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Editorial

In many diagnostic microbiology laboratories the species iden-
tification process starting from cultured colonies has recently 
undergone some significant changes. Where not long ago car-
bon/nitrogen source utilization tests in the form of colorful tubes 
or well-based devices down to chip card size dominated the field, 
we now find a purely biophysical instrument, a MALDI-ToF 
mass spectrometer. Instead of evaluating growth only after over-
night incubation, the results are now available within minutes of 
sample processing.1 At the same time, the depth of differentia-
tion is significantly increased beyond what a cultural method can 
do. In an assimilation assay the number of data points is limited 
by the number of compounds tested, in mass spectrometry by 
the number of biomarker ions observed. In the first, common 
numbers range between 16 and 42, many of these not being able 
to discriminate between closely related species. In the latter, the 
number of biomarker ions observed usually exceeds 100, depend-
ing on spectrum quality. These are spread out over a mass range 
of approximately 10 kDa and most of them are unique even 
between closely related species, to some degree even between dif-
ferent isolates of the same species.

It is not surprising that this new availability to easily type 
with this depth has led to increased observation of “rare” micro-
organisms in clinical specimen. This is not only true for bacte-
ria, but also for fungi. Mainly four complexes of species occur in 
clinical specimen, that are now easily distinguished: (1) Candida 
albicans/dubliniensis,2 (2) C. glabrata/nivariensis/bracarensis,3,4 
(3) C. parapsilosis/orthopsilosis/metapsilosis,3,5 and (4) what was 
identified as C. famata (Debaryomyces hansenii) by biochemical 
assays is obviously more likely to be a strain of C. palmioleophila 
or C. guilliermondii.6,7

Here the clinical microbiologist is currently faced with 
a dilemma. What do we tell a clinician to do about C. pal-
mioleophila unless it came from a sterile site? Do we actually 
report “C. metapsilosis” or just a “C. parapsilosis group” isolate? 
Clearly, the answer to these questions warrants investigation of 
the pathogenic potential of these—as compared with the major 
pathogenic yeast C. albicans—less frequent species.

One of the traits shared by pathogenic Candida species, in 
contrast to their closely related apathogenic sibling species, is 
the assembly of large gene families which constitute potential 

virulence factors.8 Among these, probably the most prominent 
is the family of ten secretory aspartic proteases of C. albicans, 
which have been shown to display differential pH optima and 
host tissue, as well as morphology-dependent gene expression 
patterns, highlighting their adaptation to the various niches and 
conditions found during the infection process.9 Apart from inves-
tigations toward specific differences between C. albicans and C. 
dubliniensis,10,11 the C. parapsilosis group is currently the next best-
investigated complex. Recent comparative genome data of several 
isolates suggests that these three species have actually diverged 
earlier than C. albicans and C. dubliniensis.12 C. parapsilosis is 
a commensal of the human skin and mostly known because of 
its potent ability to form biofilms on indwelling devices such as 
central venous catheters. One of the factors that might make C. 
parapsilosis such a successful colonizer of catheter surfaces is a 
large family of potential adhesins found in the genome, which 
is expanded by 5 members as compared with other yeasts of the 
CTG clade.13 Also virulence has been found to differ between the 
three species, which roughly correlates to the number of observa-
tions in clinical specimen, with C. parapsilosis sensu stricto being 
most virulent, and C. metapsilosis least.14 Similarly, other extracel-
lular hydrolytic enzymes such as lipases and phospholipases are 
enriched in pathogenic species.8 Secretory lipases have previously 
been demonstrated to be highly important in virulence of bacte-
ria, as well as in fungi like the skin-dwelling Malassezia species15 
or Candida yeasts.9,16

