrane Potential Assay Kit (Abcam). Fluo-
rescence was determined by a FACS Calibur flow cytometer
(FL-2 detector). Data are expressed as fluorescent intensity.

ATP-level measurement

Brain mitochondria (250–500 lg) were plated in a dark 96-
multiwell plate on ice and incubated, always on ice, for
5 minutes with respiration buffer (sucrose 250 mmol/L,
MgCl2 5 mmol/L, EDTA 1 mmol/L, HEPES 20 mmol/L,
KH2PO4 2 mmol/L, ADP 1 mmol/L, D-Luciferin, and Lucifer-
ase firefly ready from ATP Determination Kit; Invitrogen, Milan,
Italy) in the presence of both glutammate (2.5 mmol/L) and
malate (2.5 mmol/L; complex I substrates) or succinate
(5 mmol/L; complex II substrate). In this assay, quantitative
determination of ATP with recombinant firefly luciferase and
its substrate, D-luciferin, is based on luciferase’s requirement

for ATP in producing light (emission �560 nm at pH 7.8) from
the reaction. Absorbance was quantified by a fluorometer
(Mithras LB 940; Berthold). The reaction was repeated after
the addition of oligomycin (2 lmol/L) as a mitochondrial
ATPase inhibitor and of valinomycin (2.5 lmol/L) as an
oxidative phosphorylation inhibitor.22

Nduc2-silenced cells were washed once with PBS 19 and
then incubated at 37°C in 1 mL of respiration buffer (as
reported above for brain tissues) in the presence of both
glutammate (2.5 mmol/L) and malate (2.5 mmol/L) or suc-
cinate (5 mmol/L) for 60 minutes. Cells were washed once
with ice-cold PBS and then lyzed with 90 lL of ATP-lysis
buffer (Tris HCl [pH 7.5] 200 mmol/L, NaCl 2 mol/L, EDTA
[pH 7.5] 20 mmol/L, and Triton X-100 0.2%). Lysates were
collected on ice and centrifuged at 4°C at 12 000 rpm for
15 minutes. Ten microliters of supernatant from each sample
was plated in a dark 96-multiwell plate; 100 lL of total ATP-
kit buffer from the kit were added to each well. Chemilumi-
nescent signal was read with the fluorometer. Five microliters
of cell lysate were used for protein concentration and ATP-
level normalization. The reaction was repeated after the
addition of oligomycin (2 lmol/L) and valinomycin (2.5
lmol/L), as described above. Experiments were performed
in triplicate.

Table 1. Modulation of Inflammatory Genes in Ndufc2-
Silenced A10 Cells

Gene Name Control RNAsi1 RNAsi2

Ccl2 �0.83�0.77 1.05�0.83 0.73�0.98

Ccl6 �6.70�15.4 1.80�11.1 10.61�2.6

Ccr5* 86.30�17* �42.24�21* �8.31�15*

Ccr6* 62.44�1.3* �1.40�2.5* �1.23�1.9*

Cxcl10 0.86�3.4 �8.26�6.5 �3.25�5

Il10 �0.78�20 0.63�14 13.86�3.9

Il10ra 3.46�21 9.49�18 16.40�2.5

Il13* 1.81�51* 8.27�38* 36.22�8.5*

Il13ra1* 3.67�22* 42.77�26* 22.81�2*

Il15* �28.93�1.9* 3.04�2.1* 1.89�0.15*

Lta 3.17�74 37.17�64 58.72�2.1

Tnf* 2.58�12.9* 9.37�11.9* 10.81�1.0*

Tgfb1* �531�3.85* 3.57�3.8* 3.38�0.25*

Tnfrsf1b* �11.04�3* 3.73�3.1* 2.77�0.18*

Ccl2 inidcates chemokine ligand 2; Ccl6, chemokine ligand 6; Ccr5, chemokine receptor
type 5; Ccr6, chemokine receptor type 6; Cxcl10, chemokine ligand 10; Il10, interleukin-
10; Il10ra, interleukin-10 receptor alpha; Il13, interleukin-13; Il13ra1, interleukin-13
receptor alpha 1; Il15, interleukin-15; Lta, lymphotoxin-alpha; Tgfb1, transforming growth
factor beta 1; Tnf, tumor necrosis factor; Tnfrsf1b, tumor necrosis factor receptor
superfamily, member 1B.
*Genes markedly modulated by Ndufc2 silencing (number of experiments=3).
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Generation of a Genetically Manipulated Animal
Model
Generation of SHR-Ndufc2 mutant strains (SHR-Ndufc2em1Mcwi

