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Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted
treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based
on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury.
Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously
assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis
on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury
provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively
characterize acute injury systems.The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are
discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for
the development of therapeutics of acutely injured biological systems.

1. Introduction

In spite of decades of intensive research and hundreds of
clinical trials, clinically important, life-threatening forms
of acute injury have stubbornly resisted successful thera-
peutic intervention. Two notable examples are ischemia of
the brain [1] and ischemia of the heart [2]. The former
manifests clinically during stroke and cardiac arrest and
the latter during myocardial infarction. The clinical trial
failures have prompted three main responses: (1) some have
closely scrutinized technical details of preclinical and clinical
research [3, 4]; (2) others have advocated for additional basic
research [5]; (3) still others have suggested therapeutics may
not be possible for a given type of injury, such as stroke
[6]. The first option focuses on analytical techniques, the
second emphasizes empirical information, and the third blurs
the distinction between the science of acute injury and its
technological application in the form of therapy. The area
given the least consideration in the literature evaluating
clinical trial failures is the theoretical foundation [1].

We recently developed a nonlinear dynamical theory of
acute cell injury [7] that suggests that an important aspect of
clinical trials failure can be attributed to inadequate theory.
Our purpose here is to discuss that the theoretical problems
can fruitfully be encapsulated by the classical distinction
between inductive and deductive reasoning. The nonlinear
cell injurymodel is a deductive framework for understanding
cellular injury in a generic fashion. The approaches used
in mainstream biomedicine are inductive and based on
the biological specifics of the injury system under study.
However, inductive phenomenological approaches do not
allow a strict attribution of causality. Without a clear concept
of cell death causality, how is therapy, the prevention of
cell death, supposed to be carried out? Further, induc-
tively studying phenomenology fosters a qualitative mind-set
that neglects systematic quantitative considerations. Clinical
injuries occur across a range of injury magnitudes and cell
responses are generally graded [8]. Thus, how are cellular
responses, causal mechanisms, and outcome to be linked
in a quantitative fashion to injury magnitude? Inductive
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and deductive models possess different implications for
conceptualizing causal mechanisms and quantification of
injury states.Webuild the case that a deductive,mathematical
framework offers tangible advantages over qualitative induc-
tive models for the development of therapeutics of acutely
injured biological systems.

2. Induction and Deduction

Here we briefly discuss the strengths and weaknesses of
induction and deduction. Induction reasons from the specific
to the general. Many specific cases are observed, and from
these general conclusions are drawn. Such conclusions are
called “inductive inferences”. Deduction is the opposite of
induction. With deduction one begins with general premises
and from these deduces, or derives, specific cases. Both forms
of reasoning are used inmodern science, but their differences
have long bothered commentators of science.

There is asymmetry between induction and deduction
with respect to preserving the truth value of propositions.
Truth value can be binary, that is, true or false, or it can be
graded when probabilities are associated with the occurrence
of events, that is, something is 33% probable under given
conditions. Deductive reasoning explicitly exposes the logical
steps and thereby preserves the truth value from premises
to conclusions. The canonical example of deduction is the
derivation of a theorem from a set of axioms in mathematics.
Induction, on the other hand, generalizes based on past
events “the sun always rises in the East, and therefore will
rise in the East tomorrow” or generalizes from specific
observations “all observed pieces of copper conducted elec-
tricity, and therefore all copper conducts electricity”. Unlike
deduction, there cannot be a finite, explicit series of logical
steps associated with an inductive inference because these are
always based on open-ended sets, such as extrapolating from
past to future events, or from observed cases to unobserved
cases.

In general, deduction is used in mathematics and physics
where premises can be expressed mathematically. Then,
derivation of theorems or solutions of equations reveal
consequences that follow inevitably from the premises. A
weakness of the scientific application of deduction is that the
axioms must accurately represent the system under study. If
the axioms are incorrect so will be the conclusions, even if
the intervening steps are logically sound. This weakness is
offset by the flexibility with which one can alter the axioms
and rederive new conclusions accordingly. An example of
successful deduction is Einstein’s special theory of relativity
that is based on only two axioms [9]: (1) the laws of physics
are the same for all observers in inertial reference frames, and
(2) the speed of light in a vacuum is constant. Both axioms
are expressible mathematically, and the resulting deductions,
such as length contraction at high velocities, have been
successfully verified by experiment [10].

Sciences seeking to explain complex phenomena, such
as biology or sociology, have traditionally utilized induction
more than deduction. One example of the application of
inductive logic in biology is Darwin’s theory of evolution by
natural selection [11]. This theory, or model, was not derived

from axiomatic principles but instead was a generalization
drawn from many specific pieces of evidence: comparative
anatomy, comparative ethology, Darwin’s field observations
in the Galapagos Islands, domestic breeding experience, and
other evidence went into the inductive inference that species
arise by natural selection. Given the generic weaknesses of
induction, it is interesting to note that deductive alternatives
to explaining biological form are emerging in biology [12].

The analysis of induction is associated with the work
of the philosopher David Hume. Hume demonstrated that
deduction cannot be used to explicitly prove the truth value of
an inductive inference. The inductive inference to be proved
must be taken as an axiom, thereby leading to circular logic
between the premise and conclusion [13]. Thus, inductive
inferences are open-ended, and acting upon them requires
faith that no contradictory case will eventually appear. An
important implication of inductive inference is that it does
not, strictly speaking, allow attribution of causality. This
conclusion has bothered philosophers of science who have
sought to wiggle out of Hume’s problem of induction.

A summary of philosophy of science views on induction
[14] is certainly beyond our present scope, so herewemention
only two salient ideas on this intellectual landscape. Karl
Popper suggested that science can avoid the weaknesses of
induction by combining observation and deduction in the
quest to falsify hypotheses [15]. In this view, confirmation
or verification (i.e., seeking evidence to prove a hypothesis
is true) is discouraged, and experiments should be designed
to expose if an idea is false. Popper’s thinking underlies, for
example, the practice of disproving the null hypothesis in
statistics. However, Popper’s view was superseded by Kuhn’s
model of scientific paradigms as complex webs of belief that
cannot easily be shoehorned into the classical distinction of
inductive versus deductive reasoning [16]. The net result is
that the use of induction in science has not been resolved and
remains an open question.

The complexity of the world has necessitated the use of
induction for systems that cannot be deduced from “first
principles.” Therefore induction and deduction have coex-
isted in their respective domains and represent a significant
gulf between approaches traditionally applied in, for exam-
ple, biology and physics, respectively. However, continuing
advances in mathematics, physics, and the understanding of
complex systems have expanded the purview of deductive
logic into traditionally inductive realms, including biology
and the corollary study of biology, biomedicine. Before
discussing a deductive approach to biomedicine, we illustrate
the prevailing inductive biomedical approach using the field
of brain ischemia as an example.

3. Brain Ischemia

While we use brain ischemia as our case study of inductive
biomedicine, the template we derive below holds for other
biomedical fields such as heart ischemia, traumatic brain
injury, epilepsy, diabetes, acute kidney injury, cancer, and
other complex disease states. A decrease or cessation in
blood flow to any organ is called “ischemia.” Brain ischemia
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can cause neurons to die, even in cases where blood flow
resumes (called reperfusion). The scientific problem is how
does ischemia cause neurons to die?The biomedical problem
is can the neuron death be prevented?

There is massive clinical experience with brain ischemia
in the forms of stroke and cardiac arrest and resuscitation.
Stroke is cessation of blood flow to a specific part of the brain
(called “focal brain ischemia”) due to a focal occlusion in
approximately the brain vascular tree. Stroke affects approxi-
mately three-quartermillion people in theUSA each year and
is the fourth leading cause of death [17]. Cardiac arrest stops
all blood flow to the brain and is an example of global brain
ischemia. Out-of-hospital cardiac arrest occurs in >350,000
people a year in the USA [18] and only 11% of them survive.
Between 66% and 75%of cardiac arrest victims die frombrain
death due to ischemia [19, 20].Thus, brain ischemia results in
substantial mortality and morbidity.

