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Abstract: Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on 

sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous 

lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious 

stimuli which could trigger counteractive measures to avoid pain and injury. Activation of 

TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, 

as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such 

as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, 

activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, 

asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity 

could be useful for the treatment of conditions ranging from chronic pain to hearing loss. 

This review describes the roles of TRPV1 in the normal physiology and pathophysiology 

of selected organs of the body and highlights how drugs targeting this channel could be 

important clinically. 
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1. Introduction 

TRPV1 channels serve primarily as heat sensors, which are activated by temperatures >43 °C. 

These channels are present on sensory neurons, such as dorsal root ganglia and trigeminal neurons, 

where they are localized primarily in small diameter neurons and unmyelinated C fibers [1]. Amino acid 

sequence data predict a channel with six trans-membrane spanning regions and a pore located in  

a hydrophobic stretch between transmembrane segments 5 and 6. The pore shows a greater selectivity 

for Ca
2+

 over Na
+
 of 9.6:1 [1]. TRPV1 is also activated by capsaicin, an active ingredient in hot chili 

peppers [1,2]. Heat and capsaicin increase Ca
2+

 currents in cells expressing TRPV1. Protons (pH < 5.9) 

can directly activate TRPV1 channels and further enhance the sensitivity of these channels to capsaicin 

and heat [1]. Protons-induced activation could be relevant in tissue ischemia or inflammation. Thus, 

TRPV1 serves as an integrator of physical and chemical stimuli produced from the injury site or from 

external sources [1,2]. 

Chronic capsaicin administration desensitizes TRPV1 and renders the neurons less sensitive to 

noxious (painful) stimuli. This action requires the presence of extracellular Ca
2+

 and activation of 

Ca
2+

-calmodulin dependent protein kinase which promote channel phosphorylation [1,2]. This 

property of capsaicin has been employed for the treatment of pain associated with disease conditions 

such as diabetic peripheral neuropathy and arthritis [1,2]. 

2. Endogenous TRPV1 Agonists 

These agonists, also referred to as endovanilloids, are expressed predominantly in the primary sensory 

neurons [3] and also different regions of the brain [4,5]. Endovanilloids are synthesized in the cells  

and released in an activity-dependent manner in adequate amounts to evoke TRPV1-mediated 

responses [6]. The endovanilloid signaling is terminated within a short period of time, which allows for 

strict control of its action. 

Various endogenous lipids from the fatty acid pool have been identified as TRPV1 activators. 

Anandamide (N-arachidonoyl ethanolamine) (Figure 1), the endogenous ligand for the cannabinoid 

receptors, was reported to activate TRPV1 by binding to the same site as capsaicin [7]. However,  

its potency was 5–10 fold lower than that of capsaicin [8]. Endogenously produced anandamide causes 

TRPV1-dependent ileitis in the inflamed ileum of rats treated with Clostridium difficile toxin A [9]. 

AM-404 [N-(4-hydroxyphenyl)-arachidonoyl-ethanolamine] (Figure 1), an anandamide reuptake 

inhibitor and TRPV1 agonist, has been shown to attenuate motor disturbances by restoring GABA and 

dopamine transmission in an animal model for Huntington’s disease [10,11]. N-acyl ethanolamines 

(NAEs), like anandamide, have been studied as activators of TRPV1. One such NAE,  

N-oleoylethanolamine (OLEA) (Figure 1), evokes TRPV1 currents in cells previously sensitized with 

protein kinase C [12]. Intraperitoneal administration of OLEA induces visceral pain behavior in wild 

type, but not in TRPV1-null mice [13]. 

N-arachidonoyldopamine (NADA) (Figure 1), an endocannabinoid present in CNS, is a potent full 

agonist of TRPV1, with 5–10 fold higher potency than anandamide and equi-potent to capsaicin in 

functional assays [14]. Intradermal injection of NADA into the hind paw of mice results in thermal 

hyperalgesia [15]. NADA also constricts isolated bronchi and urinary bladder preparations from the 
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guinea pig in a TRPV1-dependent manner [16]. A bioactive analogue of NADA, N-oleoyl dopamine 

(OLDA) (Figure 1), evokes increase in intracellular Ca
2+

 in TRPV1 expressing HEK293 cells. Similar 

to NADA, subcutaneous injection of OLDA produces thermal hyperalgesia [17]. 

Figure 1. Chemical structures of natural and endogenous transient receptor potential 

vanilloid 1 (TRPV1) receptor agonists. 
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DRG neurons and in HEK cells expressing TRPV1 [19]. It was reported that 12-(S) HPETE is produced 

in sensory neurons upon stimulation of sensory nerve endings by the inflammatory mediator bradykinin. 

In this study, bradykinin was shown to activate cAMP-dependent phospholipase 2 (PLA2) leading to 

the release of arachidonic acid, which is then metabolized by 12-lipoxygenase to produce 12-(S) 

HPETE. This pathway has been linked to thermal hyperalgesia induced by bradykinin [20].  

In addition, 12-(S) HPETE can undergo other enzymatic reactions that lead to the formation of 

hepoxilins A3 (HXA3) and B3 (HXB3) (Figure 1). Intrathecal injections of these hepoxilins induce 

tactile allodynia via activation of TRPV1 (and TRPA1) in rats [21]. 