and SHR-Ndufc2em2Mcwi) was performed at the Medical

College of Wisconsin (Milwaukee, WI) under protocols
approved by the institutional animal care and use committee.
Generation of ZFN mutants was performed as previously
described.23,24 ZFN constructs specific for rat Ndufc2 were
designed, assembled, and validated by Sigma-Aldrich to the
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Figure 1. Ndufc2 is differentially modulated in brains of SHRSP under stroke-permissive diet. Evidence of
complex I dysfunction in brains of SHRSP. A, Heatmap represents expression differences between samples
in a color scale ranging from red (up-regulated) to blue (down-regulated). Probe sets representing Ndufc2
are marked. Two-way ANOVA analysis revealed significant Ndufc2 effects in strain (P=6.96E�05), diet
(P=8.29E�10), and interaction (P=2.79E�03; n=5 for each strain at each diet). Corresponding densitometric
analysis for Ndufc2 expression levels in brains of SHRSP and SHRSR under either RD or JD is shown in (B).
C, Confirmation of Ndufc2 differential expression by RT-PCR in the same tissue samples; *P<0.0001 for
each ratio indicated in the figure (n=6 for each group). D, Representative western blot of Ndufc2 expression
levels, confirming reduced expression in brains of SHRSP under JD. E, Representative western blot of BNG
(n=3) and corresponding densitometric analysis (F). DP<0.01 for SHRSP JD versus both SHRSP RD and
SHRSR JD. G, Complex I activity measurement; (H) mitochondrial membrane potential assessment.
*P<0.0001 for SHRSP JD versus all other samples (I). ATP-level measurement in the same tissue samples.
Oligomycin was used to confirm functionality of ATP assay as an inhibitor of oxidative phosphorylation.
Valinomycin was used as a mitochondrial ATPase inhibitor. *P<0.0001 for SHRSP JD versus all other
samples and for each inhibited experimental point versus the noninhibited corresponding sample (n=6 for
each group). Values are expressed as means�SD. Ctrl indicates control; Hsp60, heat shock protein 60; JD,
Japanese-style stroke-permissive diet; RD, regular diet; RT-PCR, reverse-transcriptase polymerase chain
reaction; SHRSP, stroke-prone spontaneously hypertensive rat; SHRSR, stroke-resistant SHR.
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exon 1 sequence GGCTTCCTGGGCTACTGCacgggcCTGATGGA-
CAACATG where each ZFN monomer binds the underlined
sequence on opposite strands. In vitro–transcribed ZFN
mRNA SHR/NCrl (SHR) rat embryos were transferred to
pseudopregnant Sprague-Dawley female rats to be carried to
parturition. The resulting pups were ear punched and DNA
was extracted and screened for ZFN-induced mutations by the
Surveyor Nuclease assay (Transgenomic, Inc., Omaha, NE), as
described previously,23 using primers flanking the target
sequence (Ndufc2_F: 50-CGCATCAATATGATGAACGG-30 and
Ndufc2_R: 50-CGCTGAAAACTCTAGACGGG-30). Two positive
mutant founders were identified and confirmed to have ZFN-
induced mutations. Sanger sequencing confirmed mutant
alleles within exon 1 in each founder, a 9-bp deletion (del-9
ACGGGCCTG; Ndufc2-m1) and a net 107-bp deletion (del-111
GCCCGTGCAGTAGCCCAGGAAGCCGATGTAGACAAGCCGCGG
GTCGTTCAGCTTGGGCGGGGGCAGTCTCCGGGCCTCATCCGGC
AAGAATCTTAAGGGCTCATGGCCCGG plus ins-4 TTGT; Ndufc2-
m2). The 2 founders were back-crossed to the SHR/NCrl
strain to establish the SHR-Ndufc2em1Mcwi and SHR-Nduf-
c2em2Mcwi breeding colonies, respectively.

Both newborn rats and embryos obtained from colonies
breeding were genotyped to assess allele carrier status for the
corresponding deletion. Embryos were obtained at 7 to
8 days of gestation (SHR-Ndufc2em2Mcwi, n=47 from 6 preg-
nant rats; SHR-Ndufc2em1Mcwi, n=20 from 2 pregnant rats),
and at 10 to 12 days of gestation (SHR-Ndufc2em2Mcwi, n=8
from 2 pregnant rats; SHR-Ndufc2em1Mcwi, n=8 from 2
pregnant rats).

For genotyping of SHR-Ndufc2 mutant strains, genomic
DNA was prepared from tail clipping of each animal by salt
precipitation5and subsequently used for PCR reactions.

For detection of the large 107-bp deletion (SHR-Nduf-
c2em2Mcwi), PCR reactions were performed with 50 ng of
genomic DNA in a total volume of 20 lL containing

250 nmol/L of dNTP, 10 nmol/L of each primer (forward
50-TCTTTGCCCACTGTGGGTTAT 30 and reverse
50CCCCTCCCCAGACCTTATGA-30), and 0.3 U of Taq Poly-
merase (Life Technologies, Carlsbad, CA). They were pro-
cessed on a thermal cycler system (T100 Thermal Cycler; Bio-
Rad, Hercules, CA) by using “touchdown PCR” conditions (to
increase specificity and reduce background amplification).
Briefly, PCR was carried out at 95°C for 3 minutes followed by
14 cycles of denaturation at 95°C for 15 seconds, annealing
at 63.5°C for 30 seconds with subsequent decreases of
0.5°C per cycle, and elongation at 72°C for 70 seconds, with
subsequent 19 cycles at 95°C for 15 seconds, 56°C for
30 seconds, 72°C for 70 seconds, and a final extension of
72°C for 5 minutes. The resultant PCR product was a
fragment of 318 bp in the wild-type strain and a fragment
of 211 bp in the SHR-Ndufc2em2Mcwi strain. They were
resolved on 2.5% agarose gels and visualized using the
ChemiDoc XRS+Imaging System (Bio-Rad).

For detection of the minor 9-bp deletion (SHR-Nduf-
c2em1Mcwi), the PCR/single-strand conformational polymor-
phism analysis was used. Briefly, genotyping was carried out
using 50 ng of DNA and the same set of oligonucleotides
mentioned above. In this case, the forward primer was
previously labeled with ATP-ɣ32P (PerkinElmer) by using T4
polynucleotide kinase (New England Biolabs, Boston, MA).
PCR reactions were carried out with the same protocol
described above, and products were loaded onto a 7%
polyacrylamide gel run on a Gel Electrophoresis System
(Thermo Fisher Scientific, Waltham, MA) for 4 hours. Images
were acquired using the PMI Personal Molecular Imager
System (Bio-Rad).

Because only heterozygous rats were obtained for both
mutant lines, the molecular analyses and phenotypic studies
were performed in heterozygous, compared to wild-type, rats
of both SHR-Ndufc2em1Mcwi and SHR-Ndufc2em2Mcwi lines.
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Phenotyping of SHR-Ndufc2em1Mcwi and SHR-
Ndufc2em2Mcwi Lines
Feeding with JD was started at 6 weeks of age in both
heterozygous and wild-type SHR-Ndufc2em1Mcwi and SHR-
Ndufc2em2Mcwi rats, along with parental rats (for number of
animals used, see Table 1). A group of rats (n=6) was
sacrificed both at 6 weeks of age and at the end of 4 weeks