It was estimated that stroke costs $43 billion in direct and
indirect costs in 2010 in theUSA [21]. It is no surprise that this
clinical challenge has been met with a proportional research
response. At NIH, the National Institute of Neurological
Disorders and Stroke (NINDS) studies brain ischemia and
other brain disorders. The 2014 budget of NINDS was $1.6
billion. In 2010, American Heart Association spent $110 mil-
lion on cardiovascular research [22], including stroke, which
increased to $129 million in 2012 [23]. These tremendous
research efforts have had positive impact at the front end of
the disease process: incidence of heart disease and stroke has
progressively decreased over the past decade [24]. However,
at the back end, after a patient has suffered brain ischemia,
all the research to present has produced minimal clinically
tangible benefit. Physicians have only limited options to treat
ischemia-induced neuron death in stroke and cardiac arrest
patients (e.g., tPA [25] and therapeutic hypothermia [26],
resp.), and these options can only be applied to a small subset
of brain ischemia patients [27].Therefore, with respect to pre-
venting neurological damage after the injury had occurred, it
is fair to conclude that the amount of research invested over
the past decades has not produced a proportional return on
investment.We suggest that a key factor is that brain ischemia
research has been theoretically rudderless. To build this case,
we first summarize the salient points in the evolution of the
field to illustrate its inductive logic.

4. Brain Ischemia Studies:
From Parameters to Rote

The earliest approaches to brain ischemia studies were
empirically systematic but were not grounded in any deduc-
tive framework. Early investigations identified an important
concept of “thresholds,” referring to the fact that specific
phenomena occur in the brain as a function of both the
degree of reduction of blood flow and its duration [28–
30]. For example, a 50% reduction in brain blood flow for
about 30min triggers stress responses in neurons, such as the
heat shock response but has minimal effect on the electrical
conductive properties of the neurons [31]. However, at a
threshold of ∼20% brain blood flow, neuronal ATP levels

decrease and neurons become electrically silent [31]. Blood
flow below 20% for any substantial length of time (e.g.,
∼≥30min) causes neurons to die [31]. Thus, neuron death
was discovered to be dependent on (1) the degree and (2) the
duration of blood flow reduction. Both factors are, by current
standards, system parameters, but the field did not evolve in
the quantitative direction implied by this insight.

Because there are so many possible combinations of
blood flow reduction and time, it is impossible to empirically
evaluate all of them. Thus, the field has standardized on
specific blood flow reduction and time increments. This
standardization on specific parameter values was predicated
on the development of animal models of brain ischemia
which mimic features of human brain ischemia [32, 33]. The
study of focal ischemia, which models stroke injury, focused
on examining 100% flow reduction in the middle cerebral
artery unilaterally, with or without resumption of blood flow.
When blood flow is not resumed it is called “permanent focal
ischemia” and when blood flow is resumed (usually after 1-
2 hr ischemia) it is called “transient focal ischemia.” Thus,
the qualitative terms replaced the quantitative parameters
underlying these conditions. Via the animal models, stroke
researchers identified two forms of ischemia-induced neuron
death: necrosis of tissue in the ischemic epicenter and a
delayed form of neuron death in a penumbral volume around
the epicenter [34–36].

Studies of global brain ischemia, modeling cardiac arrest,
followed a similar progression. Global brain blood flow
can range from normal brain blood flow (100%) to zero
blood flow. The duration of global brain ischemia must be
compatible with the organism remaining alive (∼30min for
zero global brain blood flow). In the 1980s, Kirino discovered
that specific durations of global brain ischemia caused a
delayed neuronal death of a specific subtype of hippocampal
neurons (CA1 layer) days after the ischemia [34, 37]. Again,
the field standardized on ischemia conditions causing CA1
death and focused on the question: what causes the CA1
neurons to die in a delayed fashion days after global brain
ischemia?

In summary, the original studies of brain ischemia began
in a reasonably systematic fashion studying the effects of
ranges of brain blood flow and duration. But as the field
matured, the experimental animal model systems became
standardized around only a few parameter combinations of
brain blood flow and duration. These were never concep-
tualized as system parameters in a formal deductive sense
but instead evolved into the rote procedure for conducting
the experimental animal models. The animal models have
been used to dissect brain tissue after ischemia to investigate
how it changes compared to the nonischemic brain. The
observed phenomenological differences became conflated
with causation.

5. Neuroprotection: The Holy Grail of
Brain Ischemia Studies

Before detailing phenomenological studies, we summarize
the therapeutic expectation for understanding how ischemia
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causes neurons to die. The brain uses a disproportionate
amount of metabolic energy: 20% of cardiac output feeds the
brain, which is only 2% of bodymass.The brain is completely
dependent on blood flow for making ATP and has little or no
backup reserves of glucose [38].The rate of ATP loss depends
on the type of ischemia (focal or global) and the animalmodel
used, but generally ATP levels are less than 15% of control
after 2min in global ischemia and 25%, or substantially less,
after 10min of focal ischemia [34].

Thus, the proximal damage event in brain ischemia is
rapid loss of ATP. Clinically, this gives rise to two treatment
possibilities: (1) reperfusion therapies and (2) neuropro-
tection. In cultured brain slices subjected to oxygen and
glucose deprivation, ATP levels renormalized within ∼10min
after resumption of glucose and oxygen [39]. Therefore,
reperfusions therapies seek to rapidly regain blood flow
and thereby reduce the ischemia as quickly as possible to
minimize loss of ATP [40]. Reperfusion therapies can be
administered surgically or chemically (with tPA) and are used
clinically [41]. However, reperfusion therapies can only be
applied under limited circumstances. In themajority of cases,
the patient experiences brain ischemia in a setting where
there is no possibility of performing a reperfusion therapy. In
such cases the ischemia is unavoidable and occurs for some
duration before the patient receives medical attention. In the
case of stroke, this may be 24 hours after the ischemic event
has occurred [42]. For cardiac arrest, emergency medical
service response time is often the limiting duration, which is
on the order of 5–10 minutes in most major cities [43].

Given that some neurons will not die for days after the
ischemic event, it is possible to imagine a therapy that will
prevent delayed neuronal death. This hypothetical therapy is
called “neuroprotection” [44] and is the holy grail of brain
ischemia research. One would like to know what causes the
neurons to die in a delayed fashion.Then, one could, in prin-
ciple, inhibit this cause and prevent the death of the neurons.

6. An Inductive Jungle of Causes

Here we outline some of the biological observations specific
to neurons which have experienced ischemia. There have
been, for roughly the past 30 years, continuous attempts to
conflate this phenomenology with cell death causation. This
has led to a repetitive behavior where a specific biological
event is treated as causative, and drugs that inhibit this
event are investigated in the preclinical arena, some of which
proceeded to human clinical trials. All these attempts have
failed to show improvement in outcome.

The loss of ATP has many effects in neurons that are
widely believed, incorrectly [45], to form a “cascade,” a linear
sequence of events [46–48]. All explanations of how ischemia
causes neuronal death begin with loss of ATP, but then
the explanations exponentially multiply and today form an
indecipherable quagmire of qualitative biological pathways.
Here we only briefly review early observations that today are
the core of the “ischemic cascade” concept.

An influential paper in the early 1980s posited a key
role for Ca2+ influx in ischemic damage to neurons [49].

Empirical measurements showed drops in extracellular
[Ca2+] [50] and increases in intracellular Ca2+ [51]. Distinct
intracellular pathologies were inferred to be trigger from this
“Ca2+ overload” that could plausibly cause neurons to die
[52].However, clinical trialswithCa2+ channel blockers failed
to improve outcome [53]. For a variety of empirical reasons,
the “Ca2+ overload” theory morphed into the “excitotoxic-
ity” theory [54, 55], where overactivation of glutamatergic
NMDA receptors were thought responsible for Ca2+ over-
load. Clinical trials with NMDA receptor antagonists also
failed to improve outcome [1] and, given the central role of
glutamate in brain neurotransmission, were accompanied by
undesirable side effects [56].

By the early 1990s, free radical biology became widely
recognized as a means of killing cells. Many studies in animal
experimental models showed definitively that a number of
different free radical species form in postischemic neurons
[57]. However, clinical trials of free radical scavengers have
failed to improve outcome in human stroke patients [1, 58,
59].