In addition to the endogenous lipids, other endogenous chemicals, including ATP, ammonia  

and polyamines (such as spermine, spermidine, and putrescine), as well as protons (observed  

during inflammation) can activate TRPV1 (for review see [22,23]) (Figure 1). ATP was identified as  

a TRPV1-sensitizing molecule that directly binds to TRPV1 in a region between ankyrin repeats  

1–3 [24]. Moreover, by activating purinergic P2 receptors on sensory neurons, ATP stimulates 

phospholipase C (PLC) which produces diacylglycerol (DAG), an activator of PKC. Activators of 

PKC have been shown to sensitize TRPV1 channels to endogenous and exogenous agonists and reduce 

the temperature threshold for channel activation [25,26]. Acidic conditions normally occur during 

hypoxia, ischemia and inflammation [27]. Protons decrease the temperature threshold for TRPV1 

activation such that even moderately acidic conditions (pH≤5.9) can activate the channel at room 

temperature. TRPV1 can also be activated by basic pH. Ammonia (NH3), an irritant and weak base, 

activates TRPV1 (and TRPA1) in sensory neurons through a mechanism that involves a cytoplasmic 

histidine residue [28]. Polyamines are capable of modulating inflammation and nociception by 

regulating the activity of TRPV1 channel. Extracellular spermine, spermidine, and putrescine, by virtue 

of their cationic charge, directly activate TRPV1 in a charge-dependent manner, both in heterologous 

expression systems and in sensory neurons. The threshold for activation by spermine is rather high 

(~500 μM at room temperature), but spermine can enhance capsaicin evoked currents with an effective 

concentration for 50% activation (EC50) value of approximately 5 μM [29]. 

3. Functions of TRPV1 Channel 

3.1. Role of TRPV1 in Thermal Sensation 

One of the remarkable features of living organisms is their ability to perceive and react to 

environmental conditions around them. The skin of animals has an ability to identify thermal profiles 

ranging from cold to extreme heat. Within this range, temperatures above 43 °C and below 15 °C 

evoke painful thermal sensations by activating C type nerve fibers [30,31]. Pioneering studies showed 

that primary afferent neurons express heat-sensitive ion channels [32,33] which were later cloned  

and identified as TRPV1 receptor [1,3]. The mRNA encoding TRPV1 receptor was expressed in small 

diameter sensory neurons within the dorsal root ganglion and trigeminal sensory ganglia, consistent 

with the idea that C and A-δ fibers are involved in nociception [3,34]. Immunolabeling for TRPV1  

is observed in non-myelinated, low conductance nerve fibers which express neuropeptides such as 

substance P and neurokinin A [34,35]. TRPV1 was activated at temperatures >43 °C which are 

responsible for inducing pain in vivo [3,34]. TRPV1 knockout mice exhibit a reduced response to 
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noxious stimuli induced by capsaicin, heat and protons [36–38]. Neurons of the dorsal root ganglion 

obtained from TRPV1 null mice showed greatly reduced sensitivity to heat, but a small number  

of neurons maintained their response when stimulated with heat temperatures above 50 °C, indicating 

that other receptors participate in pain perception in this temperature range [36]. The membrane 

potential and excitability of magnocellular neurosecretory cells of mice maintained at physiological 

temperature is reduced by genetic deletion or pharmacological blockade of the TRPV1 receptors. 

Moreover, the spontaneous electrical activity of these cells is abolished by the same experimental 

profile, indicating that TRPV1 plays a physiological role in the thermal sensation [39]. Human corneal 

epithelial cells also express functional TRPV1 receptors which are responsive to capsaicin and heat. 

Treatment with selective agonist 2-aminoethoxydiphenyl borate (2-APB), or exposure to temperatures 

above 40 °C, led to a transient increase in intracellular Ca
2+

 concentration, which was blocked by 

pretreatment with selective TRPV1 antagonists [40]. 

Inflammatory pain is produced following tissue damage and/or development of inflammation. It is 

characterized by hypersensitivity of the site of damage and nearby tissues to noxious stimuli. One of 

the mechanisms responsible for this aspect of inflammation is the modulation of ion channels, such as 

TRPV1, which become sensitized by mediators in the inflammatory micro-environment [41–43]. 

These mediators include prostaglandins, bradykinin, serotonin, ATP and adenosine [27]. Among these 

molecules, ATP, bradykinin, and prostaglandins sensitize TRPV1 through activating Ca
2+

 mobilizing 

receptors and PKC. These mediators reduce the threshold temperature and proton concentrations 

required to activate TRPV1 [26,44–48]. Studies using TRPV1 knockout mice and knockout of receptors 

for inflammatory mediators demonstrate essential roles for TRPV1 and inflammatory mediators for 

producing inflammatory pain [45–47]. The cytosolic domain of TRPV1 contains serine residues which 

could be phosphorylated by PKC [49,50]. Recently, it was shown in the neurons of the dorsal root 

ganglion and transfected cells that cyclin-dependent kinase 5 (Cdk5) controls trafficking of TRPV1 to 

the cell membrane through kinesin-3 family (KIF) 13B protein. Interestingly, activation of Cdk5 by 

injection of Freund’s adjuvant increases the trafficking of TRPV1 to the cell membrane, which likely 

contributes to development and maintenance of hyperalgesia [51]. The activity of TRPV1 could also 

be enhanced when it is associated with another receptor. In this sense, Cheng et al. [52] showed that 