of either RD or JD for analysis of: Ndufc2 by western blot and
RT-PCR, SOD2, and Nf-jbp65 by western blot, complex I
assembly and activity, mitochondrial membrane potential, ATP
levels, and tissue oxidative stress. Remaining rats were
subsequently monitored up to 3 months for signs of renal
damage (detected by 24-hour proteinuria measurement in
metabolic cages) and of stroke (by evidence of paresis,
paralysis, hemiplegia, epilepsia, or sudden death). Animal
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Figure 2. Molecular analyses in brains of SHRSP as compared to SHRSR under stroke-permissive diet. A,
Representative western blot (n=3) of Nf-jBp65 in SHRSR and SHRSP upon either RD or JD with
corresponding densitometric analysis (B). *P<0.0001 for SHRSP JD versus all other samples. D, Western
blot of intracellular protein extracts immunostained for carbonylated proteins using the Oxyblot Protein
Oxidation Detection kit (Millipore, Milan, Italy) in brains of SHRSR and SHRSP under either RD or JD. Each
lane was loaded with 50 lg of total proteins. Lane M, DNP marker. Each sample is run with its own
untreated control (C). Normalization for lane protein loading was performed using Coomassie staining. D,
Densitometric analysis of Oxiblot gels. Bar graphs represent chemiluminescence intensity relative to the gel
loading band. Bands 1 to 5 refer to the most prominent bands on the blots (identified by arrows), whereas
total refers to the total chemiluminescence intensity from all bands. *P<0.0001 for SHRSP JD versus
SHRSP RD (total band). Densitometric values are expressed as means�SD. JD indicates Japanese-style
stroke-permissive diet; Nf-jB, nuclear factor kappa B; RD, regular diet; SHRSP, stroke-prone spontaneously
hypertensive rat; SHRSR, stroke-resistant SHR.
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studies were approved by the Neuromed Institutional review
committee. Procedures involving animals and their care were
carried out in accord with our institution’s guidelines, which
comply with national and international laws and policies.

Genotyping of NDUFC2 Markers in an Italian
Cohort of Early-Onset Ischemic Strokes and
Controls

Study population

Four hundred eighty-four unrelated Caucasian young adults
(<65 years) who were referred to the (1) Angelo Bianchi
Bonomi Hemophilia and Thrombosis Center of the University of
Milan and (2) to Department of Neurology, Sapienza University,
Sant’Andrea Hospital, Rome, for thrombophilia screening after
a first ischemic stroke were enrolled in this study. Patient and
control populations were in part or in whole previously
investigated in relation to polymorphisms of genes encoding
procoagulant and inflammatory factors and of methionine
metabolism components, chromosome 12p13, and NPR3 gene
promoter polymorphisms.25–28 Median time interval between
ischemic stroke and blood sampling was 6 months (range,
1 month–10 years); 75% of patients had blood sampled within
2 years and 64% within 1 year after the event. Clinical records
were reviewed, and when the type of stroke was not specified,
neurologists who took care of patients during the acute phase
were contacted. Clinical diagnosis was objectively confirmed
by computed tomography scans or magnetic resonance or
magnetic resonance angiography and intra-arterial angiogra-
phy. According to Trial of ORG 10172 in Acute Stroke
Treatment (TOAST) classification, 14.7% of enrolled patients
were classified as large artery stroke, 5.2% as cardioembolic,

16.8% as small artery (lacunar), 51.8% as undetermined
etiology, and 11.6% as other determined etiology stroke. All
patients underwent a cardiologic evaluation, transthoracic
echocardiography, and Doppler examination of neck vessels.

One thousand one hundred sixty-five healthy unrelated
Caucasian subjects comparable for age and sex were chosen
from the whole population of controls made of partners and
friends who accompanied patients to the Center in the same
period as patients and agreed to be investigated. Previous
thrombosis in the controls was excluded using a validated
structured questionnaire.29 The presence, at the time of stroke
for patients and at the time of blood sampling for controls, of
hypertension, hypercholesterolemia, diabetes mellitus, and
smoking habit (at least 5 cigarettes daily) was recorded.

The study was approved by the institutional review board
of the University of Milan, University of Rome, and University
of Florence, and all subjects gave their informed consent to
the study.

Genomic DNA extraction

Genomic DNA was isolated from venous peripheral blood by
using the FlexiGene kit (Qiagen). Quality and concentration of
DNA were determined by a NanoDrop1000 spectrophotome-
ter (Thermo Fisher Scientific).

Genotyping

We studied 3 tagSNPs in NDUFC2: rs641836, rs584981, and
rs11237379 by 7900HT real-time PCR and TaqMan technology
assays (c__26529993_10, c___614632_10 and c__2999825_
10, respectively; Life Technologies). The 3 NDUFC2 tagSNPs
were selected for analysis by using the algorithm-Tagger-
pairwise Tagging (HapMap database and software, http://
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hapmap.ncbi.nlm.nih.gov) on NDUFC2 gene for CEU population.
They captured 100% of alleles with a mean r2 of 0.961.
Polymorphisms information were assessed in the Single
Nucleotide Polymorphism (dbSNP) NCBI (http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi?db=snp&cmd=search&term=),
and ENSEMBL (http://www.ensembl.org/index.html) data-
bases.

To assess functional relevance of the rs11237379 variant
allele, we characterized NDUFC2 expression by RT-PCR in a
cohort of young healthy subjects (mean age, 35�6; females,

52%), free from cardiovascular risk factors, carrying wild-type
(n=6), heterozygous (n=12), and mutant homozygous (n=6)
genotypes. Lymphocyte extraction was performed by follow-
ing standard procedures with Ficoll.30 RNA extraction and
cDNA were obtained as described above. Finally, RT-PCR of
human NDUFC2 was performed with the following set of
oligonucleotides: forward 50-CCTGTATGCTGTGAGGGACC-30

and reverse 50-CGACGTTCAGCTCCACAACA-30. b-actin: for-
ward 50-GCAAGAGATGGCCACGGCTG-30 and reverse 50-CCAC
AGGACTCCATGCCCAG-30.
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Figure 3. In vitro Ndufc2 silencing in A10 cells. A, Confirmation of Ndufc2 silencing by RT-PCR and
western blot; *P<0.0001 for each siRNA versus baseline (n=6). B, Representative western blot of BNG (n=3)
in silenced versus nonsilenced A10 cells. All complexes belonging to OXPHOS are identified on the right
side; Hsp60 was used to normalize protein expression level. C, Densitometric analysis of BNG. *P<0.0001
for each siRNA versus both baseline and negative CTRL. D, Assessment of complex I activity. E,
Mitochondrial membrane potential assessment. *P<0.0001 for each siRNA versus both baseline and
negative CTRL (n=6). F, Measurement of ATP levels in silenced versus nonsilenced cells and both in the
absence and in the presence of oligomycin and valinomycin (to confirm functionality of the ATP assay as
specified above). *P<0.0001 for each siRNA versus baseline and versus negative CTRL, and for each
inhibited point versus the noninhibited corresponding sample (n=6 for each group). G, Assessment of
resctive oxygen species levels; *P<0.0001 for each siRNA versus both baseline and negative CTRL (n=6 for
each group). H, Representative western blot (n=3) of Nf-jBp65 and of its inhibitor, IjB, in silenced versus
nonsilenced cells, showing that increases of Nf-jBp65 expression are accompanied by decreases of IjB
expression levels. I, FACS analysis and corresponding percent values of necrotic cells (J). *P<0.0001 for
each siRNA versus both baseline and negative CTRL (n=5). Values are expressed as means�SD. Ctrl
indicates control; DCHF, 20,70-dichlorodihydrofluorescein; FACS, fluorescence-activated cell sorting; Hsp60,
heat shock protein 60; IjB, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor; Nf-
jB, nuclear factor kappa B; RT-PCR, reverse-transcriptase polymerase chain reaction.
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Statistical Analysis

