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To generate functional modules as functionally and structurally cohesive formations in protein interaction networks (PINs)
constitutes an important step towards understanding how modules communicate on a higher level of the PIN organisation
that underlies cell functionality. However, we need to understand how individual modules communicate and are organized
into the higher-order structure(s) of the PIN organization that underlies cell functionality. In an attempt to contribute to this
understanding, we make an assumption that the proteins reappearing in several modules, termed here as multimodular proteins
(MMPs), may be useful in building higher-order structure(s) as they may constitute communication points between different
modules. In this paper, we investigate common properties shared by these proteins and compare them with the properties of so-
called single-modular proteins (SMPs) by analyzing three aspects: functional aspect, that is, annotation of the proteins, topological
aspect that is betweenness centrality of the proteins, and lethality. Furthermore, we investigate the interconnectivity role of some
proteins that are identified as functionally and topologically important.
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1. Introduction

One of the challenges that systems biology is facing consists
of explaining biological organisation in the light of the
existence of modules in networks [1–4]. A proposal that
cellular function is carried out by modules [5] has fired a
“modular era” of systems biology in which the focus has
been on studying modularity at different levels of cellular
organisation. A series of studies attempting to reveal the
modules in cellular networks, ranging from metabolic [6] to
protein networks [7, 8], support the proposal that modular
architecture is one of the principles underlying biological
organisation.

To generate functional modules as functionally and
structurally cohesive formations in PINs is an important
step towards understanding how individual modules com-
municate and are organised on a higher level of the PIN
organisation that underlies cell functionality. We here inves-
tigate whether the proteins that appear in several modules,
that we term multimodular proteins (MMPs), may be useful
in building higher-order structure(s) as they may constitute
communication points between different modules.

In this paper, we investigate common properties shared
by these proteins and compare them with the properties
of single-modular proteins (SMPs), that is, proteins that
occur in only one module, by analysing three aspects:
functional aspect, that is, annotation of the proteins, using
Gene Ontology (GO), topological aspect that is betweenness
centrality of the proteins, which is used to find topologically
important proteins, and their lethality. Furthermore, we
investigate the interconnectivity role of some proteins that
are identified as functionally and topologically important.

2. Materials and Methods

2.1. Experimental Data Sets. The data set referred to as
CORE data consists of protein-protein interactions that
were downloaded from the Database of Interacting Pro-
teins (DIP: http://dip.doe-mbi.ucla.edu/). DIP stores and
organises experimentally determined interactions between
proteins in Saccharomyces cerevisiae [9]. The majority of
the interactions were identified with high-throughput yeast
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two-hybrid (Y2H) screens. [10] We used the subset of DIP-
YEAST, denoted as CORE, which has been validated in [11]).
After removal of 195 self-interactions, the CORE subset
contained 6375 interactions between 2231 proteins.

The second data set, referred to as von Mering data,
consists of protein interactions critically evaluated by von
Mering et al. (2002) [11], where a quality assessment
of large-scale data sets of protein-protein interactions in
Saccharomyces cerevisiae was performed. In [12], data sets
from yeast two-hybrid (Y2H) systems, protein complex
purification techniques that rely on mass-spectroscopy
(TAP and HMS-PCI), correlated mRNA expression profiles,
genetic interactions, and in silico interaction predictions
were analysed. As stated further in this study, each of these
methods can be used to predict protein interactions, even
though their goals are slightly different. While the main
purpose with yeast two-hybrid and mass spectrometry is
to identify physical binding between pairs of proteins, the
remaining of the mentioned methods is mainly focused
on predicting functional associations, which in many cases
also requires physical binding [12]. The authors integrated
about 80 000 interactions between proteins in and found that
only 2455 were supported by more than one method. This
low overlap between sets of protein interactions obtained
from different methods may be due to the high fraction of
false positives but may also be caused by the difficulties for
some methods to capture certain types of interactions. All
interactions are classified by the level of confidence (low,
medium, high), based on the evidence that supports them.
In this paper, we have used the interaction set with high level
of confidence, meaning that all interactions are confirmed
by several methods. We will refer to this data set as “von
Mering.” The data set contains 2455 interactions between 988
proteins.