In addition to excitotoxicity and oxidative stress, other
neuronal pathways have garnered attention as possible causes
of cell death: nitric oxide, intrinsic and extrinsic apoptosis,
ubiquitin-proteosome, sumoylation, autophagy, and so on
(many of these are reviewed in [34]).There is evidence of acti-
vation of each pathway and evidence that inhibition of each
pathway can decrease cell death in experimental animals.
Investigations of causes of cell death have extended beyond
neuron molecular biology to encompass the “neurovascular
unit”, including vascular endothelial responses, astrocytes,
oligodendrocytes, and various immune system responses
[60]. There is evidence that all of these systems play a role
in postischemic brain responses.

Blocking any number of these factors can prevent neuron
death in experimental animal models. However, many of
these strategies have been tested in human clinical trials, and
literally all have failed. Some of the specific agents tested in
clinical trials were (as taken from [1]): NMDA and AMPA
glutamate channel blockers, Na+ and K+ channel block-
ers, benzodiazepine, opioid antagonists, anti-inflammatory
agents, immunosuppressants, free radical scavengers, growth
factors, antiapoptotic agents, an angiotensin-1 receptor antag-
onist, an alpha2 adrenoceptor agonist, a beta-adrenergic
blocker, an endothelin antagonist, an antiplatelet agent, anti-
coagulants, antithrombotics, a phosphodiesterase inhibitor, a
serotonin antagonist, hemodilution agents, anNOdonor, and
others.

The above list of agents tested in clinical trials was chosen
based on what is widely considered the “theory” of brain
ischemia research, a scheme known as the “ischemic cascade”
[47, 48, 61–63]. The “ischemic cascade” is the attempt to
depict the many cell and molecular level events that occur
in postischemic neurons. We do not attempt to represent
this here due to its sheer qualitative complexity. The above
discussion and the list of clinical trial agents above are meant
to convey a sense of the variety of molecular elements posited
in this scheme.
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Figure 1: Example of application of inductive logic to attribute causality to cell death after brain ischemia. In the “A → B → C” notation,
A is the depletion of ATP accompanying ischemia. The cell death marker C is the protein CHOP (C/EBP homology protein, where C/EBP
stands for caat-enhancer-binding protein. CHOP is also called GADD153). The B linker is a set of binding interactions that constitute part of
the unfolded protein response, an ER stress response.

Because these events occur downstream from the loss of
ATP during ischemia, or downstream from reintroduction
of oxygen with reperfusion, the qualitative changes have
been construed as a cascade, a term which implies a linear
sequence of causal events. The term “cascade” derives from
a loose sense of the time progression of various elements
discussed above. However, many, of these intracellular reac-
tions and cell responses proceed in parallel, which is the
antithesis of a cascade. Thus, the “ischemic cascade,” as an
intellectual construct, is not truly an accurate portrayal of
the real complexity found in postischemic brain tissue. The
attempts to symbolically depict these changesmore resembles
a patchwork quilt upon which new pathways are constantly
being grafted. Since the basic unit of the “ischemic cascade”
scheme is the molecular pathway, we next discuss molecular
pathway diagrams.

7. The Problems with Pathways

A molecular pathway is intended to provide a causal expla-
nation of how ischemia kills neurons. The logic then is that
inhibition of the pathway should prevent the cell from dying.
Pathways are typically depicted in the form A → B → C. A
is a proximal ischemia-induced event such as the loss of ATP,
or increased intracellular Ca2+. C is some marker measured
in the postischemic tissue, whose presence correlates with the
eventual disappearance of neurons. B is a linker that provides
an ostensibly causal connection between A and C, usually
consisting of multiple substeps. Thus the “ischemic cascade”
can be seen as the accumulated result of the field investigating
various internal parts of the cell, one by one, where the parts
of the cell are conceptualized by an A → B → C pathway,
presumed to cause the neuron to die. This is an inductive
approach because no axiomatic principle guides this search.
Instead, it is based on the specific details of neuronmolecular
biology as these emerge from the basic neurosciences.

We illustrate the limitations of the pathway approach by
an example, with a pathway used by one of the authors in past
work (Figure 1) [64, 65]. Here, the endoplasmic reticulum

(ER) stress response known as the unfolded protein response
(UPR) is partially illustrated and used to inductively model
how the UPR leads to either cell survival or death [66]. In this
instance step A is loss of ATP, marker C is the presence of the
prodeath protein CHOP (GADD 153), and the intervening
steps (B) provide links between loss of ATP and the presence
of CHOP in the postischemic neurons.

While appearing plausible on first glance, a more critical
look reveals serious flaws with this way of thinking. First, the
symbolism of pathway “A → B → C” represents nothing
more than interacting molecular components. Unlike a real
chemical equation, such pathway diagrams indicate nothing
about stoichiometry, concentrations, or changes in time
(kinetics). That is, such diagrams are purely qualitative.
Further, such pathways do not contain all possible binding
interactions and rarely is justification given for excluding
other known binding interactions. For example, in Figure 1,
the presence ofCHOP is presumed to be exclusively caused by
activation of PERK, but it is well-known that other upstream
pathways can also induce CHOP (the specific details are
beyond our present scope) [67–70].

Often it is the case that the direct link between marker
C and cell death is imprecise. For example, in Figure 1 it is
empirically known that CHOP appears under some lethal
cellular conditions [71], but how CHOP causes cell death is
unknown. CHOP is a transcription factor that upregulates
genes coding ER proteins, among others [72, 73]. Evidence
suggests that CHOP activation in an injured cell overactivates
and compromises ER function by overactivation of the trans-
lational machinery [74–76].The steps between overactivating
ER function or translation and the literal disintegration of a
cell are unknown. In general, there is little, if any, attempt
to delineate exactly how a hypothesized cell death marker C
literally causes the cell to disintegrate.This holds for other cell
deathmarkers such as activated caspase 3, free radical species,
and nitric oxide.

Additionally, the presence of a cell death marker is often
treated as binary event: the presence of C equates with cell
death and its absence with cell survival. Questions about rates
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and concentrations ofmarkerC are rarely asked. For example,
it is unknownhow the concentration ofCHOPcorrelateswith
the rate of cell death. Does more CHOP cause the cell to die
faster?

In the brain ischemia field, there are relatively rare
exceptions that seek to model intracellular events in terms
of conventional rate and concentration expressions as found
in classical biochemistry (e.g., [77, 78]). However, such
approaches also possess important limitations. First, such
analytical expressions are intended to apply to equilibrium
systems and living cells are not at equilibrium. Close to-
and far-from-equilibrium analytical treatments require more
sophisticated mathematics [79]. Second, such expressions
often require rate and binding constants that are either
unknown, or not capable of being measured, and hence
such models rely on making numerous assumptions whose
veracity cannot readily be verified [75, 80] (see also discussion
in supplementary text of [81]). Third, as with the qualitative
schemes, such approaches cannot model all possible binding
interactions and hencemust necessarilymodel only a fraction
of the relevant system. In spite of such limitations, classical
equilibrium models are certainly a step up from qualitative
pathways by providing quantitative insights at the equilib-
rium limit and potentially can be informative if the results
are considered as modules or motifs embedded in a greater
network.

Another point we discussed in detail elsewhere [45] and
partially illustrated above is the fact that many different A →
B → C pathways occur simultaneously in postischemic
neurons, each of which correlates with cell death. Technically
perhaps we should notate them as a set {A

1
→ B
1
→ C
1
,

A
2
→ B
2
→ C
2
, . . . ,A

𝑖
→ B
𝑖
→ C
𝑖
}. With so many “cell

death pathways” occurring simultaneously and all correlating
with cell death, how can any one of them be singled out
as “the cause” of cell death? It is this line of reasoning that
exposes the inability of the inductive approach to assign
causality. Additionally, there is always the possibility that
some new pathway will be discovered tomorrow that might
also correlate with cell death. The open-ended nature of the
pathway approach exposes it as a form of induction.

Therefore, we conclude that these “pathway” diagrams
create the illusion of explaining cell death without actually
doing so. At best, they indicate qualitative events occurring
inside an injured cell. In general, details of basic quantitative
chemistry, such as concentrations, binding constants, and
rates, are generally omitted from such schemes. Attempts
to use classical chemistry formalism make the questionable
assumption that far-from-equilibrium systems can be mod-
eled by formalisms designed for equilibrium systems.