In vitro and in vivo experiments

Data of Ndufc2 expression levels, western blot densitometric
analyses, complex I activity and ATP levels, results of FACS, rat
body weight, systolic blood pressure, and urinary protein levels
are provided as means�SD. Comparisons between 2 groups
were performed by using t test analyses. When more than 2
groups were compared at the same time, 1-way ANOVA
followed by the Bonferroni post-hoc test was performed.
Survivor function in rats monitored over JD feeding was
estimated by the life-table method. Log-rank and Wilcoxon
statistics were used for testing equality of survivor functions.

SPSS statistical software (version 12.0; SPSS, Inc.,
Chicago, IL) was used for statistical analysis. Statistical
significance was stated at the P<0.05 level.

Human genetic analyses

Statistical analysis was performed using the SPSS package
(v20). Hardy–Weinberg equilibrium (HWE) was evaluated by
the chi-square (v2) test. Genotype distributions were com-
pared between patients and controls or between TOAST types
by v2 analysis. Categorical variables are expressed as
frequencies and percentages. Unless otherwise indicated,
continuous data are given as median and interquartile range
(IQR). Comparisons of continuous variables between patients
and controls or among genotypes were performed by the
nonparametric Mann–Whitney or Kruskal–Wallis test.

Multiple logistic regression analysis was used to estimate
odds ratios (ORs) and 95% CIs for risk of stroke under the
assumption of an additive, as well as a dominant and a
recessive effect of each allele. To evaluate whether polymor-

phisms were independently associated with stroke, multiple
logistic regression analyses were adjusted for traditional
cardiovascular risk factors (age, sex, hypertension, diabetes
mellitus, dyslipidemia, and smoking habit). A value of P<0.05
was chosen as the cut-off level for statistical significance.

Results

Identification of Ndufc2 as a Sequence Down-
regulated in Brains of SHRSP Under JD and
Related Molecular Analyses
Eight-six probe sets were revealed significantly differentially
modulated inside the STR1/QTL. After applying a K-mean
clustering with K=6 and the 2-way ANOVA statistical analysis,
as specified in the Methods section, we detected the gene
encoding Ndufc2 (NADH dehydrogenase [ubiquinone] 1,
subcomplex unknown, 2), mapping 8 Mb apart from the Lod
score peak of the QTL, as the sequence differentially
modulated, significantly down-regulated, in the brain of
SHRSP versus SHRSR when fed with JD (P values for
significant Ndufc2 effects in strain [P=6.96E�05], diet
[P=8.29E�10], and interaction [P=2.79E�03]; n=5 for each
strain at each diet; Figure 1A and 1B).

Analysis of Ndufc2 mRNA expression and protein levels
confirmed the microarray differential expression results
(P<0.0001; n=6; Figure 1C and 1D).

Ndufc2 is a subunit of OXPHOS complex I. Therefore, we
evaluated mitochondrial function in brains of SHRSP and
SHRSR under JD. Brains of JD-fed SHRSP showed significant
reduction of both complex I assembly (P<0.01; n=3) and
activity (P<0.0001; n=6; Figure 1E through 1G), mitochondrial
membrane potential (P<0.0001; n=6; Figure 1H), and ATP
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production (P<0.0001; n=6; Figure 1I), as well as remarkable
increases of both inflammation (P<0.0001; n=3) and oxidative
stress (P<0.0001; n=3; Figure 2), likely as a consequence of
mitochondrial uncoupling.

Next-generation sequencing, covering full exons, introns,
and 10 kb upstream and downstream on either side of
Ndufc2, did not show variations between SHRSP and SHRSR.

In Vitro Effects of Ndufc2 Silencing
We then tested whether Ndufc2 knockdown in vascular cells
could recapitulate the cellular abnormalities observed in