2.2. Algorithm for Module Identification. In previous work by
Bader and Hogue (2003), an algorithm for finding complexes
in large-scale networks, called MCODE, based on the weight-
ing of nodes with a core-clustering coefficient was proposed.
The core-clustering coefficient of a node i is defined as the
density of the highest k-core of the closed neighbourhood
N[i]. The highest k-core of a graph is the central most densely
connected subgraph. We have earlier proposed a weighted
core-clustering coefficient for identifying topologically and
functionally cohesive clusters [13]. The weighting scheme
uses the weighted core-clustering coefficient of node i, which
is defined as the weighted clustering coefficient of the highest
k-core of the closed neighbourhood N[i] multiplied by the
highest core number.

We called the algorithm SWEMODE (Semantic Weights
for MODule Elucidation). SWEMODE has three options
concerning traversal of nodes that are considered for inclu-
sion in a module, as described in [13]. Here, we use depth-
first search; that is, the protein graph is searched starting
from the seed node, which is the highest weighted node,
followed by recursively traversing the graph outwards from
the seed node, identifying new module members according
to the given NWP (Node Weight Percentage) criterion. As

in [14], the requirement for inclusion of the neighbours in
a module is that their weights are higher than a threshold,
which is a given NWP of the seed node. At this stage,
once a node has been visited and added to the module,
it cannot be added to another module [13]. However, in
the postprocessing step, overlap is allowed to some extent.
Because we here choose to go further by inspecting the
interconnectedness, it is valuable to traverse not only the
immediate neighbours but also other indirect neighbours.

In a postprocessing step, modules that contain less than
three members may be removed, both before and after
applying a so-called “fluffing” step. The degree of “fluffing”
is referred to as “fluff” parameter and can vary between 0.0
and 1.0 [14]. For every member in the module, its immediate
neighbours are added to the module if they have not been
visited and if their neighbourhood weighted cohesiveness is
higher than the given fluff threshold f .

To identify topologically and functionally important
proteins, we calculated the number of module occurrences
for each protein across 200 sets of overlapping modules (the
fluff parameter was varied between 0 and 1 in increments of
0.1 and the NWP parameter was varied between 0 and 0.95
in increments of 0.05). All three GO aspects were combined
into a single weight for each protein. All modules that only
contain a single member are removed from further analysis.

For each seed protein, we calculated the number of times
each protein appears in different modules in each module
set, divided by the number of module sets it appears in. For
example, if protein Nup100 is member of 10 modules in one
module set and 20 modules in the another module set, the
average number of module occurrences of the protein will be
(10 + 20)/2 = 15.

2.3. Betweenness Centrality. Betweenness centrality has been
applied in the context of social networks, to measure the
centrality and influence of a person or a group [15]. The
betweenness centrality of a node v is originally defined by
Freeman (1977) as the number of shortest paths between
other nodes that pass through v and it is given by

CB(v) =
∑

i, j∈V : i /= j,i /= v, j /= v

giv j
gi j

, (1)

where giv j is the number of the shortest path linking i
and j that contain v, and gi j is the total number of the
shortest path between i and j. High-betweenness nodes
occur on large number of nonredundant shortest paths
between other nodes. If a node with high-betweenness
centrality is removed, it may disconnect different parts of the
network completely. Thus, such nodes may be thought of as
potential bridges between modules in network and have most
influence on the information transfer.

2.4. Lethality. We obtained lethality data from the MIPS
database [16]. There are 1015 lethal proteins obtained
from manually curated MIPS database. The list of MMPs
and SMPs observed across modules in both data sets was
compared to the list of lethal proteins.
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Table 1: Annotation statistics for top ten multimodular proteins.