As mentioned above, inductive inferences usually have
the form of generalizing from past to future events, or gen-
eralizing from observed to unobserved cases. By considering
the case study of brain ischemia research, we find a third
variant of inductive inference: attempting to model causality
from cumulative specific observations. Such an approach
results in a patchwork of observations cobbled together
in an ad hoc fashion. Such schemes cannot intrinsically
provide an understanding of cell death causality nor are
they amenable to the type of quantitation that has allowed

such success in the physical sciences. In short, such schemes
represent a misapplication of inductive inference. Proof for
this conclusion is to be found in the clinical trial failures that
have resulted from this type of thinking.

8. A Deductive Approach to Cell Injury

In spite of the weakness of inductive theorizing, the associ-
ated empirical activities have uncovered phenomenology that
provides a basis for developing alternative, deductive models
of cell injury not limited by classical equilibrium and kinetic
formulations. We devised such a model [7] by abstracting
three phenomenological aspects of brain ischemia described
above: (1) outcome is a function of both the (a) intensity (e.g.,
degree of blood flow reduction) and (b) duration of ischemia,
(2) given specific intensity and duration parameters, cell
outcome is binary: a given neuron either does or does not
survive ischemia, and (3) the effect of injury inside the cell
is multifactorial.

The multifactorial nature of cell injury is an alternate
formulation of the same information used to construct the
ischemic cascade. Instead of the futile attempt to link all
the qualitative changes into a vast “meta” pathway diagram,
one simply acknowledges that many events change in the
injured cells. This then leaves open the issue of how these
events causally link to outcome. Our thinking along these
lines was influenced by a seminal notion put forth to account
for how all ischemia-induced intracellular changes contribute
to neuronal death. This is Wieloch’s “sandwich model” [82]
which posited two key notions. First, all of the separate
damage mechanisms (the A

𝑖
→ B

𝑖
→ C

𝑖
described

above), in some sense, add together to give the total amount
of damage, 𝐷. Second, the cell contains an innate threshold,
𝐷TH, which is a specific amount 𝐷, below which the cell will
recover and above which it will die.

The notion of summing all specific forms of damage to
give the total damage is intuitive and natural. However, the
concept of 𝐷TH appears ad hoc unless it is recognized that
injured cells not only experience damage but also induce
stress responses, which are innate homeostatic mechanisms
genetically coded in cells. Thus, a cell’s ability to withstand
damage will be a function of its innate stress responses. We
expanded the sandwichmodel by positing that the individual
stress responses also add together to give the total induced
stress response, 𝑆. In this way, 𝑆 replaces the idea of𝐷TH.

Next, whether considered literally in terms of specific
molecular damage products and stress responses, or thought
of as the abstract totals, it will take time for 𝐷 and 𝑆 to
accumulate, each eventually reaching some maximum value
and then decreasing thereafter. Thus 𝐷 and 𝑆 are dynamical
variables.

Finally,𝐷 and 𝑆 do notmagically appear; they are induced
by an injury, whose magnitude can vary over some range.
Intuitively, if injurymagnitude is small, then we expect𝐷 and
𝑆 to be small. If injury magnitude is large, we expect𝐷 and 𝑆
to be larger. If injury magnitude is very large, we expect 𝐷
to be very large but 𝑆 to be small. This latter follows from
the fact that stress responses are finite resources inside a cell,
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Figure 2: Circuit diagram underlying the deductive dynamical
theory of cell injury.The core of themodel is themutual antagonism
of𝐷 and 𝑆. 𝐼 positively drives𝐷 and negatively drives 𝑆.

and therefore (1) will at some point saturate and (2) eventually
succumb to damage [83].

We linked the above ideas into the following general
process.

(1) Injury to a cell induces𝐷 and 𝑆.
(2) The magnitudes of 𝐷 and 𝑆 are driven by injury

magnitude, 𝐼.
(3) As 𝐼 increases,𝐷 increases, but 𝑆 decreases.
(4) 𝐷 and 𝑆 are mutually antagonistic.
Figure 2 illustrates this process as a circuit diagram. The

core of the circuit is the mutual antagonism of𝐷 and 𝑆. 𝐼 is a
positive driver on𝐷 and a negative driver on 𝑆. Qualitatively,
how the model works is strikingly simple: if 𝑆 > 𝐷, the
injured cell will recover, but if 𝐷 > 𝑆, the injured cell will
die. By expressing these intuitive insights as a mathematical
expression, a systematic and quantitative theory of cell injury
was formulated.

9. A Deductive Model of Cell Injury

We elsewhere derived our mathematical model [7], which
is summarized here. The model is expressed as a system
of nonlinear ordinary differential equations (ODE). The
simplest form of the model that captures the salient features
of the circuit in Figure 2 is given by

𝑑𝐷

𝑑𝑡

=

(𝑐
𝐷
𝐼𝑒
𝐼𝜆𝐷
)

𝑛

(𝑐
𝐷
𝐼𝑒
𝐼𝜆𝐷)
𝑛

+ 𝑆
𝑛
− 𝐷,

𝑑𝑆

𝑑𝑡

=

(𝑐
𝑆
𝐼𝑒
−𝐼𝜆𝑆
)

𝑛

(𝑐
𝑆
𝐼𝑒
−𝐼𝜆𝑆)
𝑛

+ 𝐷
𝑛
− 𝑆,

(1)

where
𝑛 is a Hill coefficient,
𝑐
𝐷
is a measure of damage agent toxicity,
𝜆
𝐷
is how toxicity scales with 𝐼,
𝑐
𝑆
is a measure of a cell’s total stress response capacity,
𝜆
𝐷
is how total stress responses scale with 𝐼.

Equation (1) models the mutual antagonism of 𝐷 and 𝑆
by allowing the rate of formation of each to be inhibited by
the other in the classical Hill equation form and assumes the
intrinsic decays of𝐷 and 𝑆 are uncoupled.The effect of injury
magnitude, 𝐼, on𝐷 and 𝑆, respectively, is incorporated via the
terms 𝑐

𝐷
𝐼𝑒
𝜆𝐷𝐼 and 𝑐

𝑠
𝐼𝑒
−𝜆𝑠𝐼. These expressions embody what

we consider the simplest possible assumption of how 𝐼 relates
to 𝐷 and 𝑆: 𝐷 increases exponentially with 𝐼(𝐷 ∝ 𝑒𝐼), and 𝑆
decreases exponentially with 𝐼(𝑆 ∝ 𝑒−𝐼).

Solving equation (1) under various parameter sets gives
the time course of the 𝐷 and 𝑆 competition. The winner is
determined by equation (1) in the form of the fixed points,
or attractor state, (𝐷∗, 𝑆∗). If 𝑆∗ > 𝐷∗, the cell recovers. If
𝐷
∗
> 𝑆
∗, the cell dies. The interpretation of equation (1)

is to envision the uninjured cell at homeostatic steady state.
Application of injury magnitude 𝐼 is a “force” that displaces
the cell from homeostasis, where themaximumdisplacement
is given by the steady-state solution (𝐷∗, 𝑆∗).

However, (𝐷∗, 𝑆∗) is an intrinsically unstable state for
the cell. A second expression is required to describe the
resolution of the injury and the return of the cell back to a
stable state. In the scope of our model, there are only two
possible stable states to which the cell can return: (1) the
preinjury homeostatic state, which is recovery, or (2) death,
in which the cell no longer exists. In both cases, the final
state approaches the initial state of an uninjured cell where
(𝐷, 𝑆) = (0, 0). The expression describing the decay from
(𝐷
∗
, 𝑆
∗
) to (0, 0) involves the simplest possible assumptions

that: (1) this decay is exponential, and (2) the decay constant
is the inverse of the magnitude (𝐷∗ − 𝑆∗),

𝐷 (𝑡) = 𝐷
0
𝑒
−|𝐷
∗
−𝑆
∗
|𝑡
,

𝑆 (𝑡) = 𝑆
0
𝑒
−|𝐷
∗
−𝑆
∗
|𝑡
,

(2)

where𝐷
0
= 𝐷
∗ and 𝑆

0
= 𝑆
∗.