TRPV1/TRPV3 heterodimers exhibit increased temperature sensitivity, lower threshold for activation 

and sensitization by heat as compared to the monomeric receptors. The microenvironment created by 

tissue damage and inflammation is rich in protons produced by inflammatory cells. By activating 

TRPV1 in these inflamed areas, protons can also contribute to pain sensations [53,54]. Thus, acidosis 

can enhance pain. Previous studies have shown that acidosis sensitizes visceral and cutaneous nociceptors, 

in large parts through activation of TRPV1 [55–57]. In extreme acidosis, protons can directly activate 

TRPV1. However, in mild acidic conditions, protons act as allosteric modulators of TRPV1 and greatly 

increase their sensitivity to heat, capsaicin and inflammatory agents. This phenomenon is typical of 

disorders characterized by increased tissue acidosis [53]. 

In addition to the sensitization of TRPV1 by inflammatory mediators and protons, activation of 

TRPV1 can enhance the release of inflammatory molecules associated with pain transmission, such as 

substance P, calcitonin gene-related peptide (CGRP) and bradykinin, which can contribute to peripheral 

sensitization of TRPV1 [58]. Moreover, TRPV1 expression is up-regulated flowing inflammation and 

nerve damage which can further enhance the responses mediated by these receptors [59,60]. 
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3.2. Role of TRPV1 in Diabetes and Obesity 

Type 1 diabetes has an autoimmune basis involving T cell-targeted destruction of pancreatic islet  

β cells. In this disease, autoreactive T cells target antigens on islet β cells or neurons, initiating a local 

inflammatory response and destruction of these β cells. These antigens include glutamic acid 

decarboxylase [61,62], myelin based proteins [63], glial fibrillary acid proteins and S100β [64]. 

TRPV1 is expressed on nerves innervating the islet β cells where they appear to modulate T cell 

function. An early study demonstrated that administration of capsaicin to neonatal mice was able to 

destroy these TRPV1 expressing neurons [65]. Interestingly, this treatment protected these mice from 

autoimmune diabetes [66]. It is believed that TRPV1 expressing neurons could induce the type 1 

diabetic phenotype by modulating the proliferation and activity of T cell in the microenvironment of 

the islet β cells through the release of substance P. Pancreatic islet cells also include resident dendritic 

cells which express TRPV1 receptors [67]. Activation of these receptors by capsaicin or endovanilloids 

could activate dendritic cell function which includes antigen presentation to CD4
+
 T cells and 

chemotaxis. Since TRPV1 neurons play a critical role in modulating inflammation at the level of the 

pancreatic β cells, it could serve as a useful target for controlling inflammation and reducing diabetic 

symptoms. This suggests the clinical utility of TRPV1 antagonists or agonist-induced desensitization 

of TRPV1 to treat type 1 diabetes. The expression of TRPV1 in dendritic cells has been corroborated 

by some studies [67–69] but not others [70]. The idea that TRPV1 is an initiating factor mediating  

type 1 diabetes is challenged by the finding that TRPV1 isoform expressed in the non-obese diabetic 

(NOD) mouse possesses two mutations which render the channel less active and thereby should be less 

able to regulate the inflammatory process [66]. However, this discrepancy has been explained as faulty 

control mechanism between pancreatic islet β cells and the innervating TRPV1 expressing neurons. 

TRPV1 receptors are also expressed on islet β cells where they control the release of insulin [71]. 

Since insulin could sensitize TRPV1 receptors [72], it could positively regulate TRPV1 activity and 

increase the release of CGRP. 

Diabetic peripheral neuropathy is a complication associated with diabetes mellitus, resulting from 

damage of loss of peripheral nerve terminals innervating the extremities. Affected patients normally 

complain of pain, tingling, and loss of feeling in the extremities. Several studies have implicated TRPV1 

in the development of diabetic peripheral neuropathy in animal models of type 1 diabetes [73,74] and 

in humans [75]. Hong and Wiley [73] showed upregulation of TRPV1 protein and channel activity in  

a streptozotocin (STZ)-induced diabetic rats in large myelinated A fibers, while the normally expressing 

C fibers showed reduced expression. In another study, Pabbidi et al. [74] demonstrated a direct 

correlation between TRPV1 expression in dorsal root ganglion cells and thermal sensitivity. These 

investigators showed that STZ-induced diabetic mice developed an early hyperalgesic response, 

followed by a later phase of hypoalgesia. A similar temperature sensitivity profile was demonstrated  

in a double transgenic model of diabetes [74]. Interestingly, in both of these models, increased TRPV1 

levels in dorsal root ganglion cells were observed in the hyperalgesic phase, while reduced levels of 

this protein was obtained during the hypoalgesic phase. A likely explanation for these findings is that 

the level of TRPV1 dictates the thermal sensitivity of diabetic animals. Similar changes in TRPV1 

levels in the skin were observed in humans with diabetic neuropathy [75,76]. 
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Type 2 diabetes is believed to be associated with inflammation, as evidenced by high levels of  

C-reactive proteins (CRP) in patients [77,78]. Antidiabetic drugs, such as the peroxisome proliferator 

activated receptor γ (PPARγ) agonist pioglitazone, are able to lower blood glucose along with  

CRP [79]. However, it is yet unclear whether a link exists between PPARγ agonists, CRP and TRPV1. 