Proteins Cdc28 Nap1 Prp43 Pre1 Pwp2 Sed5 Tfp1 Nop4 Utp7 Rpc40

Module frequency 4.2 3.9 2.9 2.7 2.7 2.6 2.6 2.6 2.5 2.5

GO biological process cell organization and biogenesis

GO frequency 80%

P value 3.8 · 10−4

Table 2: Statistics for the most significant GO terms based on GO biological process. Module frequency decreases from left to right, and the
last column contains a group of proteins that occur in only one module or are not present in any of the modules.

Module frequency ≥1.9 ≥1.7 ≥1.4 ≥1.2 >1 ≤1

[#] proteins [50] [100] [150] [200] [250] [250]

GO biological process
GO term frequency

P value

Ribonucleoprotein complex biogenesis and
assembly (5.5%)

42% 36% 41% 40% 41% 16%

9.3 · 10−18 3.2 · 10−18 4.9 · 10−37 1.9 · 10−47 3.9 · 10−64 1.1 · 10−06

Cellular component organization and
biogenesis (30%)

70% 62% 65% 65% 66% 56%

1.7 · 10−06 1.2 · 10−08 1.0 · 10−16 2.2 · 10−22 1.9 · 10−29 3.9 · 10−55

Organelle organization and biogenesis
(17.8%)

50% 45% 51% 50% 53% 35%

5.8 · 10−05 1.0 · 10−07 2.1 · 10−18 3.1 · 10−23 2.1 · 10−35 2.2 · 10−08

RNA metabolic process (14.2%)
44% 48% 46% 45% 46% 32%

8.9 · 10−05 1.8 · 10−13 1.3 · 10−18 5.9 · 10−24 1.3 · 10−31 1.1 · 10−10

Primary metabolic process (44%)
74% 79% 79% 81% 80% 78%

4.7 · 10−03 2.1 · 10−10 1.1 · 10−15 8.7 · 10−25 2.5 · 10−30 3.8 · 10−25

3. Results

3.1. GO Annotation of Multimodular Proteins

3.1.1. CORE Data Set. We started by analysing anno-
tations with help of SGD GO Term Finder (http://
www.yeastgenome.org/help/goTermFinder.html), in order to
identify the most significantly shared GO terms among
the MMPs with varying number of module occurrence.
The subontology “biological process” was chosen. The
majority of the most frequent multimodular proteins (top
10) are annotated with the GO biological process term
“cell organization and biogenesis,” which has the following
GO definition: “the processes involved in the assembly
and arrangement of cell structures, including the plasma
membrane and any external encapsulation structures such as
the cell wall and cell envelope,” as described in [17]. Table 1
shows the top ten MMPs, where 80% (highlighted proteins)
belong to the above mentioned class. GO Frequency in
Table 1 shows the percentage of those proteins that are
annotated with the given GO term. The most significantly
shared term is obtained by examining the group of proteins
to find the GO term to which the highest fraction of the
proteins is associated, compared to the number of times
that the term is associated with other yeast proteins. The
significance (P value) of the shared GO term describing the
biological process for the ten most frequent proteins is shown
in the last row in Table 1.

In addition, we have repeated the same evaluation proce-
dure by adding proteins with decreasing module frequency

to analyse how the annotation statistics is affected by adding
those proteins. The summary of those results may be found
in Table 6. The first column shows the statistics for the top
50 protein, where all proteins are present in approximately 2
modules in average. Still, the majority of the proteins share
the GO term “cell organization and biogenesis”, which is
also the most significant term (P = 1.3 · 10−11), and the
GO frequency has increased slightly from 80% to 82%. For
comparison, 50 random SMPs were evaluated with the same
procedure. Here we found that the most significant term that
is shared among 96% of those proteins is the GO biological
process term “cellular process” (P = 2.1 · 10−5), which may
not help us to derive any conclusions about the more specific
roles of those proteins. Also in this subset of proteins, we
found that the GO term “cell organization and biogenesis” is
shared among proteins, but the GO frequency for this term
is 63%, compared to 82% of most frequent MMPs that are
annotated with this term.