Equation (2) is interpreted such that if 𝐷∗ > 𝑆∗, it gives
the time it takes for the cell to completely disintegrate, and
if 𝑆∗ > 𝐷∗ it gives the time it takes for the system to fully
recover to the preinjury state.

Taken together, equations (1) and (2) describe the
sequence of: (1) injuring the cell with injury magnitude 𝐼,
followed by (2) the 𝐷/𝑆 competition, culminating in the
solution (𝐷∗, 𝑆∗), followed by (3) decay of the system either
back to the pre-injury state (when 𝑆∗ > 𝐷∗) or to the death
state (when 𝐷∗ > 𝑆∗). This sequence provides one possible
dynamical interpretation of the circuit in Figure 2.

10. Theoretical Status of the Cell Injury Model

Here we very briefly comment on the status of this deductive
model in the broader context of theoretical biology. We have
rationalized the concepts of 𝐷 and 𝑆 as representing the
global dynamics of an injury-induced intracellular network
by invoking the principle that global network dynamics can
constrain the many possible degrees of freedom of the nodes
[84]. Intuition and empirical evidence let us recognize that
outcome after acute injury is binary: survival or death. Thus,
the complex network of intramolecular changes induced by
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acute injury must be constrained by only these two options.
Given the wide variety of acute injury conditions leading to
cell survival or death, these are not unreasonable assumptions
and at present must be treated as hypotheses requiring
empirical validation.

We discussed above the limitations of applying classical
rate and equilibrium expressions to model cell injury, and we
comment how our model fits into this broader framework.
The ideas behind 𝐷 and 𝑆 are novel. We consider them to
represent coarse-grained emergent phenomena, analogous
in some sense to the coarse-grained or ensemble-averaged
variables in classical thermodynamics. However, unlike clas-
sical thermodynamics, the systems the model is intended
to describe, injured cells, are nonequilibrium. Our model
implies, but does not explicitly account for, the underlying
physical processes that maintain the nonequilibrium state.
Thus, at present, the model itself must be considered phe-
nomenological in the sense we have no explicit link to
any specific theory of nonequilibrium processes. However,
the formal analogy to, if not implicit dependence on, gene
regulatory network dynamics [85] leaves open possibilities
for deducing amore firm theoretical foundation in the future.

11. Theoretical Implications of
a Deductive Theory of Cell Injury

In the current biomedical research arena, each injury or
disease state is taken as a separate entity. Researchers who
study each injury are experts in the phenomenology of that
system within the limits of experimental animal models and
clinical phenomenology.This gives rise to distinct biomedical
fields. For example, the study of brain ischemia is a different
field than the study of cardiac ischemia, each having its own
professional societies, journals, NIH Institutes, conferences,
medical specialties, and so forth.

Clearly the requirements of technical and expert knowl-
edge give rise to this specialization. But it is an unbalanced
situation because there has not been a corresponding unity
binding the diverse biomedical fields. The deductive view
implied by equations (1) and (2) offers a counter balance
to the effects of specialization and provides an example of
unifying a variety of forms of biological injury in a consistent
framework. Equations (1) and (2) allow us to think of cell
injury in generic terms, abstracted from biological context.
Cell injury becomes the general process depicted in Figure 2,
whereby injury magnitude, 𝐼, drives two variables, total
damage,𝐷, and total induced stress responses, 𝑆, in opposite
directions. This mitigates focus on specific cell biology with
respect to the cause of injury-induced cell death.

This gives rise to the most important theoretical implica-
tion of equation (1): the cause of cell death is abstracted away
from biological specifics and replaced with a simple unifying
concept: cell death is caused when 𝐷∗ > 𝑆∗. The specific
molecular details of 𝐷 and 𝑆 will certainly vary from system
to system and impact technical aspects of the science, but
the underlying theoretical unity remains. Roughly speaking,
this is similar to the concept of temperature. Temperature
is independent of the specific molecular details of a system:

25∘C is the same temperature whether measured in water,
oil, air, or a solid object. Similarly, for any given specific
injured system, if 𝐷∗ > 𝑆∗, no matter what molecules
instantiate this relationship, according to equation (1), the
system can deterministically die.Thus, the cause of cell death
in any injured system is now simple, comprehendible, and
potentially applicable across a wide variety of specific types
of injury applied to specific cell types.

12. Empirical Implications of
a Deductive Model of Cell Injury

To empirically test equation (1) means altering how cell
injury is measured and analyzed.There must be a move away
from conflating specific biological changes with cell death
causation. Instead, injury-induced biological changes should be
considered asmarkersof𝐷 and 𝑆. Tomeasure𝐷 and 𝑆 requires
an inordinate amount of specific biological information,
which is possible to acquire with -omics technology [86].
However, the qualitative biological details are secondary to
the quantitativemagnitudes of change used to estimate𝐷 and
𝑆. We recently discussed measuring𝐷 and 𝑆 [86] and will not
repeat those ideas here.

To understand the required shift in empirical thinking
means understanding the link between equation (1) and
experimental designs. Equation (1) predicts specific time
courses for𝐷 and 𝑆.Therefore, real𝐷 and 𝑆 time courses need
to be measured and compared to those predicted by equation
(1). If theymatch, equation (1) constitutes a valid theory of cell
injury; otherwise equation (1) needs to be modified to match
the experimental data. Such an iterative cycle of comparing
empirical data to equation predictions and altering equations
as necessary is precisely the scientific process of using a
deductivemodel and is routine, for example, in physics. Once
it is established how to measure 𝐷 and 𝑆 time courses, and
a suitable expression is determined, whether equation (1)
or some other ODE system, then the goal is to use the 𝐷
and 𝑆 time courses to empirically measure the parameters in
equation (1).

The equation parameters become the means to represent
specific injury systems, where an injury system is the specific
cell type plus the specific form of damage. We discuss
elsewhere [7, 86] that the values of 𝑐

𝐷
and 𝜆

𝐷
represent the

relative lethality of some specific damage agent, which is the
specific form of injury with intensity 𝐼. The values of 𝑐

𝑆
and

𝜆
𝑆
quantify the strength of a specific cell type’s intrinsic stress

response potential. It is through determining the parameters
of a specific injury system that the nonlinear cell injury theory
may then be applied to the goal of therapeutics, as discussed
in the next section.

When the numerical values of the injury system param-
eters are empirically measured, the system is then termed
“fully determined.”The term “fully determined” is a technical
term that means that the empirically determined system
parameters can be plugged into the equation of the system
and solved mathematically, thereby revealing the full system
dynamics. At this point, the scientific problem has been solved,
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and the knowledge can be applied, for example, towards the
invention of therapeutic applications.

Thus, the empirical measurement of cell injury is deeply
altered by use of a deductive mathematical framework and
will more resemble the performance of science in physics,
materials science, or other mathematical-based sciences,
where numerical parameter values are routinely used to
characterize specific systems, such as heat capacity of liquids,
tensile strength of metals, or refractive index of solids.

13. Implications of a Deductive Model for
Systematic Therapeutics

With respect to therapeutics, a central idea emerges from
the deductive theory of cell injury: The science of solving a
specific cell injury system is distinctly different from applying
that knowledge once acquired.

This is a key point to emphasize because one of the
major assumptions of the current inductivemode of thinking
is that discovering a correlation between “pathway 𝑥” and
cell death is synonymous with therapy. Conflating a specific
molecular pathway with cell death causality implies that
therapy is the manipulation of that pathway. Thus, it has
become the hallmark of legitimacy for biomedical studies to
inhibit “pathway 𝑥,” manipulate pathway “𝑥” to prevent cell
death, and thereby “prove” the cell death mechanism.

This is no mere theoretical consideration, but is the
criterion that determines which manuscripts are accepted for
publication, which grants are funded. While this logic has
produced thousands of instances of success in animal experi-
mental models, it has wholly failed in human clinical trials,
and biomedical communities struggle to account for this
glaring disparity. We have elsewhere extensively criticized
this approach [84] and even offered a plausible explanation,
using our deductive theory, of how this situation might
have arisen [7]. Here we emphasize that, from a deductive
point of view, solving the system, that is, fully determining
the parameters of the theoretical equations, is a distinctly
different activity fromhow the solutions to the equationsmay
be applied.