SHRSP under JD. Ndufc2 silencing was confirmed by both RT-
PCR and western blotting (P<0.0001; n=6; Figure 3A). In this
experimental condition, complex I assembly (P<0.0001; n=3)
and activity (P<0.0001; n=6), mitochondrial membrane
potential (P<0.0001; n=6), and ATP production (P<0.0001;
n=6) were significantly decreased (Figure 3B through 3F).
Reactive oxygen species (ROS) production (P<0.0001; n=6),
Nf-jB signaling, and other markers of inflammation increased
in Ndufc2-silenced cells (Figure 3G and 3H; Table 1). Fluo-
rescence-activated cell sorting (FACS) analysis revealed a
significant decrease of cell viability and a significant increase
of cell necrosis (P<0.0001; n=5; Figure 3I and 3J). Expression
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Figure 4. Expression levels of proteins involved in necrosis in Ndufc2-silenced as compared to
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Densitometric analyses are reported on the right side. *P<0.0001 and #P<0.001 for each siRNA versus
baseline and negative CTRL. Ctrl indicates control; JNK1, c-Jun N-terminal kinase 1; MAPK, mitogen-
activated protein kinase.
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Figure 5. Molecular analyses of brains of all strains at 6 weeks of age. A through C, Brains of heterozygous SHR-Ndufc2em2Mcwi showed
significantly lower amount of Ndufc2 mRNA and protein expression, as compared to both parental SHRSR and SHR-Ndufc2em1Mcwi.
DP<0.01 versus SHRSR; *P<0.0001 versus all other samples (n=6 for each group). D through G, Representative western blot of BNG (n=3)
showing defective complex I assembly only in heterozygous SHR-Ndufc2em2Mcwi rats. Corresponding densitometric analyses are shown on
the right side of each blot. *P<0.0001 versus all other samples. H, Complex I activity and (I) ATP levels were comparable among all strains
at this age (n=3). Values are expressed as means�SD. Ctrl indicates control; het, heterozygous; Hsp60, heat shock protein 60; SHRSP,
stroke-prone spontaneously hypertensive rat; SHRSR, stroke-resistant SHR; wt, wild type.
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Figure 6. Molecular analyses in brains of both wild-type and heterozygous SHR-Ndufc2em2Mcwi lines at
the end of 4 weeks exposure to either RD or JD. A, Brain Ndufc2 expression in both wild-type and
heterozygous SHR-Ndufc2em2Mcwi is compared to that of RD-fed parental SHRSR; *P<0.0001 for each
indicated ratio (n=5). B, Ndufc2 protein expression levels in brains of wild-type and heterozygous SHR-
Ndufc2em2Mcwi (number of western blots=3) with corresponding densitometric analysis (C); *P<0.0001 for
heterozygous SHR-Ndufc2em2Mcwi upon RD and JD versus wild type. D and E, Representative western blots
of BNG in wild-type and heterozygous SHR-Ndufc2em2Mcwi (n=3 each) with corresponding densitometric
analysis. *P<0.0001 for heterozygous SHR-Ndufc2em2Mcwi upon RD and JD versus wild type. F, Complex I
activity measurement; (G) mitochondrial membrane potential assessment; *P<0.0001 for heterozygous
SHR-Ndufc2em2Mcwi upon JD versus RD and versus wild-type line at both RD and JD (n=5 each). H, ATP
levels measurement in both wild-type and heterozygous rat lines upon RD or JD (n=5 each). *P<0.0001 for
heterozygous SHR-Ndufc2em2Mcwi versus wild-type line and for each inhibited point versus the not
inhibited corresponding sample. Values are expressed as means�SD. BNG indicates Blue Native–PAGE;
Ctrl, control; het, heterozygous; Hsp60, heat shock protein 60; JD, Japanese-style stroke-permissive diet;
RD, geular diet; SHRSP, stroke-prone spontaneously hypertensive rat; SHRSR, stroke-resistant SHR; wt,
wild type.
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Figure 7. Detection of oxidative stress in brains of SHR-Ndufc2em2Mcwi under either RD or JD. A, Detection of
carbonylated proteins in brains of heterozygous SHR-Ndufc2em2Mcwi at the end of 4 weeks of either RD or JD feeding with
corresponding densitometric analysis (graph below). *P<0.0001 for SHRSP versus RD and for heterozygous SHR-
Ndufc2em2Mcwi JD versus RD, as well as versus SHRSP JD. B, Detection of carbonylated proteins in brains of wild-type SHR-
Ndufc2em2Mcwi at the end of 4 weeks of either RD or JD feeding with corresponding densitometric analysis (graph below);
*P<0.0001 for SHRSP JD versus RD and for both versus all other strains (total band). Het indicates heterozygous; JD,
Japanese-style stroke-permissive diet; RD, geular diet; SHRSP, stroke-prone spontaneously hypertensive rat; SHRSR,
stroke-resistant SHR; wt, wild type.
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Figure 8. Molecular analyses in brains of wild-type and heterozygous SHR-Ndufc2em2Mcwi at the end of
either RD or JD exposure. A through D, Representative western blots of Nf-kBp65 and of SOD2 (n=3) with
corresponding densitometric analysis in brains of heterozygous SHR-Ndufc2em2Mcwi, as compared to parental,
lines at the end of 4 weeks of either RD or JD feeding. E through H, Same analyses (n=3) were performed in
brains of wild-type SHR-Ndufc2em2Mcwi. Densitometric values are expressed as means�SD. Significance
values: (B) DP<0.01 for SHRSP JD and heterozygous SHR-Ndufc2em2Mcwi JD versus SHRSR JD. C, *P<0.0001 for
heterozygous SHR-Ndufc2em2Mcwi JD versus SHRSR JD; for SHRSP JD versus SHRSP RD and versus all other
samples; οP<0.05 for SHRSP JD versus heterozygous SHR-Ndufc2em2Mcwi JD. F, *P<0.0001 for SHRSP JD
versus all other samples; DP<0.01 for SHRSP JD versus SHRSP RD. H, #P<0.001 and *P<0.0001 for SHRSP JD
versus all other samples. Het indicates heterozygous; JD, Japanese-style stroke-permissive diet; Nf-jB, nuclear
factor kappa B; RD, geular diet; SHRSP, stroke-prone spontaneously hypertensive rat; SHRSR, stroke-resistant
SHR; Sod2, superoxide dismutase 2, mitochondrial; wt, wild type.
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Figure 9. Molecular analyses in the brains of wild-type and heterozygous SHR-Ndufc2em1Mcwi at the end of
either RD or JD exposure. A, Ndufc2 expression levels as assessed by RT-PCR. *P<0.0001 for the indicated ratio
(n=4 each). B, Representative western blot of Ndufc2 in the 2 lines upon either RD or JD with corresponding
densitometric analysis (C), number of western blots=3 for each line. D, Representative western blots of BNG (n=3)
with corresponding densitometric analysis (E). (F) Complex I activity assessment (n=3 for each group); (G) ATP
levels measurement (n=3 for each group). Densitometric values are expressed as means�SD. Ctrl indicates
control; het, heterozygous; Hsp60, heat shock protein 60; JD, Japanese-style stroke-permissive diet; RD, geular
diet; RT-PCR, reverse-transcriptase polymerase chain reaction; SHRSP, stroke-prone spontaneously hypertensive
rat; SHRSR, stroke-resistant SHR; wt, wild type.
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levels of proteins underlying necrosis (mitogen-activated
protein kinase [MAPK]p38, phosphor-JNK [c-Jun N-terminal
kinase], and c-Jun) were significantly augmented (P<0.001;
n=3; Figure 4).