GO term frequency for the most significant terms
decreases gradually as we add more proteins with decreasing
module frequency. Several nonsignificant annotation terms
appear as we add proteins with decreasing module frequency,
meaning that those proteins have more dispersed annotation,
while high-frequent MMPs seem to have more consistent
annotation dominated by their participation in cellular
organisation.

Cdc28, which appears most frequently in modules, is one
of five different cyclin-dependent protein kinases (CDKs) in
yeast and has a fundamental role in the control of the main

http://www.yeastgenome.org/help/goTermFinder.html
http://www.yeastgenome.org/help/goTermFinder.html
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Table 3: Comparison between top 100 most frequent multimodular proteins and most frequent “bottle neck” proteins, identified by Przulj
et al. (2003).

Module freq. ≥2.1 ≥1.9 ≥1.8 ≥1.7

“bottle necks” ≥25 ≥18 ≥14 ≥11

[#] Proteins [25] [50] [75] [100]

GO biological Process
GO term frequency

P value

Cellular process (64.1%) —
100%

—
98% 93% 95%

—
94%

5.1 · 10−3 2.5 · 10−5 1.0 · 10−6 2.0 · 10−7 9.7 · 10−10

Ribonucleoprotein complex biogenesis and
assembly (5.5%)

40%
—

42% 32% 39% 27% 36% 25%

5.6 · 10−5 9.3 · 10−18 1.9 · 10−6 1.7 · 10−15 1.0 · 10−6 3.2 · 10−18 4.8 · 10−8

Cellular component organization and
biogenesis (30%)

— —
70% 66% 63% 61% 62% 63%

1.7 · 10−06 6.3 · 10−5 1.5 · 10−6 9.2 · 10−6 1.2 · 10−8 4.2 · 10−9

Organelle organization and biogenesis
(17.8%)

— —
50% 46% 48% 43% 45% 43%

5.8 · 10−5 1.6 · 10−3 5.7 · 10−7 2.2 · 10−4 1.0 · 10−7 2.0 · 10−6

Cellular metabolic process (46.6%) — — —
76% 79% 79% 81% 77%

8.6 · 10−3 3.6 · 10−6 5.9 · 10−6 4.7 · 10−10 2.4 · 10−7

RNA metabolic process (14.2%) — —
48%

—
52% 35% 48% 32%

1.8 · 10−13 2.8 · 10−12 3.4 · 10−3 1.8 · 10−13 2.4 · 10−3

Primary metabolic process (44%) — —
79%

—
79% 73% 79% 73%

2.1 · 10−10 2.7 · 10−7 1.2 · 10−4 2.1 · 10−10 2.0 · 10−6

O
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B
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Figure 1: Statistics for MIPS functional categories: D: genome maintenance; T: transcription; F: protein fate; C: cellular fate/organisation;
O: cellular organisation; G: amino acid metabolism; M: other metabolism; E: energy production; R: stress and defence; B: transcriptional
control; P: translation; A: transport and sensing; U: uncharacterized.

events of the yeast cell cycle [18]. Topologically, it acts as
a hub; that is, it holds together several functionally related
clusters in the interaction network. In previous work, this
protein was suggested to be a part of the intramodule path
within the yeast filamentation network, because it had the
highest intracluster connectivity; that is, it was the protein
with the highest number of interactions with other members
of the same cluster [1]. It is therefore highly interesting that

we have identified this protein as the most frequent in our
modules, as described in [17].

We further evaluated the proteins by analysing their
MIPS functional categories [16], to determine what func-
tional characteristics may be derived by studying proteins
based on their module frequency. We observed that proteins
involved in cellular organisation (O) appear more frequently
among the top 100 MMPs, compared to the random
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Figure 2: Degree (k) versus betweenness centrality plotted on
algorithmic scale.
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Figure 3: Average number of module occurrences versus between-
ness centrality plotted on algorithmic scale.