TRPV1 has also been implicated in insulin resistance and obesity, characteristic of type 2 diabetes.  

It is believed that localized inflammation in the pancreas leads to increase in the activity of TRPV1 

associated with aging, which contributes to increasing levels of CGRP [80]. CGRP is known to 

promote insulin resistance and obesity [81] by decreasing insulin release from β cells [82]. Treatment 

of Zucker rats with capsaicin or resiniferatoxin (RTX) (to desensitize TRPV1 expressing neurons) 

reduced fasting plasma insulin and improved glucose tolerance [83]. These data suggest that targeting 

TRPV1 for inhibition could be a novel method for treating diabetes and insulin resistance. 

Various pieces of data support the contention that consumption of capsaicin or endovanilloids  

helps to control food intake and obesity. For example, volunteers consuming capsaicin capsules 

showed increased satiety and increased energy expenditure [84]. A capsaicin containing preparation 

was also shown to aid in weight maintenance in obese individuals [85]. The administration of the 

endovanilloid N-oleoylethanolamide was shown to reduce food intake in wild type mice, but not in 

TRPV1 knockout mice, implicating TRPV1 in the control of food intake [13]. Overall, these data 

support a role of TRPV1 in the control of diabetes, insulin resistance and obesity. 

3.3. TRPV1 in Ototoxicity of Cisplatin and Aminoglycoside Antibiotics 

Platinum containing drugs have been successfully used in the treatment of various solid tumors, 

including tumors of the head and neck. One such drug, cisplatin, is an important component of 

chemotherapeutic regimens for treating these tumors. This drug produces ototoxicity, in part, through 

the generation of reactive oxygen species (ROS) [86]. One target of ROS includes the organ of  

Corti [87], where it destroys outer hair cells [88]. These cells play an important role in hearing. Current 

strategies to prevent hearing loss involve the use of antioxidants [87]. However, concomitant 

antioxidant use could interfere with the anticancer efficacy of cisplatin and limit its efficacy in 

chemotherapy. As such, other treatment targets have been sought after. 

One such target is TRPV1, which is expressed in the organ of Corti and spiral ganglion cells [86]. 

Zheng et al. [89] showed that capsaicin affected several parameters of auditory function, such as 

increasing the threshold of auditory nerve compound action potential (CAP) and reducing the magnitude 

of cochlear microphonics and electrically evoked otoacoustic emissions. Capsaicin was also shown to 

produce a transient increase in cochlear blood flow [89], presumably by activating TRPV1 containing 

neurons innervating the spiral modiolar artery and arterioles and the stria vascularis [90]. These 

responses were inhibited by the TRPV1 antagonist capsazepine, implicating TRPV1 in mediating these 

actions. However, these investigators subsequently demonstrated inhibitory effects of suprathreshold 

concentrations of capsaicin (300 µM) on outer hair cells potassium channels (Ik and Ik,n) [91].  

A similar study by Zhou et al. [92] show increases in spiral ganglion activity following intracochlear 

perfusion of capsaicin. 

An interesting observation is that TRPV1 and transduction channels in hair cells of the organ of 

Corti could gate the entry of different molecules into these cells [93]. These investigators observed 
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rapid entry of FM1-43 styryl dye into the hair cells through stereocilia bundles on the apical surfaces 

of the cells [93]. Such a mechanism might allow the entry of a number of xenobiotics (such as cisplatin 

and aminoglycosides) into hair cells and sensory neurons. Similar findings were reported for the  

entry of gentamicin in Madin-Darby canine kidney (MDCK) cells [94] and in organ of Corti explant 

cultures [95]. 

In a recent study [96], we showed that TRPV1 is a target of ROS generated by cisplatin. ROS 

promote activation and induction of TRPV1 and the NOX3 isoform of NADPH oxidase (a major 

source of ROS generation in the cochlea) in the rat organ of Corti and spiral ganglion cells. Generation 

of ROS via NOX3 was shown to be crucial to the activation and induction of TRPV1. Subsequent 

studies demonstrated that TRPV1 serves as an integrator of “noxious” stimuli to activation of the 

inflammatory cascade in the cochlea [97]. This process involved coupling of TRPV1 to NOX3  

and signal transducer and activator of transcription 1 (STAT1) [97]. Similar studies have shown  

induction in TRPV1 in the spiral and vestibular ganglia of mice following administration of kanamycin 

for 14 d [98]. Mice challenged by a single intratympanic injection of gentamicin were found to have 

increased intensity of TRPV1 immunoreactivity in cochlear hair cells, spiral ganglion cells, vestibular 

sensory cells and vestibular ganglion cells two weeks after injection [99]. 