Phenotype and Brain Molecular Analyses of SHR-
Derived Lines Carrying Ndufc2 Deletion
We generated a rat model carrying Ndufc2 deletion, as
described in the Methods section, and characterized its
phenotype. No homozygous knockout rat was obtained from
either line (SHR-Ndufc2em1Mcwi [carrying 9-bp gene deletion]
and SHR-Ndufc2em2Mcwi [carrying 107-bp gene deletion]).
Furthermore, genotype assessment excluded the presence of
homozygous knockout embryos even at early stages of
pregnancy, suggesting that Ndufc2 full deletion is lethal
before embryo implantation. Thus, only heterozygous and
wild-type rats of the 2 novel rat lines were characterized and
compared to the 2 parental strains.

At 6 weeks of age, brains of heterozygous SHR-Nduf-
c2em2Mcwi showed a significantly lower amount of Ndufc2
mRNA (P<0.01; n=6) and protein expression (P<0.0001; n=6),
as compared to both parental SHRSR and heterozygous SHR-
Ndufc2em1Mcwi (Figure 5A through 5C). A defect in complex 1
assembly (P<0.0001; n=3) was present only in heterozygous
SHR-Ndufc2em2Mcwi rats, whereas both complex 1 activity and
ATP levels were comparable among all strains (Figure 5D
through 5I). Level of oxidative stress was also unchanged
among strains (data not shown).

JD feeding was started at 6 weeks of age and maintained
for 3 months. Systolic blood pressure (SBP), body weight
(BW), and proteinuria levels during the dietary treatment are
reported in Table 2. SBP levels were comparable among
parentals, heterozygous SHR-Ndufc2em1Mcwi and SHR-Nduf-
c2em2Mcwi, and their wild-type controls. Baseline BW was
lower in SHRSP (P<0.001; n=18), as compared to all other
lines. Levels of 24-hour proteinuria upon JD feeding increased
dramatically in SHRSP and significantly in heterozygous SHR-
Ndufc2em2Mcwi, although to a lesser extent as compared to
SHRSP (for all significance values of comparisons at different
experimental time points and between strains, see Table 2).

Figure 6 shows results obtained after 4 weeks of either RD
or JD feeding in heterozygous and wild-type SHR-Nduf-
c2em2Mcwi. At the end of 4 weeks of RD, Ndufc2 mRNA was
significantly decreased in heterozygous SHR-Ndufc2em2Mcwi as
compared to age-matched SHRSR (P<0.0001; n=5; Fig-
ure 6A). JD further reduced Ndufc2 mRNA (P<0.0001; n=5;
Figure 6A). Ndufc2 protein expression level was consistent
with gene expression data (P<0.0001; n=3; Figure 6B and
6C). Complex I assembly was significantly reduced in both RD-
and JD-fed heterozygous SHR-Ndufc2em2Mcwi (n=3; P<0.0001;
Figure 6D and 6E). Complex 1 activity (P<0.0001; n=5),

mitochondrial membrane potential (P<0.0001; n=5), and ATP
levels (P<0.0001; n=5) were markedly decreased only in JD-
fed heterozygous SHR-Ndufc2em2Mcwi (Figure 6F through 6H).
Oxidative stress was also higher in heterozygous, as com-
pared to wild-type, SHR-Ndufc2em2Mcwi and to parental SHRSR
(P<0.0001; n=3; Figure 7). Nf-kB protein expression levels
were higher (P<0.01; n=3), whereas those of SOD2 were
lower (P<0.0001; n=3) in heterozygous SHR-Ndufc2em2Mcwi as
compared to SHRSR, similarly to SHRSP (Figure 8). In
contrast, all parameters of mitochondrial function and oxida-
tive stress were unchanged in both wild-type and heterozy-
gous SHR-Ndufc2em1Mcwi (Figures 9 and 10).

Most important, occurrence of stroke reached 100% in
SHRSP by 7 weeks of JD and 40% in heterozygous SHR-
Ndufc2em2Mcwi by 3 months of JD feeding. In contrast, stroke
did not occur in all other lines (Figure 11A). Comparison of
heterozygous SHR-Ndufc2em2Mcwi versus SHRSR and all
SHRSR-derived lines was significantly different (P<0.002).
Comparison of heterozygous SHR-Ndufc2em2Mcwi versus
SHRSP was significantly different (P<0.001).

Analysis of Human Cohort
In the attempt to translate our findings to a clinical setting, we
evaluated allelic and genotypic distributions of 3 NDUFC2
tagSNPs in 484 unrelated Caucasian young adults affected by
ischemic stroke and in 1165 control subjects. Table 3 shows
demographic and clinical characteristics of the study sub-
jects. No statistically significant differences were observed in
age and sex between patients and controls. Instead, we
observed significant differences in the prevalence of tradi-
tional cardiovascular risk factors.

Table 4 shows both genotype distributions and allele
frequencies in patients and controls of the 3 studied NDUFC2
SNPs (rs584981, rs641836, and rs11237379). Genotype
distributions respected HWE in patients and controls. Preva-
lence of TT homozygous subjects for rs11237379 SNP was
significantly higher in patients than in controls (P=0.017;
Table 4). The T allele conferred increased occurrence of early-
onset ischemic stroke by recessive mode of transmission (OR,
1.39; CI, 1.07–1.80; P=0.012). Remarkably, NDUFC2 expres-
sion in peripheral blood lymphocytes was significantly and
progressively lower in TC/rs11237379 (n=12) and in TT/
rs11237379 (n=6) versus CC/rs11237379 (n=6) subjects
(P<0.0001 for both CT and TT vs CC; Figure 11B).