Table 4: Lethality among multimodular proteins (MMPs) across
both data sets.

No. of MMP No. of lethal proteins Percentage

CORE 480 222 46.3%

Von Mering 83 57 68.7%

Table 5: Lethality among single-modular proteins (SMPs) across
both data sets.

No. of SMP No. of lethal proteins Percentage

CORE 502 173 34.5%

Von Mering 213 116 54.5%

set of SMPs. Among SMPs, we found that transcription
seems to be enriched, as 13% of proteins are annotated
with T-transcription and 10% were annotated with B-
transcriptional control. This result supports our findings
based on studying GO biological process annotation, where
“cell organization and biogenesis” were the most significant
term among multimodular proteins.

We have also found a lower percentage of uncharacterised
proteins in the chart that shows the statistics for the 100 most
frequent MMPs (see Figure 1), while none of the proteins
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Figure 4: Degree (k) versus betweenness centrality plotted on
algorithmic scale.
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Figure 5: Average number of module occurrences versus between-
ness centrality plotted on algorithmic scale.

in the top 50 MMPs is uncharacterised (see Figure 7). This
indicates that the more often the protein takes part in
the different modules, the higher is the probability that
the protein has a defined function. In the same chart
(see Figure 1(a)), the proteins that belong to amino acid
metabolism and energy production are absent. By studying
Figure 7, we can conclude that there is a high fraction of the
proteins belonging to the cellular organisation category in
each of the module frequency intervals. To make the charts
comparable, we have sorted the proteins in decreasing order
of module frequency and divided them into the four groups
of high-frequent proteins, where each group contains 50
proteins (see pie charts in the first row), and four different
groups that contain SMPs (see pie charts in the bottom row).
The fraction of proteins that belong to the category “cellular
organisation” in multimodular proteins is constantly higher
(varies between 18% and 26%) than the fraction of such
proteins in the single-modular groups of proteins (varies
between 4% and 8%).

3.1.2. Von Mering Data Set. One of the important goals in
systems biology is to find relations between the topological
properties and functional features of genes and proteins in
the networks. In previous network studies, the focus has
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Table 6: Annotation statistics for multimodular proteins of different module frequency versus single-modular proteins from Yeast CORE
data set. Statistics for the most significant annotation terms of the multimodular proteins with varying occurrences intervals, compared to
the corresponding statistics for single-modular proteins (CORE data set).

Module frequency ≥1.9 ≥1.6 ≥1.4 ≥1.3 ≥1.3 ≥1.2 ≥1.2 ≥1.1 ≥1.1 =1

No. proteins 50 100 150 200 250 300 350 400 450 450

GO biological process
GO term frequency

P value

GO: 0016043 (30%)
cellular component
organization and
biogenesis (30%)

82% 77% 76% 78% 75% 74% 73% 71% 72.7% 66%

1.3 · 10−11 1.1 · 10−19 6.2 · 10−29 5.4 · 10−42 4.5 · 10−47 3.2 · 10−54 1.0 · 10−60 1.5 · 10−66 4.7 · 10−80 2.1 · 10−57

GO: 0006996 (17.8%)
organelle organization
and biogenesis (17.8%)

60% 53% 49% 51% 47% 46% 46% 44% 46% 43%

1.2 · 10−08 5.8 · 10−13 3.0 · 10−16 7.4 · 10−24 9.3 · 10−25 2.9 · 10−27 4.9 · 10−33 7.2 · 10−34 1.3 · 10−43 4.5 · 10−36

GO: 0043283 (30.2%)
biopolymer metabolic
process (30.2%)

66% 68% 63% 62% 58% 58% 59% 59% 59% 57%

7.2 · 10−05 2.8 · 10−12 1.8 · 10−14 1.3 · 10−17 1.4 · 10−17 6.0 · 10−21 3.5 · 10−28 1.2 · 10−31 2.4 · 10−36 2.3 · 10−30