It is well established that outer hair cells in the basal turn of the cochlea are more susceptible to 

damage than are the cells in the apical regions. Organ of Corti explants from neonatal rat cochlea were 

treated with gentamicin for 24 h. The greatest damage was demonstrated in the basal turn of the 

cochlea. Red fluorescence was observed in the basal turn of inner and outer hair cells treated with 

Texas Red labelled gentamicin (GTTR) [95]. Explants treated with gadolinium or ruthenium  

red blocked the uptake of GTTR in hair cells in a dose-dependent manner. Gadolinium blocks  

Ca
2+

-permeant, mechanosensitive cation channels and ruthenium red, a noncompetitive antagonist of 

TRPV1, is also a blocker of numerous cation channels [95]. Systemic injection of GTTR in neonatal 

rats resulted in accumulation of fluorescent label in hair cells but also in other cells in the cochlea.  

The authors concluded that hair cell susceptibility to damage by aminoglycosides may depend on 

uptake of these drugs, and that the uptake was mediated in part by TRPV1 proteins [95]. 

In a rat model of salicylate-induced tinnitus, induction of TRPV1 in the cochlea was observed 2 h 

following intraperitoneal drug administration [100]. Increases in TRPV1 levels in the cochlea of rats 

were also observed 24 h and 2 weeks following noise exposure [101]. These authors suggested that the 

increases in TRPV1 could be one mechanism underlying the development of tinnitus. 

The importance of TRPV1 in mediating cisplatin ototoxicity was shown by siRNA knockdown 

studies. In these studies, it was shown that round window administration of TRPV1 siRNA decreased 

cisplatin-induced damage to outer hair cells in the organ of Corti, as evidenced from scanning  

electron microscopy. Round window application of TRPV1 siRNA prior to cisplatin administration 

significantly reduced the percentage of hair cell loss observed. Knockdown of TRPV1 also reduced 

cisplatin-induced hearing loss, as evidenced by preservation of auditory brainstem responses [96]. 

Recent studies have implicated TRPV1 in mediating inflammation in the cochlea through activation 

of STAT1 via a ROS-dependent pathway. Activation of TRPV1 stimulates NOX3 activity, the 

generation of ROS and subsequent phosphorylation of Ser
727

 p-STAT1 by mitogen activated protein 

kinase (MAPK), and also increases expression of inflammatory mediators [97,102]. Overall, these 
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studies suggest that inhibition of TRPV1 or its downstream effector in the cochlea could provide 

protection against hearing loss. 

3.4. TRPV1 in the Bladder 

Sensory neurons innervating the urinary bladder and urethra play important roles in innate reflexes 

involving the storage of urine and urination. Dysfunctions of these sensory systems are probably 

related to disorders, such as urinary incontinence. The upper and lower urinary tracts of human and other 

species are richly innervated by capsaicin-sensitive neurons [103,104] which are primarily unmyelinated 

C nerve fibers [105]. These sensory neurons regulate urination and pain perception from the urinary 

bladder. On the other hand, the efferent functions include local regulation of the activity of muscle 

cells, excitability of nerve blood flow and leakage of plasma proteins [106]. Initial characterization  

of TRPV1 receptors in the urinary tract was performed by radioligand binding assays using [
3
H]-RTX 

in membranes from urinary bladder of rats [107]. Subsequently, immunohistochemistry and electron 

microscopy studies revealed labeling of nerve fibers innervating the bladder muscles and basal urothelial 

cells [108,109]. These fibers can be located inside or around the bladder mucosa in proximity to blood 

vessels and smooth muscle cells [108]. TRPV1 is also expressed in non-neuronal cells of the bladder, 

such as urothelial cells and myofibroblasts [109–114]. TRPV1 immunoreactivity was also found in  

a population of cells located in suburothelial space which possess characteristics of myofibroblasts and 

are electrically active. These cells could serve as an electrical network capable of modulating bladder 

sensations [115,116]. However, recently the cellular localization of TRPV1 expression in the bladder 

has been debated. Different studies using patch-clamp, Ca
2+

 imaging, RT-PCR, immunohistochemistry 

and Western blotting found no evidence for the functional expression of TRPV1 in bladder urothelium. 

Further studies are warranted to support these findings and clarify the role of TRPV1 in normal 

bladder physiology as well as pathologies [114,117,118]. 

Cultures of urothelial cells from rats and mice exhibit increased intracellular Ca
2+

 and nitric oxide 

production when challenged with selective TRPV1 agonists. No responses were observed in urothelial 

cells obtained from TRPV1 knockout animals [109], implicating TRPV1 in this process. Bladder 

distention leads to greater activity of afferent nerves which was attenuated by capsazepine and  

was abolished in TRPV1 knockout animals [119]. In animal models, capsaicin induces a transient 

increase in the frequency of bladder contractions and reduces the volume threshold needed to induce 

voiding [120–122]. 