Ironically, fully determining equation (1) for a specific
injury system offers a benefit that is completely unsuspected
within the mainstream inductive mindset: every possible state
of the system becomes known, and therefore, every potential
state of therapy also becomes known. To explain this, we first
digress briefly on how to solve an ODE.

14. Digression on Solving an ODE

Although the technical details of solving an ODE are beyond
the scope of this paper, we briefly summarize the nature of the
answers one gets when solving an ODE system. Equation (1)
encodes an infinity of𝐷 and 𝑆 time courses, all of which obey
the rule which equation (1) constitutes. Figure 2 is a visual
depiction of the rule which equation (1) constitutes. When
equation (1) is solved for a specific injury system this extracts
a subset of time courses from equation (1), those which
describe all possible states of the specific system defined by

the numerical values of the parameters. Different parameters
specify different subsets of time courses, analogous to how
different addresses specify different buildings. Once a given
set of parameters is specified, the resulting subset of time
courses extracted from the ODE system comes in the form
of a hierarchy, as now explained.

The bottom of the hierarchy is a single pair of 𝐷 and
𝑆 time courses which are obtained by specifying all six
equation parameters, plus the initial conditions of the time
courses (Figure 3(a)). A single pair of 𝐷 and 𝑆 time courses
corresponds to a real injury system that can be empirically
measured.

The middle level is called a phase plane (Figure 3(b)).
A phase plane is specified by the exact same six parameter
values, but the initial conditions can take on any value in
the plane. A phase plane therefore encodes many different
pairs of 𝐷 and 𝑆 time courses (Figure 3(b)). The key feature
of a phase plane, which links together all the associated time
courses, is the phase plane’s attractor state. For equation (1),
attractors are notated (𝐷∗, 𝑆∗). The attractor is a point on the
phase plane where the time courses end (i.e., the steady state
reached by each time course). If there is only one attractor, the
phase plane is called “monostable,” and all the time courses
end on that attractor. If there are two attractors, the phase
plane is “bistable”: some time courses end on one, some on
the other attractor. More than two attractors correspond to a
multistable system. We have shown previously that equation
(1) exclusively outputsmonostable or bistable phase planes [7]
and so do not concern ourselves with multistability here.

The top level of the hierarchy is a bifurcation diagram,
which is obtained by holding five of the six parameters
constant and varying only one parameter. The parameter
which is varied is called the control parameter. In equation
(1), injury magnitude 𝐼 is the control parameter (Figure 3(c)).
A bifurcation diagram is a plot of the value of the attractor
states versus the value of 𝐼. In the scope of the dynamical
cell injury model, the bifurcation diagram corresponds to
measuring the injury system at different magnitudes of 𝐼,
which we call an injury course [7, 86]. So, as a phase plane
is a “bundle” of time courses linked by common attractor
states, a bifurcation diagram links a bundle of phase planes
via the control parameters. A bifurcation diagram is a bundle
of bundles of time courses.

To summarize, equation (1) can output (1) a specific pair
of 𝐷 and 𝑆 time courses (representing a measurable system),
or (2) many related time courses forming a phase plane,
and (3) many related phase planes forming a bifurcation
diagram. Fully determining a specific injury system allows
one to calculate any of these entities. These mathematical
entities define all possible states of the system, including those
amenable to therapeutics.

15. Deductive Therapeutics

We previously discussed therapeutics in the context of
equation (1) [7, 86] and summarize the main result here.
Therapeutics implies two possibilities: (1) slowing the death
of an injured system that is fated to die or, (preferably)
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Figure 3: Continued.
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(c) 𝐷∗ (red) and 𝑆∗ (green) bifurcation diagrams with 𝐼 as control parameter

Figure 3: ODE solutions form a hierarchy. (a) The bottom of the hierarchy consists of a single pair of 𝐷 and 𝑆 time courses. These are
the empirically accessible objects of the theory and would be tested against real 𝐷 and 𝑆 time courses to determine how well the predicted
time courses fit experimentally measured time courses. The three columns of time courses derive from the phase planes in B and represent
monostable sublethal, bistable lethal, and monostable lethal time courses, respectively. The monostable time courses and top bistable time
course are from initial conditions (𝐷

0
, 𝑆
0
) = (0, 0). The middle bistable time course is from initial conditions (0, 0.16) and indicates that

preactivating stress responses to 16% of their maximum value are not sufficient to flip state. However, at 17% of stress responses preactivation,
the system flips state and survives an insult that would be lethal from initial conditions (0, 0). (b) The middle of the hierarchy consists of
phase planes showing trajectories at all possible initial conditions for a given set of parameters. Trajectories are converted to pairs of 𝐷 and
𝑆time courses by well-established methods (e.g., Runge-Kutta). The phase planes shown correspond to the 𝐷 and 𝑆 time course pairs in A.
The middle phase plane is bistable. The survival and death attractors are shown as green and red circles, respectively. The three trajectories
on the middle phase plane correspond to the above time courses, as indicated. (c) The top level of the hierarchy is a bifurcation diagram.
When the control parameter for the bifurcation diagram is injury magnitude, 𝐼, we call the resulting bifurcation diagram an injury course.
The phase planes in B are indicated by dashed lines, labeled accordingly. The system parameters in A give rise to a doubly bistable injury
course. The bifurcation diagrams shown would constitute the “answer” to and would fully characterize the injury system represented by the
parameter set in A. In our deductive theory, the cause of cell death is always 𝐷∗ > 𝑆∗. The injury course (bifurcation diagram) becomes the
way to formulate any injury system, and it provides a basis for a comprehensive and systematic approach to therapeutics. The bistable region
is indicated by the open circles, which are unstable repeller fixed points. The areas marked by purple boxes are the therapeutic region, those
injury states where it is possible in principle to flip state and prevent a system that would normally die from dying.That equation (1) not only
predicts bistability but also provides a systematic and quantitative understanding of it is perhaps the most important novel contribution of
the nonlinear dynamical theory of cell injury.

(2) preventing the death of an injured system that is fated to
die. Equation (1) accommodates both possibilities, predicts
precisely when either possibility will occur, and provides a
quantitative measure of how to prevent the cell from dying.
We focus here on preventing the death of an injured system
that is fated to die.

The possibility of preventing cell death occurs when
equation (1) outputs bistable solutions, again, meaning there
are two attractors for a given set of parameters. One attractor
represents recovery, while the other attractor represents
death. If the injury magnitude, 𝐼, is lethal (meaning 𝐷∗ >
𝑆
∗ from initial conditions 𝐷

0
= 0 and 𝑆

0
= 0), but the

system is bistable, there exists a possibility to divert the system
from the prodeath attractor to the prosurvival attractor and
thereby prevent the cell from dying (Figure 3(b)).We call this
process “flipping state” from a death outcome to a survival
outcome.The ability to flip state is revealed by the bifurcation
diagram, which shows the range of injury magnitudes that
produce bistable attractor states. The bistable range of injury
magnitudes is indicated in Figure 3(c) by the portions of
the plots with open circles, which are unstable repellers that
accompany bistable attractors. The lethal bistable regions are

indicated by the ranges inside the purple boxes: here the
system would die from (𝐷

0
, 𝑆
0
) = (0, 0), but since the system

is bistable, there is the possibility of flipping state to a survival
outcome. To the right of this region, there is no possibility to
flip state because the system is monostable lethal.

The implications of bifurcation diagrams such as
Figure 3(a) are profound. They reveal all possible outcomes
in the injury system for all possibly magnitudes of injury. In
addition, the bifurcation diagram encodes the quantitative
dynamics of total damage, 𝐷, and the total stress responses,
𝑆, that link directly to the specific biology. This is a highly
systematic and quantitative understanding wholly absent
from inductive models of cell injury. The bifurcation
diagram is akin to a phase diagram that shows when the
system undergoes major qualitative transitions. For equation
(1), there are only four possible qualitative states of the
injured system’s dynamics: (1) monostable, nonlethal, (2)
monostable, lethal, (3) bistable, nonlethal, and (4) bistable,
lethal. There are no other possibilities for outcome. It is the
bistable, lethal states where it is potentially possible to flip
state and cause a system that would otherwise die to survive.
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No inductivemodel offers such a complete and systematic
insight into cell injury and therapy, let alone one that can be
generalized across diverse biological injury conditions.