GO: 0006139 (20.7%)
nucleobase, nucleoside,
nucleotide and nucleic
acid metabolic process
(20.7%)

54% 52% 47% 49% 47% 46% 47% 47% 47% 45%

8.3 · 10−05 1.8 · 10−09 1.1 · 10−10 4.3 · 10−16 3.9 · 10−18 2.1 · 10−21 7.5 · 10−26 2.2 · 10−30 5.4 · 10−35 4.9 · 10−31

GO: 0016070 (14.2%)
metabolic process
(14.2%)

42% 40% 37% 39% 36% 36% 37% 37% 37% 34%

5.6 · 10−04 8.0 · 10−08 2.1 · 10−09 3.5 · 10−15 9.2 · 10−16 6.7 · 10−20 6.7 · 10−26 2.0 · 10−28 3.2 · 10−32 8.9 · 10−25

GO: 0044238 (44.0%)
primary metabolic
process (44.0%)

74% 70% 69% 68% 68% 69% 69% 68% 67%

4.6 · 10−07 4.6 · 10−08 8.4 · 10−10 4.7 · 10−12 2.3 · 10−14 1.8 · 10−19 8.0 · 10−22 3.1 · 10−24 5.0 · 10−21

been on highly connected proteins, so called “hubs”, and
proteins with high-betweenness centrality, so called “bottle
necks” [19–21]. We aim here to show that multimodularity
feature of the proteins that is proposed here may also indicate
protein essentiality in the network, especially considering
the fact that the underlying module-identification method
relies on both topological and functional information about
proteins.

For this purpose, the method proposed here is compared
with another related method. In previous work by Pržulj
et al. (2004) [18], topologically important proteins are
identified by using the most frequent “bottle neck” nodes
[19]. The method starts from a tree of the shortest paths for
each node v. Such tree consists of nv nodes that are directly
or indirectly connected to v. All nodes w from the tree, such
that more than nv/4 paths from v to other nodes meet at node
w, are defined as “bottle necks”. Pržulj et al. (2004) presented
only the top ten most frequent “bottle neck” proteins, and
stated that 70% of those are involved in supporting cellular
structure and organisation. We here evaluate the annotations
for different groups of proteins based on how often they
appear in different modules (see Table 2). After each specific
GO term in the first column, the total percentage of all
proteins that are annotated with this term is given. It can
be noticed that the percentage of proteins that are annotated
with the chosen terms drops for the proteins with module

frequency ≤1, with the exception of the term in the last row
“primary metabolic process”, which is the most common of
all presented terms.

We also present a more systematic comparison between
our protein groups, chosen based on their average occurrence
in the modules, and the bottle neck proteins (see Table 3).
The top 25 proteins obtained by our approach significantly
share the term “ribonucleoproteins complex biogenesis and
assembly”, which is a child term of “cellular component
organization and biogenesis”. No significantly shared ontol-
ogy terms appear in the corresponding set of bottle-neck
proteins.

3.2. Topological Features of Multimodular Proteins

3.2.1. CORE Data Set. We started by investigating general
properties of the data set by studying the relation between
degree and betweenness centrality. Figure 2 shows degree k
versus betweenness centrality plotted on algorithmic scale.
The few highly connected nodes (hubs) in the PIN must
have high betweenness values because there are many nodes
directly and exclusively connected to these hubs and the
shortest path between these nodes goes through these hubs.
However, the low-connectivity nodes also exhibited a wide
range of betweenness values in the yeast PIN.
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Figure 6: Modular network involving modules in which Cdc28.

In Figure 3, node betweenness centrality is plotted as
a function of average number of module occurrences. We
can notice that all proteins with average module frequency
≥ 2 have considerably high betweenness values. However,
the single-modular nodes also exhibited a wide range of
betweenness values in the yeast PIN.

3.2.2. Von Mering Data Set. We repeated the same experi-
ment for the von Mering data set. In Figure 4, betweenness
is plotted as a function of degree k. Here, we could
not use any characteristic degree k or any interval of k
values to denote the importance of nodes (based on the
betweenness).