The role of TRPV1 receptors has also been analyzed in various urinary tract pathologies. Patients 

with neurogenic detrusor overactivity exhibit increased expression of TRPV1 in urothelial cells and 

nerve fibers, compared to healthy subjects. Administration of RTX to these patients reduced the levels 

of TRPV1 in these areas [110]. Rats with detrusor muscle overactivity exhibited reduced amplitudes  

of bladder contraction when treated with the TRPV1 antagonist GRC-6211 [123]. Interestingly, 

individuals suffering from overactive bladder were effectively treated with TRPV1 agonists, capsaicin 

or RTX [124], which might have the capacity to destroy TRPV1 expressing neurons. Cultures of 

urothelial cells from patients with non-congenital bladder overactivity exhibit greater expression of 

TRPV1 compared with the control group and increased sensitivity to capsaicin [125]. 
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Cystitis is an inflammation of the bladder which produces visceral pain. Cystitis induced by 

cyclophosphamide (a chemotherapeutic agent) in mice and rats is characterized by mechanical bladder 

hyperactivity which is antagonized by pretreatment with selective TRPV1 antagonist SB-366791, and 

is not observed in TRPV1 null mice. In contrast, the TRPV1 null mice did not show any deficits  

in their development of bladder inflammation [126,127]. The induced cystitis was associated with 

increased TRPV1 channel activity in neurons innervating the bladder and the associated dorsal root 

ganglia [128], along with increased TRPV1 expression in the bladder [129]. Overall, these data 

indicate that TRPV1 plays a principal role in the development of pain related to cystitis, suggesting the 

utility of TRPV1 blockers to treat this condition. 

3.5. TRPV1 in the Lung 

Nerve fibers expressing TRPV1 innervate different components of the respiratory tract, including 

the trachea, bronchi, alveoli, smooth muscles and blood vessels [130]. These receptors are also 

expressed in lung and cells lining the airway, but at a relatively lower level [131,132]. Interestingly, 

patients with emphysema (and are smokers) have a higher expression of TRPV1 receptors when 

compared to non-smokers [133]. Polymorphisms in the TRPV1 receptor gene are associated with a 

higher incidence of coughs in patients without asthma, smokers and individuals exposed to 

environmental irritants such as vapors, gases and dusts [134]. A recent study demonstrated a functional 

association between a specific polymorphism, TRPV1-I585V, with childhood asthma. Asthmatic 

subjects with this polymorphism exhibit a lower risk of coughing and wheezing. This result could be 

explained by a reduced activity of this polymorphic channel compared to the normal TRPV1. The 

polymorphism rendered these channels less responsive to activation by heat and capsaicin, indicating 

that TRPV1 plays an important role in the pathophysiology of asthma [135]. 

A number of studies relating to TRPV1 in the airway focus on its role on sensory nerves which 

stimulate the cough reflex. McLeod et al. [136] demonstrate that capsaicin can induce cough in guinea 

pigs by activating TRPV1. Capsaicin and citric acid were also capable of inducing cough, which  

was blocked in a dose-dependent manner by pretreatment with the antagonist iodo-resiniferatoxin  

(I-RTX) [137]. Similar effects were produced by JNJ-17203212 and capsazepine, two other TRPV1 

selective antagonists [138,139]. Furthermore, in an in vivo asthma model, TRPV1 antagonist,  

N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), 

attenuated the coughing induced by allergens [136]. Increased sensitivity to TRPV1 agonists was 

observed in airway diseases. For example, patients with upper respiratory tract infection, asthma  

or chronic obstructive pulmonary disease have increased incidence of cough in response to  

capsaicin [140–142]. Children with allergic rhinitis or upper respiratory infection show worsened 

coughs stimulated by capsaicin, compared to unaffected children [143,144]. Patients with chronic 

coughs have increased expression of TRPV1 in nerve fibers [145] and airway muscle cells [146], 

implicating these receptors in the increased incidence of coughing. The findings in humans were 

reproduced in animal models of respiratory diseases. For example, exposure of these animals to 

allergens, tobacco smoke or viral infection causes hypersensitivity to TRPV1 agonists and 

morphological changes in airway nerves [147–152]. 
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4. TRPV1 Antagonists 

Two methods aimed at blocking TRPV1 in diseases have been pursued as potential treatment 

options. One method involves activation and desensitization of TRPV1 by agonists. Another method 

involves the use of antagonist drugs for TRPV1 receptor. 

A surprising finding is that capsaicin has traditionally been used to reduce pain, primarily by  

its ability to desensitize TRPV1. Capsaicin (as 0.025%–0.075% cream preparations) is effective for 

treating pain produced by osteoarthritis and rheumatoid arthritis and peripheral neuropathy [153], such 

as diabetic peripheral neuropathy [154]. Topical capsaicin preparations have also been shown to provide 

relief of post-herpetic pain [155]. However, burning sensations or erythema at the site of application 

could decrease wide spread application of this latter treatment option [156]. 

Pharmaceutical companies have invested millions of dollars for drug screening and lead optimization 

programs that have identified selective and potent small molecule TRPV1 antagonists, many of which 

are undergoing clinical trials as analgesic drugs (for review see [157–159]). Early structure-activity 

relationship (SAR) studies to identify TRPV1 antagonists focused on the structure of capsaicin,  

a naturally occurring TRPV1 agonist. The first reported TRPV1 antagonist, capsazepine, was 

discovered by modifying the chemical backbone of capsaicin [160]. In capsazepine, the amide bond of 

capsaicin is replaced by a thiourea moiety, the amide nitrogen of which acts as tether, forcing the 

aromatic ring to form an orthogonal orientation with respect to the thiourea bond (see Figure 2). This 

tether was believed to be critical for the antagonistic activity of capsazepine. Capsazepine competes for 

the capsaicin-binding site on TRPV1, blocks capsaicin-induced channel activation in neonatal rat 

dorsal root ganglion [161] and displaces RTX from its binding site in radioligand binding studies [34]. 