Even if the difference did not reach statistical signifi-
cance (P=0.062), carriers of the A allele (AA homozygotes
and GA heterozygotes) at the rs641836 SNP were more
prevalent in patients than in controls (Table 4). We did not
observe any difference between patients and controls with
regard to the genotype distribution of the rs584981 SNP
(Table 4).
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Multivariable logistic regression analysis, with early-onset
ischemic stroke as the dependent variable and SNPs and
traditional cardiovascular risk factors as independent vari-
ables, demonstrated that carrier status of the A allele at

rs641836 SNP or of TT genotype at rs11237379 SNP was
associated with increased risk of stroke (OR=1.32 [95% CI
1.03–1.70]; P=0.029 and OR=1.39 [95% CI 1.07–1.79];
P=0.013, respectively).
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Figure 10. Detection of oxidative stress in the brains of wild-type and heterozygous SHR-
Ndufc2em1Mcwi at the end of either RD or JD exposure. A, Detection of carbonylated proteins
using the Oxyblot Protein Oxidation Detection kit (n=3; Millipore, Milan, Italy) in brains of
heterozygous SHR-Ndufc2em1Mcwi versus parental lines at the end of 4 weeks of exposure to
either RD or JD. B, Corresponding densitometric analysis with values shown as means�SD.
*P<0.0001 for SHRSP JD versus SHRSP RD and for both versus all other samples.
Densitometric values are expressed as means�SD. C, Detection of carbonylated proteins
using the Oxyblot Protein Oxidation Detection kit (n=3) in brains of wild-type SHR-
Ndufc2em1Mcwi versus parental lines at the end of 4 weeks of exposure to either RD or JD.
D, Corresponding densitometric analysis with values shown as means�SD. *P<0.0001 for
SHRSP JD versus SHRSP RD and for both versus all other samples. Het indicates heterozygous;
JD, Japanese-style stroke-permissive diet; RD, geular diet; SHRSP, stroke-prone spontaneously
hypertensive rat; SHRSR, stroke-resistant SHR; wt, wild type.
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At multivariable logistic regression analysis, patients with
the combined presence of A rs641836 allele and TT/
rs11237379 genotype had the highest early-onset ischemic
stroke risk (OR=1.57 [95% CI 1.15–2.14]; P=0.004; Fig-
ure 11C).

Finally, we observed that the combined presence of A
rs641836 allele and TT/rs11237379 genotype was signifi-
cantly higher in large artery TOAST subtype patients (32.4%)
and cardioembolic TOAST subtype patients (40%) with respect
to small artery (16%), other cause (19.6%), and undetermined
cause (16.0%) TOAST subtypes (P=0.003; Figure 12).

Discussion
In this study, we demonstrate that a subunit of NADH
dehydrogenase (NADH dehydrogenase [ubiquinone] 1, sub-
complex unknown, 2 [Ndufc2]), located 8 Mb apart from the
Lod score peak of a stroke/QTL on rat chromosome 1, is
significantly suppressed by stroke-permissive diet only in
brains of SHRSP.

A constellation of cellular abnormalities, including altered
complex I assembly and activity, reduced ATP production,
increased inflammation, and oxidative stress, was found in
brains of SHRSP upon stroke-permissive diet. We demon-
strated that Ndufc2 down-regulation is sufficient to induce
several cellular abnormalities and it predisposes to increased
occurrence of stroke. By performing in vitro Ndufc2 silencing
in a murine vascular cell line, we provided evidence that
Ndufc2 is a fundamental component of NADH dehydrogenase
to allow regular complex I assembly and activity. In fact, its
down-regulation led to decreased complex I integrity and
function, decreased mitochondrial membrane potential and
ATP production, enhanced ROS accumulation, and inflamma-
tion. This is consistent with reduced NADH oxidation, which is
mediated primarily by complex I. As a consequence, cell
viability decreased whereas necrosis significantly increased.

A novel animal model, derived from parental SHRSR,
carrying heterozygous deletion of Ndufc2, showed increased
predisposition to develop both renal and cerebrovascular
damage. Hence, we found that brain Ndufc2 transcription
decreased in the presence of 107-bp deletion, as documented
by gene expression already at 6 weeks of age. Upon JD,
proteinuria preceded stroke occurrence similarly to what
happens in SHRSP.31 Notably, JD further reduced brain Ndufc2
expression in this strain and decreased both complex I activity
and ATP levels. Interestingly, RD feeding did not compromise
complex I activity, despite significantly lower complex I
assembly. This evidence suggests that, despite altered com-
plex I assembly in the presence of reduced Ndufc2 expression,
some intrinsic mitochondrial mechanisms can maintain com-
plex I activity and regular ATP levels under RD.32 In addition,
this evidence suggest that a high-salt dietary regimen is critical
for stroke development in the presence of Ndfuc2 deletion.

Notably, we did not detect any Ndufc2 mutations in
SHRSP, thus suggesting that either epigenetic mechanisms
(such as miRNA differential expression) or other gene
mutations within the STR1 region may be responsible for
Ndufc2 down-regulation under JD.

Mitochondrion is a major source of energy for cells and its
function is fundamental for life of all organisms.33 NADH
dehydrogenase plays important functions in the inner mito-
chondrial membrane. In fact, it belongs to the oxidative
phosphorylation process involved in energy production.34

Electrons are donated from NADH to complex I and then to
other components of the chain in order to reduce molecular
oxygen (O2) to form H2O. Flow of electrons through the
OXPHOS chain is accompanied by pumping of protons across
the mitochondrial inner membrane, thus creating a trans-
membrane electrochemical gradient. Complex I leaks elec-
trons in the intermembrane space to generate superoxide
anion (O2

�). Re-entry of protons into the matrix is used by
complex V to synthetize ATP from ADP.34
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Complex I is considered the major ROS-generating site
within mitochondria. Subunits of complex I are encoded by
both nuclear and mitochondria DNA. Mutations in complex I
genes lead to increased mitochondrial ROS production.33–35

Importantly, the pathological relevance of NDUFC2 has been
recently explored with regard to type 2 diabetes mellitus,
providing mechanistic results that are strongly consistent with
ours.36 NDUFC2 appears down-regulated in skeletal muscle
cells of subjects affected by insulin resistance37 and is
associated with insulin secretion in vivo.38 Furthermore,
NDUFC2 may represent a novel oncogene involved in breast
cancer and intestinal adenocarcinoma, predicting poor prog-
nosis.39,40 Notably, the pathological relevance of NDUFC2/

rs11237379 has been also highlighted through genome-wide
association studies in pulmonary disease.41,42

Although it is plausible that mitochondrial dysfunction in
general and, particularly, dysfunction of complex I may
predispose to cardiovascular diseases and events, no infor-
mation is available yet with regard to the relationship between
Ndufc2 and cardiovascular disease risk. To our knowledge,
the present study is the first demonstration that reduced
transcription of Ndufc2 contributes to stroke.