8 Journal of Biomedicine and Biotechnology

O
22%

B
6%

P
2%

A
2%

M
2% D

18%

F
10%

T
26%

C
12%

1.9–4.2

(a)

B
12%

A
2%P

4%

U
6%

R
2%

D
10%

F
8%

T
16%

C
22%

O
18%

1.6–1.9

(b)

B
12%

A
2%P

4%

U
4%

E
2%

G
2% D

14%

F
2%

T
16%

C
16%

O
26%

1.4–1.6

(c)

B
8%

A
2%

P
8%

U
8%

E
2%

D
10%

F
8%

T
22%

C
10%

O
22%

1.3–1.4

(d)

B
10%

M
12%

U
4%

P
4%

G
2%

D
10%

F
26%

T
20%

C
4%

O
8%

(e)

B
10%

A
8%

U
6%

P
4%

E
2% D

18%

F
14%

T
24%

C
6%

O
8%

(f)

E
2%

A
4%

M
6%

P
8%

G
2%

R
2%

D
21%

F
6%

T
15%

C
10%

O
4%

B
14%

U
6%

(g)

M
8%

P
8%

R
8%

A
2%

F
4%

D
10%

T
26%

C
2%O

8%
B

10%

U
10%

E
4%

(h)

Figure 7: Functional groups statistics for proteins in von Mering data set. The first row shows charts with statistics for multimodular proteins
(MMP) in varying intervals of module frequency (in decreasing order of frequency). There are 50 proteins in each interval. For comparison,
the second row shows the corresponding statistics for the same number of single-modular proteins.

Also in Figure 5, besides the most frequent multimod-
ular proteins (MMPs) that have high betweenness values,
there is a wide range of betweenness centrality values for
single-modular proteins (SMPs) as well. However, modular
frequency seems to be a better indicator of node importance,
in terms of betweenness centrality.

3.3. Lethality. There are 1015 lethal proteins obtained from
manually curated MIPS database. The list of MMPs and
SMPs observed across modules in both data sets was
compared to the list of lethal proteins. The results from this
comparison are presented in Tables 4 and 5.

In the CORE data set, we found 222 lethal proteins
among the multimodular proteins (MMPs). This corre-
sponds to 46.3%, as there are 480 frequently occurring
proteins in total. The corresponding percentage for MMPs
derived from modules in the von Mering data set is 68.7,
as there are 57 lethal proteins among the 83 MMPs (see
Table 4).

We made the same comparison for single-modular
proteins (SMPs) across the modules based on both data sets.
In the CORE data set, we found 173 lethal proteins among
the SMPs, which correspond to 34.5%, as there are 502 SMPs
in total (see Table 5). The corresponding percentage for the
fraction of lethality in SMPs derived from modules in the von
Mering data set is 54.5, as there are 116 lethal proteins among
the 213 SMPs, as shown in Table 5.

In both cases, the difference is statistically significant at a
95% confidence level, meaning that there is a significantly
larger proportion of lethal proteins, also referred to as
important proteins, among multimodular proteins. These
results are obtained by performing a z-test for the differences
between the two proportions (z = 3.8 in the CORE data set,
and z = 2.2 in the von Mering data set).

3.4. Modular Interconnectivity. Figure 6 shows the result
from an example run from module-identifying method,
where Cdc28 was predicted as taking part in six modules
matching MIPS complexes. In addition, this protein occurs
830 times in 200 module sets and hereby has the highest
average number of module occurrences (4.2). Cdc28 is
a cyclin-dependent kinase and it is believed to be a key
regulator of the cell-division cycle. In this example, it
is connected to several proteins from Origin Recognition
Complex (ORC), which is involved in DNA replication.
Cdc28 is also connected to actin cytoskeleton-associated
complex, which is reorganised in accordance with cell-
cycle progression. This process is according to previous
study believed to be controlled, directly or indirectly, by
Cdc28 [22]. Furthermore, there is an important connection
between Cdc28 and proteasome complex. The central role of
this complex is to direct a cell to proceed with the decision
to replicate itself. In yeast cells a critical trigger for cell
replication is degradation of Sic1, which is a protein that
inhibits the chemical activity of Cdc28. After eliminating
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the biochemical Sic1 “brake” due to the action of SCF
and the proteasome, the kinase is then free to trigger the
progress toward DNA replication and associated events of
cell replication.