16. Personalized Medicine

Our final topic briefly considers a possible application of the
deductive approach to therapy in the context of the emerging
practice of “personalized medicine.” Personalized medicine
is the idea that physicians will tailor-make therapies on the
fly for individual patients [87], because it is now possible or
will be possible in the near future to obtain full genomic [88]
and proteomic [89] information on individual patients. At
present, genomic information is used to screen for risk of
genetic diseases [90] and also to guide in drug efficacy [91].
However, it is only at early research stages for applications
in diagnosis or treating of acute injury, such as stroke [92].
Our deductive approach suggests the possibility of real-time
application in the clinic for acute injuries such as stroke or
myocardial infarction.

Already, the -omics are being pursued as a means to
obtain more sophisticated and informative biomarkers of the
course and progression of acute injuries such as stroke [93,
94] and myocardial infarction [95]. But can this information
be used for therapeutic purposes? We suggest that it may
be possible to couple real-time, patient-acquired -omics
information with equation (1) to determine (1) where on the
𝐷 and 𝑆 time courses a specific patient’s disease progression
falls, (2) whether or not the patient is at a bistable injury
magnitude, and (3) if so provide an indicator of the intensity
of therapy needed to “flip state” in the patient’s injured tissue.

One can imagine a technology that will take -omics data
as input via serum or cerebrospinal samples, perhaps coupled
with other information such as fMRI in stroke, or ultrasound
in myocardial infarction, use this input data to solve in real
time equations (1) and (2) (or whatever their empirically-
validated equivalent turns out to be), and output bifurcation
diagrams, phase planes, and time courses specific for the
patient.

Such technology could revolutionize the treatment of
acute injuries such as stroke and myocardial infarction by
showing the course and prognosis of individual acute injuries
to guide physician treatment decisions. These are tangible
benefits that are simply not possible to envision using the
current inductive pathway mode of thinking.

17. Concluding Comments

We contrasted inductive and deductive approaches to cell
injury, which is starkly illustrated by comparing Figures
1 and 2. Each approach necessitates its own theoretical,
empirical, and analyticalmethods. Inductive approaches have
driven biomedical studies to the present. Developments in
the physics of complex systems, coupled with the rise of the
-omics era in biology, provide a basis to develop a deductive
approach such as described above. There are two concerns to
close this paper.

First, because of the differences between the induc-
tive and deductive approaches, there is the possibility of

a Kuhnian “communication breakdown,” where scientists
practicing each approach “speak through each other” and
do not communicate [16]. This situation must be avoided.
Inductive work to the present, in spite of its limitations,
has laid the foundation to develop any future deductive
approaches. There is thus an intimate complimentary that
has the possibility of evolving into a culture similar to that
in modern physics and engineering where theoretical and
empirical physicists cooperate and work side by side to
solve scientific problems, from which engineers can use the
solutions to design novel technologies.

On the other hand, current biomedicine is one-sided
because inductive approaches dominate biomedicine. The
weakness of inductive biomedical science is evident in the
large record of clinical trial failures for such important
injuries as stroke, cardiac arrest, myocardial infarction, and
so on.The inductive game of “guess the pathway” has become
uncritically accepted as the mainstream in many biomedical
fields. This way of thinking has grown out of proportion
relative to its utility and must be reined in. Inductive ap-
proaches to acute injury are reaching a point of diminishing
returns: the largest phenomenological effects have been dis-
covered, and only smaller and smaller effects remain to be
discovered. If treating the largest effects has not been success-
ful, then confidence is diminished that treating ever smaller
quantitative effects will be successful.

Balance can be restored by the application of deductive
and formal models of cell injury. Our model offers one such
approach. We cannot claim, lacking evidence at present, that
equation (1) is the correct description of cell injury dynamics.
However, it certainly serves as a starting point for formulating
deductive cell injurymodels.The logic it exposes, particularly
the link between bistability and therapeutics, provides serious
motivation for pursuing this approach. By moving in this
direction it will bring to biomedicine the approaches that
have led to such great scientific and technological success in
the physical sciences.
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[35] T. Back andO.G. Schüler, “Thenatural course of lesion develop-
ment in brain ischemia,” Acta Neurochirurgica Supplement, vol.
89, pp. 55–61, 2004.

[36] W. I. Rosenblum, “Histopathologic clues to the pathways of
neuronal death following ischemia/hypoxia,” Journal of Neuro-
trauma, vol. 14, no. 5, pp. 313–326, 1997.

[37] T. Kirino, “Delayed neuronal death,” Neuropathology, vol. 20,
supplement 1, pp. S95–S97, 2000.

[38] L. Hertz and G. A. Dienel, “Energy metabolism in the brain,”
International Review of Neurobiology, vol. 51, pp. 1–102, 2002.

[39] I. S. Kass and P. Lipton, “Protection of hippocampal slices from
young rats against anoxic transmission damage is due to better
maintenance of ATP,” Journal of Physiology, vol. 413, pp. 1–11,
1989.



14 International Scholarly Research Notices

[40] R. D. Patel and J. L. Saver, “Evolution of reperfusion therapies
for acute brain and acute myocardial ischemia: a systematic,
comparative analysis,” Stroke, vol. 44, no. 1, pp. 94–98, 2013.

[41] A. Abou-Chebl, “Management of acute ischemic stroke.,” Cur-
rent Cardiology Reports, vol. 15, no. 4, p. 348, 2013.

[42] D. B. Zahuranec and J. J. Majersik, “Percentage of acute stroke
patients eligible for endovascular treatment,”Neurology, vol. 79,
supplement 1, no. 13, pp. S22–S25, 2012.

[43] R. J. Myerburg, M. Velez, D. G. Rosenberg, J. Fenster, and A.
Castellanos, “Automatic external defibrillators for prevention
of out-of-hospital sudden death: effectiveness of the automatic
external defibrillator,” Journal of Cardiovascular Electrophysiol-
ogy, vol. 14, supplement 9, pp. S108–S116, 2003.

[44] M. D. Ginsberg, “Neuroprotection for ischemic stroke: past,
present and future,”Neuropharmacology, vol. 55, no. 3, pp. 363–
389, 2008.

[45] D. J. DeGracia, “Towards a dynamical network view of brain
ischemia and reperfusion. Part III: therapeutic implications,”
Journal of Experimental Stroke and Translational Medicine, vol.
3, no. 1, pp. 90–103, 2010.

[46] S. G. Kanekar, T. Zacharia, and R. Roller, “Imaging of stroke:
part 2, pathophysiology at the molecular and cellular levels
and corresponding imaging changes,” American Journal of
Roentgenology, vol. 198, no. 1, pp. 63–74, 2012.

[47] R. Liu, H. Yuan, F. Yuan, and S. Yang, “Neuroprotection
targeting ischemic penumbra and beyond for the treatment of
ischemic stroke,” Neurological Research, vol. 34, no. 4, pp. 331–
337, 2012.

[48] R. C. Turner, S. C. Dodson, C. L. Rosen, and J. D. Huber, “The
science of cerebral ischemia and the quest for neuroprotection:
navigating past failure to future success—a review,” Journal of
Neurosurgery, vol. 118, no. 5, pp. 1072–1085, 2013.
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[59] S. I. Savitz and W. Schäbitz, “A critique of SAINT II: wishful
thinking, dashed hopes, and the future of neuroprotection for
acute stroke,” Stroke, vol. 39, no. 4, pp. 1389–1391, 2008.

[60] G. J. del Zoppo, “Theneurovascular unit in the setting of stroke,”
Journal of Internal Medicine, vol. 267, no. 2, pp. 156–171, 2010.

[61] E. Auriel and N. M. Bornstein, “Neuroprotection in acute
ischemic stroke—current status,” Journal of Cellular and Molec-
ular Medicine, vol. 14, no. 9, pp. 2200–2202, 2010.