In summary, Ndufc2, encoding a subunit of OXPHOS
complex I, mapping close to the load score peak of a stroke
QTL in SHRSP, exerts a key role on stroke susceptibility in this
model. A SHRSR-derived line carrying heterozygosity for
Ndufc2 deletion showed increased renal and cerebrovascular
phenotypes compared to the resistant strain of origin. The
relevance of these experimental findings was extended to a
human cohort of early-onset ischemic stroke cases. This
population was previously investigated for polymorphisms of
candidate genes encoding procoagulant and inflammatory
factors and methionine metabolism components: for a
polymorphism of type C natriuretic peptide receptor (NPR3)
promoter gene and for polymorphisms of chromosome
12p13.25–28 In this population, an SNP study revealed a
significant association between an intronic marker
(rs11237379) of NDUFC2 and early-onset ischemic stroke.
Interestingly, a functional significance of rs11237379 was
documented by its direct relationship with gene expression
level, suggesting that reduced NDUFC2 expression may
predispose to stroke susceptibility also in humans. Finally,
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Figure 11. Ndufc2-related stroke phenotype in both animal
models and in humans. A, Stroke occurrence in heterozygous
SHR-Ndufc2em2Mcwi line as compared to SHRSP and to all other
lines (SHRSR, wild-type SHR-Ndufc2em2Mcwi, heterozygous, and
wild-type SHR-Ndufc2em1Mcwi). Comparison of heterozygous SHR-
Ndufc2em2Mcwi versus SHRSR and all SHRSR-derived lines was
significantly different (P<0.002). Comparison of heterozygous
SHR-Ndufc2em2Mcwi versus SHRSP was significantly different
(P<0.001). For numbers of animals included in these studies,
see Table 1. Symbols: open triangles=SHRSP; closed cir-
cles=heterozygous SHR-Ndufc2em2Mcwi; straight line includes:
SHRSR; wild-type and heterozygous SHR-Ndufc2em1Mcwi, wild-type
SHR-Ndufc2em2Mcwi. B, NDUFC2 expression assessed by RT-PCR
in peripheral blood lymphocytes in a cohort of young healthy
subjects carrying wild-type (n=6), heterozygous (n=12), and
double-mutant (n=6) genotypes for NDUFC2/rs11237379.
*P<0.0001 for both CT and TT versus CC wild-type genotype (t
test analysis). Values in the figure are expressed as means�SD.
C, Plot showing the logarithmic ORs for stroke in A allele carriers
at rs641836, TT genotype carriers at rs11237379, and A/
rs641836+TT/rs11237379 carriers with respect to the other
genotypes of NDUFC2 tagSNPs (at multivariable logistic regres-
sion analysis). OD indicates odds ratio; RT-PCR, reverse-
transcriptase polymerase chain reaction; SHRSP, stroke-prone
spontaneously hypertensive rat; SHRSR, stroke-resistant SHR.
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its pathogenic relevance was enhanced by concomitant
presence of a second allele variant at rs641836. Both SNPs
may be in linkage disequilibrium with still unknown variants in

the regulatory or coding regions of the gene. The different
distribution of the genetic risk condition, derived from the
combined presence of A rs641836 allele and TT/rs11237379
genotype, observed across TOAST stroke subtypes may
suggest a prominent role of NDUFC2 in the atherosclerotic
and prothrombotic mechanisms underlying stroke.

We are aware that the extension of the experimental
results to the human stroke genetic analysis presented in the
current work should be considered hypothesis generating
rather than definitive, attributable to intrinsic study limita-
tions. In particular, lack of an extensive genotyping for
ancestry informative markers in both the autosomal and
mitochondrial genomes of our human subjects did not allow a
correct population stratification. Additional studies are cer-
tainly required to test the hypothesis generated by our
experimental data that Ndufc2 may play a contributory role to
ischemic stroke predisposition in humans.

Altogether, our novel findings, while pointing to mitochon-
drial dysfunction as a cause of vascular disease, provide new
important insights on the genetic basis of stroke and may
have great relevance for prevention and treatment of this
common pathological condition.
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Table 3. Demographic and Clinical Characteristics of
Patients With Early-Onset Ischemic Stroke and of Related
Controls

Controls
(N=1165)

Stroke Patients
(N=484) P Value

Age median, IQR 42 (32–52) 44 (35–52) 0.078

Sex (male), N (%) 522 (44.8) 222 (45.9) 0.668

Smoking habit, N
(%)

297 (25.5) 193 (39.9) <0.0001

Diabetes, N (%) 4 (0.3) 13 (2.7) <0.0001

Hypertension, N
(%)

85 (7.3) 140 (28.9) <0.0001

Dyslipidemia, N
(%)

39 (3.3) 106 (21.9) <0.0001

IQR indicates interquartile range.

Table 4. Genotypes and Alleles Frequency Distribution for
rs584981, rs641836, and rs11237379 NDUFC2
Polymorphisms in Early-Onset Ischemic Stroke Patients and in
Controls

SNP
Controls (n=1165)
n (%)

Stroke Patients (n=484)
n (%) P Value

rs584981

TT 696 (59.7) 294 (60.7) 0.846*

TC 414 (35.5) 170 (35.1) 0.705†

CC 55 (4.7) 20 (4.1) 0.601‡

C frequency 0.225 0.217

H-W 0.450 0.594

rs641836

GG 799 (68.6) 309 (63.8) 0.167*

GA 321 (27.6) 155 (32.0) 0.062†

AA 45 (3.9) 20 (4.1) 0.798‡

A frequency 0.176 0.201

H-W 2.752 0.010

rs11237379

CC 251 (21.5) 94 (19.4) 0.058*

CT 590 (50.6) 227 (46.9) 0.334†

TT 324 (27.8) 163 (33.7) 0.017‡

C frequency 0.469 0.429

H-W 0.332 0.874

H-W indicates Hardy-Weinberg; SNP, single-nucleotide polymorphism.
*According to the additive model.
†According to the dominant model.
‡According to the recessive model.

Figure 12. Distribution of the genetic risk condition, derived
from combined presence of A/rs641836 allele+TT/rs11237379
genotype for NDUFC2, according to TOAST classification, in a
case-control cohort of Italian early-onset ischemic strokes.
Prevalence was statistically significantly different (overall
P=0.003). TOAST indicates Trial of ORG 10172 in Acute Stroke
Treatment.
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