This is a clear example of the network involving hub
that interconnects several functional modules. This example
is supported by several topological and functional features,
such as average number of occurrences in modules, between-
ness centrality, and node degree. However, there are several
examples where those features are conflicting, which will be
interesting to evaluate in future.

4. Conclusions

We have here presented approaches for identifying topo-
logically and functionally important proteins by calculating
the frequency of each protein across 200 sets of overlapping
modules. Initial results show that the majority of frequently
appearing proteins that connect several modules are involved
in the assembly and arrangement of cell structures, such
as the cell wall and cell envelope, which indicates that
they are involved in supporting the cell structure rather
than signal transduction, for example. We also observed by
studying MIPS functional classes of the MMPs and SMPs
that proteins involved in cellular organisation (O) appear
more frequently among the top 100 MMPs, compared to the
random sets of SMPs. The results from studying lethality
show the significantly higher fraction of lethal proteins
among multimodular proteins (MMP), when compared
to single modular proteins (SMP) reflecting the tendency
of MMP to be more lethal, and hereby indicating their
essentiality.

The investigation of different features of so-called multi-
modular proteins, that is, proteins that take part in multiple
modules within the PIN, shows that these may be involved in
the assembly and arrangement of cell structures (according
to GO annotation) to a greater extent than single-modular
proteins or proteins with lower numbers of occurrences
across the generated module sets. Also, the analysis of
MIPS functional categories, along with the analysis of GO
annotation, shows that the fraction of the proteins that
belong to the category “cellular organisation” in multimod-
ular proteins is higher than the fraction of such proteins in
the single-modular groups of proteins. Another frequently
occurring GO term that is assigned to multimodular proteins
is “ribonucleoproteins complex biogenesis and assembly”
which is a child term of “cellular component organisation
and biogenesis”. Hence, we find evidence supporting the
hypothesis that this GO term reveals the role of modules
in building and supporting higher-order structure(s) of the
PIN organisation. Other features that we have analysed
to characterise possible differences between multimodular
and single-modular proteins are betweenness centrality and
lethality. In both data sets, it is shown that there is signifi-
cantly higher fraction of lethal proteins among multimodular
proteins, also pointing at their significance. From the analysis
of betweenness centrality, it is also notable that proteins
with high average module frequency have considerably high

betweenness values, while the single-modular nodes exhibit
a wide range of betweenness values in the yeast PIN. This
also points to the greater importance of the multimodular
proteins, as those nodes may be potential bridges between
modules in the network and have most influence on the
information transfer between communicating modules. If a
node with high betweenness centrality is removed, it may
disconnect a different part of the network completely.

Possible limitation of this approach should finally be
discussed. The method for assigning the weights to proteins,
which are used for the purpose of module identification,
that, in turn, consists the basis for identifying multimodular
feature of the proteins, relies to a great extend on GO terms.
Proteins may be annotated at different levels in the hierarchy,
that is, some of more specifically described than the others.
Another limitation that also should be discussed is that
quality of GO annotation in terms of experimental evidence
may vary. Currently, all evidence types are used, but some
types of evidence such as “traceable author statement” are
considered more reliable than others. As we used the protein-
protein interactions that are validated by different method,
and are generally well annotated it should not affect the
performance of module identifying method to a great extent,
but the method may benefit from future more fine grained
versions of GO.

In future, it would be very interesting to make a system-
atic comparison with other module-identifying methods and
other topological features used to identify essential proteins
in protein interactions networks.
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