[62] R. Brouns and P. P. deDeyn, “The complexity of neurobiological
processes in acute ischemic stroke,” Clinical Neurology and
Neurosurgery, vol. 111, no. 6, pp. 483–495, 2009.

[63] P. A. Barber, R. N. Auer, A. M. Buchan, and G. R. Sutherland,
“Understanding and managing ischemic stroke,” Canadian
Journal of Physiology and Pharmacology, vol. 79, no. 3, pp. 283–
296, 2001.

[64] R. Kumar, S. Azam, J. M. Sullivan et al., “Brain ischemia and
reperfusion activates the eukaryotic initiation factor 2alpha
kinase, PERK,” Journal of Neurochemistry, vol. 77, no. 5, pp.
1418–1421, 2001.

[65] R. Kumar, G. S. Krause, H. Yoshida, K.Mori, andD. J. DeGracia,
“Dysfunction of the unfolded protein response during global
brain ischemia and reperfusion,” Journal of Cerebral Blood Flow
and Metabolism, vol. 23, no. 4, pp. 462–471, 2003.

[66] D. J. DeGracia, R. Kumar, C. R. Owen, G. S. Krause, and B.
C. White, “Molecular pathways of protein synthesis inhibition
during brain reperfusion: implications for neuronal survival or
death,” Journal of Cerebral Blood Flow and Metabolism, vol. 22,
no. 2, pp. 127–141, 2002.

[67] A. J. Fornace Jr., J. Jackman, M. C. Hollander, B. Hoffman-
Liebermann, and D. A. Liebermann, “Genotoxic-stress-
response genes and growth-arrest genes. gadd, MyD, and other
genes induced by treatments eliciting growth arrest,” Annals of
the New York Academy of Sciences, vol. 663, pp. 139–153, 1992.

[68] E. V. Maytin and J. F. Habener, “Transcription factors C/EBP𝛼,
C/EBP𝛽, and CHOP (Gadd153) expressed during the differen-
tiation program of keratinocytes in vitro and in vivo,” Journal of
Investigative Dermatology, vol. 110, no. 3, pp. 238–246, 1998.

[69] U. A. White and J. M. Stephens, “Transcriptional factors that
promote formation of white adipose tissue,” Molecular and
Cellular Endocrinology, vol. 318, no. 1-2, pp. 10–14, 2010.

[70] P. E. Lovat, M. Corazzari, B. Goranov, M. Piacentini, and C.
P. F. Redfern, “Molecular mechanisms of fenretinide-induced
apoptosis of neuroblastoma cells,” Annals of the New York
Academy of Sciences, vol. 1028, pp. 81–89, 2004.

[71] S. Oyadomari and M. Mori, “Roles of CHOP/GADD153 in
endoplasmic reticulum stress,”Cell Death&Differentiation, vol.
11, no. 4, pp. 381–389, 2004.

[72] D. Ron and J. F. Habener, “CHOP, a novel developmentally
regulated nuclear protein that dimerizes with transcription
factors C/EBP and LAP and functions as a dominant-negative
inhibitor of gene transcription,” Genes and Development, vol. 6,
no. 3, pp. 439–453, 1992.

[73] X.Wang,M. Kuroda, J. Sok et al., “Identification of novel stress-
induced genes downstream of chop,”The EMBO Journal, vol. 17,
no. 13, pp. 3619–3630, 1998.

[74] H. Zinszner, M. Kuroda, X.Wang et al., “CHOP is implicated in
programmed cell death in response to impaired function of the
endoplasmic reticulum,” Genes and Development, vol. 12, no. 7,
pp. 982–995, 1998.

[75] S. J. Marciniak, C. Y. Yun, S. Oyadomari et al., “CHOP induces
death by promoting protein synthesis and oxidation in the



International Scholarly Research Notices 15

stressed endoplasmic reticulum,” Genes and Development, vol.
18, no. 24, pp. 3066–3077, 2004.

[76] J. Han, S. H. Back, J. Hur et al., “ER-stress-induced transcrip-
tional regulation increases protein synthesis leading to cell
death,” Nature Cell Biology, vol. 15, no. 5, pp. 481–490, 2013.

[77] G. Chapuisat, “Discussion of a simple model of spreading
depression,” European Series in Applied and Industrial Mathe-
matics Proceedings, vol. 18, pp. 87–98, 2007.

[78] G. Chapuisat, M. A. Dronne, E. Grenier, M. Hommel, H.
Gilquin, and J. P. Boissel, “A global phenomenological model of
ischemic stroke with stress on spreading depressions,” Progress
in Biophysics andMolecular Biology, vol. 97, no. 1, pp. 4–27, 2008.

[79] M. C. Cross and P. C. Hohenberg, “Pattern formation outside
of equilibrium,” Reviews of Modern Physics, vol. 65, no. 3, pp.
851–1112, 1993.

[80] S. Huang, “Reprogramming cell fates: reconciling rarity with
robustness,” BioEssays, vol. 31, no. 5, pp. 546–560, 2009.

[81] P. W. Sheppard, X. Sun, J. F. Emery, R. G. Giffard, and M.
Khammash, “Quantitative characterization and analysis of the
dynamic NF-𝜅B response in microglia,” BMC Bioinformatics,
vol. 12, article 276, 2011.

[82] U. Dirnagl and A. Meisel, “Endogenous neuroprotection: mito-
chondria as gateways to cerebral preconditioning?” Neurophar-
macology, vol. 55, no. 3, pp. 334–344, 2008.

[83] D. J. DeGracia, “Towards a dynamical network view of brain
ischemia and reperfusion. Part II: a post-ischemic neuronal
state space,” Journal of Experimental Stroke and Translational
Medicine, vol. 3, no. 1, pp. 72–89, 2010.

[84] D. J. DeGracia, “Towards a dynamical network view of brain
ischemia and reperfusion. Part IV: additional considerations,”
Journal of Experimental Stroke and Translational Medicine, vol.
3, no. 1, pp. 104–114, 2010.

[85] D. J. DeGracia, “Towards a dynamical network view of brain
ischemia and reperfusion. Part I: background and preliminar-
ies,” Journal of Experimental Stroke and Translational Medicine,
vol. 3, no. 1, pp. 59–71, 2010.

[86] D. J. DeGracia, “A program for solving the brain ischemia
problem,” Brain Sciences, vol. 3, no. 2, pp. 460–503, 2013.

[87] M. D. Pasic, S. Samaan, and G. M. Yousef, “Genomic medicine:
new frontiers and new challenges,” Clinical Chemistry, vol. 59,
no. 1, pp. 158–167, 2013.

[88] R. B. Altman, “Personal genomic measurements: the oppor-
tunity for information integration,” Clinical Pharmacology and
Therapeutics, vol. 93, no. 1, pp. 21–23, 2013.

[89] C. Nicolini, N. Bragazzi, and E. Pechkova, “Nanoproteomics
enabling personalized nanomedicine,” Advanced Drug Delivery
Reviews, vol. 64, no. 13, pp. 1522–1531, 2012.

[90] D. M. Euhus and L. Robinson, “Genetic predisposition syn-
dromes and their management,” The Surgical Clinics of North
America, vol. 93, no. 2, pp. 341–362, 2013.

[91] J. A. Johnson and L. H. Cavallari, “Pharmacogenetics and
cardiovascular disease-implications for personalizedmedicine,”
Pharmacological Reviews, vol. 65, no. 3, pp. 987–1009, 2013.

[92] H. S. Markus, “Stroke genetics: prospects for personalised
medicine,” BMCMedicine, vol. 10, article 113, 2012.

[93] F. R. Sharp and G. C. Jickling, “Whole genome expression of
cellular response to stroke,” Stroke, vol. 44, pp. S23–S25, 2013.

[94] L. Rothstein and G. C. Jickling, “Ischemic stroke biomarkers in
blood,” Biomarkers in Medicine, vol. 7, no. 1, pp. 37–47, 2013.

[95] S. Goodacre, P. Thokala, C. Carroll et al., “Systematic review,
meta-analysis and economic modelling of diagnostic strategies
for suspected acute coronary syndrome,” Health Technology
Assessment, vol. 17, no. 1, pp. 1–210, 2013.