Although capsazepine was found to be extremely useful in laboratory research, it was not considered 

an important candidate for clinical use. One of the reasons is its low metabolic stability and poor 

pharmacokinetic properties as demonstrated in rodents [23]. Another factor that impeded the clinical 

use of capsazepine as TRPV1 antagonist was its apparent non-selectivity [157–159]. In addition to 

inhibiting TRPV1, capsazepine also inhibited nicotinic acetylcholine receptors [162], voltage-gated 

Ca
2+

 channels [163] and TRPM8 [164]. Moreover, capsazepine illustrated species-dependent effects in 

various models of chronic inflammatory and neuropathic pain [165] possibly due to the species-related 

differences in the binding of capsazepine to TRPV1. The anti-hyperalgesic effect of capsazepine was 

more effective in reversing the persistent inflammatory and neuropathic pain in guinea pig than in mice 

or rats [165]. These shortcomings of capsazepine led to the development of potent and more selective 

TRPV1 antagonists. The tether, which was believed to be critical for the antagonistic effect of 

capsazepine, was later found to be irrelevant, as a number of compounds lacking this feature emerged 

as better antagonists than capsazepine, possessing excellent therapeutic potential in pain regulation and 

considered as promising clinical candidates [166,167]. 

Despite its drawbacks, the SAR of capsazepine was used as a template for developing next generation 

TRPV1 antagonists. A pharmacophore model for the structure of an ideal TRPV1 antagonist has been 

proposed based on its key binding interactions with the ion channel. This model is combined with the 

homology model of the TRPV1 channel which is used to filter the set of possible antagonists both  

by size and shape of the site and by location of appropriate interacting sites on the protein [168]. 

According to this model, a unifying structural feature of TRPV1 antagonists emerged that has a central 
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hydrogen-bond acceptor/donor motif flanked by a lipophilic side chain on one side and an aromatic 

group that incorporates a hydrogen-bond acceptor on the other side [23,169]. 

Figure 2. Chemical structures of competitive TRPV1 receptor antagonists. 
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Figure 2. Cont. 

 

 

TRPV1 antagonists can be broadly classified as competitive or non-competitive antagonists.  

A competitive antagonist binds to the agonist binding site and locks the TRPV1 channel in closed, 

non-conductive state. All major competitive TRPV1 antagonists discovered so far can be divided  

into two major classes, classical and non-classical antagonists [23]. The classical antagonists are 

characterized by the presence of a carbonyl group that can act as H-bonding donor or acceptor and 

which is present in the form of thiourea, urea, ester or amide (see Figure 2). Many early generation 

TRPV1 antagonists including capsazepine had either thiourea or urea as a key moiety which was 

believed to be important for activity. These include JYL-1421 [170], A-425619 [171], BCTC [172], 

JNJ-17203212 [173] and SB-705498 [174]. Another common functionality of classical TRPV1 

antagonists is cinnamide (Figure 2), the structural feature of which can be traced back to the prototypical 

TRPV1 antagonist capsazepine (e.g., SB-366791 [175] and AMG-9810 [176]). Non-classical TRPV1 

antagonists on the other hand have a carbonyl group which is either present as a part of heterocyclic 

ring or is unrecognizable. These are represented as quinazoline [177] or benzimidazole analogues 

(AMG-2674) [178] (Figure 2), which are structurally different from capsazepine but still retain the  

key binding elements. 

Non-competitive antagonists of TRPV1 channel are pore blockers that interact with additional 

binding sites (allosteric sites) thereby preventing channel opening by the agonist or blocking  

its aqueous pore (hence pore blockers). Non-competitive antagonists acting as open-channel  

blockers are therapeutically more attractive because they preferentially recognize the population of 

pathologically-over-activated TRPV1 channels and block them, thereby reducing the potential 

unwanted side effects [179]. The first ever non-competitive TRPV1 antagonist used was a trinuclear 

polyamine complex, ruthenium red (Figure 3). It is a nonspecific inhibitor of TRP channels that binds  

to the pore of the channel with high potency in a voltage dependent manner (i.e., it blocks inward 

currents but not outward currents) [180]. The poor channel selectivity of ruthenium red is thought to be 

responsible for its pro-convulsive activity in animal models that deterred its clinical development as  

an analgesic agent [179]. Arginine-rich hexapeptides like RRRRWW-NH2 (Figure 3) were identified  

to block recombinant TRPV1 channels expressed in Xenopus oocytes in a non-competitive 

nonselective manner with submicromolar potency [181]. However, owing to its nonselective nature, like 

ruthenium red, it showed severe side effects. A parallel approach identified methoctramine (Figure 3),  

a polymethylene tetraamine, as non-competitive capsaicin antagonist. Methoctramine, a muscarinic M2 

receptor blocker, antagonized native TRPV1 receptors in DRG neurons activated by either capsaicin  

Benzimidazole Analogs:

AMG-2674
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or protons in a voltage-dependent manner [182]. The lack of receptor selectivity has restrained its  

use clinically. 