In humans, one of the major lines of defense against patho-
genic yeasts is formed by macrophages. Consequently, in this 
issue of Virulence, Toth et al. turn to the influence of secretory 
lipases of C. parapsilosis on survival and pathogenicity in this 
cell type. In a series of experiments using a lipase deficient gene 
deletion strain, the authors show that the secreted lipase activity 
of C. parapsilosis “promotes the survival of fungal cells in mac-
rophages and mitigates the inflammatory response of the host, 
thereby interfering with the efficient clearing of the pathogen”.17 
There are only two genes (CpLIP1 and CpLIP2) coding for such 
secretory lipases in C. parapsilosis, making it an excellent model 
to study strains of pathogenic yeasts with abolished extracellular 
lipase activity. When challenged with primary human macro-
phages, a higher rate of phagosome–lysosome colocalization was 

Correspondence to: Oliver Bader; Email: obader@gwdg.de
Submitted: 04/18/2014; Accepted: 04/21/2014; Published Online: 04/23/2014
http://dx.doi.org/10.4161/viru.28955
Comment on: Tóth A, Németh T, Csonka K, Horváth P, Vágvölgyi C, Vizler C, Nosanchuk JD, Gácser A. Secreted Candida parapsilosis lipase modulates the immune 
response of primary human macrophages. Virulence 2014; 5:555-62; PMID:24626151; http://dx.doi.org/10.4161/viru.28509

Looking into the virulence of Candida parapsilosis
A diagnostic perspective

Oliver Bader

Institute for Medical Microbiology; University Medical Center Göttingen; Göttingen, Germany

Keywords: Candida parapsilosis, yeast infections, macrophages, lipase



458	 Virulence	 Volume 5 Issue 4

observed in the lip/lip mutant, which consequently was killed 
more efficiently.

One of the possible functions of such enzymes could be the 
liberation of fatty acids from tissues to support fungal growth.16 
Indeed, tissue destruction by C. parapsilosis is mediated in part 
by lipases, but also by secretory proteases. Inhibition of these 
enzymes reduced epithelial damage but not invasion.18,19

Next to its ability to adhere to catheter plastic material, 
C. parapsilosis is also an important pathogen because it is com-
mon in sepsis of preterm infants and neonates.20 It is mostly 
absent from mature children and older patients with a fully 
developed immune system. This points toward a direct inter-
action of C. parapsilosis with cells of the immune system in 
vivo. Indeed, the authors find patterns of cytokine expression 
(e.g., IL10) that suggest that secretory lipases might actually 
have anti-inflammatory potential, and might—directly or indi-
rectly—work on regulatory immune lipids like prostaglandin 
or leukotrienes.

In C. albicans, which harbors a lipase family of ten mem-
bers,21 such a gene deletion-driven study would not have been 
possible today. In earlier studies, the group tested the lip1/lip2 
mutant strain and a collection of lipase-negative C. parapsi-
losis sensu stricto as well as sensu lato clinical isolates in other 
models.14,22 Here a similar pattern emerged: lipase negative iso-
lates were generally less virulent and more prone to killing by 
macrophages.

It is noteworthy, that among C. parapsilosis clinical isolates, 
also in vitro extracellular lipase activity negative strains exist, 
while this is apparently not the case for in vitro extracellular 
protease activity.14 On a genome-sequence level, a recent analysis 
of several clinical C. parapsilosis isolates showed significant intra-
species variability of at least ALS-family adhesin genes.12 Taken 
together, this may eventually lead to the discrimination of strains 
with higher and lower pathogenic potential in C.  parapsilosis. 
Intriguingly, such diversity has been described for C. albicans and 
C. dubliniensis. Using clinical isolates of different origin, infection 
experiments with a murine model of systemic candidiasis 
revealed striking differences in virulence.23 These ranged from 
total avirulence to full virulence in both species.

In a diagnostic environment, we can now ask if we can put 
this information to use. In fact, some advances using MALDI-
ToF mass spectrometry for typing in fungi have recently been 
made by simple clustering of mass spectra. This also includes 
C. parapsilosis, where this technology has been used to track 
nosocomial spread of this fungus.24 In the future, this may be 
extended to predict isolates with relevant virulence phenotypes 
and highlights the importance to further study virulence 
phenotypes in these species and their occurrence in clinical 
isolates.
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