Figure 3. Chemical structures of non-competitive TRPV1 receptor antagonists. 

 

 

 

 

  

Two acylpolyamine toxins, AG-489 and AG-505 (Figure 3), purified from the venom of North 

American funnel web spider, Agelenopsis aperta, showed robust TRPV1 inhibitory activity by 

blocking the channel from the extracellular side of the membrane. TRPV1 blockade by AG489 was 

found to be strongly voltage-dependent, with relief from inhibition being observed at positive voltages. 

This observation is consistent with a model in which toxin inhibits the channel through a pore-blocking 

mechanism [23,183]. 
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Screening of a library of trimers of N-alkylglycines (also known as peptoids) identified  

two compounds, DD-161515 and DD-191515 (Figure 3), which preferentially inhibit TRPV1 channel 

activity with micromolar potency and moderate voltage-dependency [184]. These compounds were 

effective in treating inflammatory pain induced by injection of capsaicin into the hind paws of mice 

and also reduced thermal hyperalgesia due to mustard oil-evoked tissue irritation. However, they did 

not treat capsaicin triggered-mechanical hypersensitivity [184] and the in vivo doses required for 

analgesic and anti-inflammatory effect was too high (≥25 mg/kg) to successfully use these drugs clinically. 

There are two most desirable characteristics that a TRPV1 antagonist should have [159].  

First, the TRPV1 antagonist should block all modes of channel activation. For example, capsazepine 

was ineffective in reversing inflammation-based pain behavior in rats [165,185]. In addition, 

capsazepine demonstrates species difference in its ability to block multiple modes of TRPV1 activation  

(discussed above). In contrast, other chemically distinct compounds, such as A-425619, AMG-9810 

and BCTC, not only inhibited all modes of rat TRPV1 activation but also inhibited and reduced 

inflammation-related hyperalgesia in rats [176,186,187]. Thus, in order to achieve significant analgesic 

effect, the TRPV1 antagonists that inhibit all modes of TRPV1 activation are more desirable.  

Another critical feature that is desirable in TRPV1 antagonists is its brain-penetration. The 

antagonists that penetrate the brain shows more analgesic efficacy than the ones whose actions are 

limited to the periphery. For example, the TRPV1 antagonist A-784168 showed good CNS penetration 

and hence was reported to be more potent in inhibiting pain that was presumably mediated by central 

sensitization than A-795614, a peripherally restricted TRPV1 antagonist [188]. However, both the 

compounds were equally potent when administered intrathecally, suggesting that brain penetration 

provides better efficacy. 

In addition to the transmission of pain, TRPV1 plays an independent role in regulating body 

temperature. It is well known that TRPV1 agonist, capsaicin, transiently decreases body temperature  

in different species, including man [189]. While studying the ability of TRPV1 antagonists to inhibit 

capsaicin-induced hypothermia, it was observed that some of them caused hyperthermia [190,191]. 

These findings were surprising due to the fact that TRPV1 knock-out mice showed no difference  

in core body temperature than the wild-type mice [36]. Interestingly, TRPV1 antagonist, AMG-0347 

and AMG-517 did not induce hyperthermia in TRPV1 knock-out mice, suggesting that the TRPV1 

antagonist-mediated hyperthermia is TRPV1-dependent [192]. The hyperthermia caused by highly 

potent and TRPV1-selective antagonists AMG-0347 and AMG-517 were reportedly due to vasoconstriction 

(results in decreased heat loss through skin) and increased thermogenesis (increased metabolic heat 

production). Another drawback of using TRPV1 antagonists is that it elevates the threshold for 

detection of noxious heat [193], which could raise the possible complication of accidental burn injuries 

in susceptible patients. This elevation of heat threshold was reported to be pronounced for some 

TRPV1 antagonists than for others [194]. The question whether the hyperthermic action of TRPV1 

antagonists can be separated from their analgesic action is still unanswered. Meanwhile, various 

strategies have been tested to alleviate the hyperthermia caused by TRPV1 antagonists while still 

preserving their analgesic properties. TRPV1 antagonist-induced hyperthermia is responsive to  

anti-pyretic agents like acetaminophen [190]. Hyperthermia caused by TRPV1 antagonists desensitizes 

after repeated administration of antagonists [190]. Another attractive approach is to chemically modify 
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the pharmacophore structure of TRPV1 antagonists in order to prevent the undesirable side effect of 

hypothermia while inhibiting all modes of TRPV1 activation. 

5. Conclusions 

Since its cloning over a decade ago, research on TRPV1 has grown considerably. While a primary 

area of interest is the role of this channel in mediating pain, especially inflammatory and chronic pain, 

a number of researchers are studying the ability of agonist or antagonists of these receptors to relieve 

symptoms of diseases ranging from diabetes and urinary incontinence to arthritis and hearing loss. The 

rapid growth of research in these areas bodes well of the development of effective TRPV1 drugs to 

treat these and other diseases. However, the full adoption of TRPV1 antagonists into clinical practice 

would depend on the development of effective measures to counter drug-induced hyperthermia. 
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