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RNA in Cancer Immunotherapy: Unlocking the Potential
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ABSTRACT
◥

Recent advances in the manufacturing, modification, purifica-
tion, and cellular delivery of ribonucleic acid (RNA) have enabled
the development of RNA-based therapeutics for a broad array of
applications. The approval of two SARS-CoV-2–targeting mRNA-
based vaccines has highlighted the advances of this technology.
Offering rapid and straightforward manufacturing, clinical safety,
and versatility, this paves the way for RNA therapeutics to expand

into cancer immunotherapy. Together with ongoing trials on
RNA cancer vaccination and cellular therapy, RNA therapeutics
could be introduced into clinical practice, possibly stewarding
future personalized approaches. In the present review, we discuss
recent advances in RNA-based immuno-oncology together with
an update on ongoing clinical applications and their current
challenges.

Introduction
RNA has become a widely popular tool for vaccination against

infectious diseases following the SARS-CoV2 pandemic (1). Poten-
tially, this molecule can be exploited for many more applications,
especially in cancer immunotherapy, offering a broad range of RNA-
based therapeutic strategies (2, 3). Since its discovery in 1961 by
Brenner and colleagues, RNA has evolved from what was initially
considered a mere intermediary between DNA and protein to a
versatile molecule operating at multiple cellular levels, exploitable for
immunotherapeutic applications (4). In vitro transcribed messenger
RNA (iVT-mRNA), self-amplifying RNA (SAM), antisense oligonu-
cleotides (ASO), aptamers, small interfering RNA (siRNA), and
microRNA (miRNA) are the most studied RNA formats at present,
which can be categorized into two main groups: (i) coding RNA
(cRNA) translating into protein, including mRNA and SAM, and (ii)
noncoding RNA (ncRNA) that does not translate into proteins but
rather regulates cell physiology and functions, including among
others ASOs, aptamers, siRNA, and miRNA. Based on their role
related to cancer biology, ncRNA can function as oncogenes or
tumor suppressor genes (Fig. 1; ref. 5) and therefore be implemented
for therapeutic use. Initially, RNA was not considered a suitable
therapeutic tool due to its unstable nature and susceptibility to rapid
degradation by ubiquitous ribonucleases (RNases). Other concerns
regarding potential toxicity, unspecific immune activation, and
unknown effectiveness also needed further investigation (6). At
present, many limitations have been overtaken, including chemical
modification of the RNA structure, paralleled with the development

of novel technologies for RNA delivery and protection. This allows
fast, cost-effective, and versatile generation of mRNA suitable for
clinical application in the context of cancer and infectious dis-
eases (4, 7), introducing RNA as a promising pharmaceutical
product (Table 1; refs. 8–12).

In vitro transcribed mRNA and self-amplifying RNA
Mature eukaryotic mRNA consists of highly conserved molecular

features, including a cap structure at the 50 terminus, two extended
untranslated regions (UTR) at the 50 and 30 end of the open reading
frame (ORF), and a poly-A tail at the 30 terminus (13), all influencing
mRNA degradation, stability, immunogenicity, and translatabili-
ty (14). For the generation of iVT-mRNA, a DNA template is required,
commonly derived from a linearized plasmid (15), fromwhichmRNA
is transcribed using RNA polymerase enzymes such as T7, SP6, or
T3 (16). Other main components of the iVT reaction mix comprise a
RNase inhibitor, pyrophosphatases, and a reaction buffer including the
four ribonucleoside triphosphates (rNTP) and a capping reagent
(ARCA, Clean CapTM). The final concentration of each component,
the reaction temperature, and time will determine the final mRNA
yield obtained (Fig. 1; refs. 16, 17).

After the iVT reaction, theDNA template, all enzymes used, organic
and inorganic contaminants and secondary transcription products,
such as incomplete/truncated RNA molecules and double-stranded
RNA (dsRNA) have to be removed (18). A DNase digestion is
performed to eliminate the DNA template, followed by a salt and
ethanol precipitation or more accurately by high-pressure/perfor-
mance liquid chromatography (HPLC) to obtain pure mRNA (19).
The purification process reduces immune activation triggered by
contaminants and therefore can improve mRNA translation upon
delivery into the cell (19). In addition to manufacturing and purifi-
cation, thorough quality controls are performed to assess thefinal RNA
integrity, purity, concentration, capping efficiency, sequence, and
poly-A tail length (20).

PoormRNAuptake and in vivo expression are often observed due to
extracellular RNase activity (15) and intrinsic mRNA immunogenic-
ity (21), triggering interferon (IFN) pathway activation (7). Packaging
mRNA into lipid nanoparticles (LNP) has proven an effective solution
to ensure protection and successful RNA delivery into the cell (22). A
multitude of nanoparticles have been tested and extensively reviewed
by others (23–25). At present, the LNP-mRNA COVID-19 vaccines
Tozinameran and Elasomeran, with LNPs composed of ionizable
lipids, phospholipids, cholesterol, and PEGylated lipids, have been
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clinically approved (26). Moreover, RNA chemical modifications such
as N1-methyladenosine, 5-methylcytidine, pseudouridine, N6-methy-
ladenosine, 5-methyl deoxycytidine, and inosine pioneered by Kariko
and colleagues (27–30) have been exploited to generate stable, non-
immunogenic, and high-translatable RNA molecules, including also
modified base analogs as 5`cap structures (31, 32). Other work on the

optimization of the poly-A tail length showed enhanced mRNA
stability and lowered immunogenic profile (33). Additional optimi-
zation ofUTRs and codon optimization pairedwith sequence design of
the encoding sequence (34) aimed to improve RNA lifetime stability
and expression (35–37).

Noncoding and antisense oligonucleotides
Solid-phase synthesis is mostly used for manufacturing (antisense)

oligonucleotides. The first nucleotide of the desired molecule is
attached to a solid phase and elongated using a repetition of a four-
step cycle, adding one nucleotide per cycle until the oligonucleotide is
fully synthesized. The four-step cycle includes detritylation/deblock-
ing, coupling, capping, and oxidation or thiolation. The synthesis is
performed in a column reactor under programmed delivery of all
reagents (Fig. 1). A 70% to 80% success synthesis rate is achieved of the
desired oligonucleotide length, requiring a final HPLC purification
step, removing all polymers showing incorrect length (n � x; ref. 4).
Chemical modifications were implemented to this process, aiming for
improved pharmacokinetics (38). The most used modifications
include a substitution of the phosphodiester bond with a phosphor-
othioate, proving to increase resistance toward nuclease degradation
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Figure 1.

Overview of coding and noncoding RNA structures. Left, in vitro transcription (iVT) of messenger RNA (mRNA). mRNA has several conserved features, including a 50

cap structure, two extended untranslated regions (UTR) at the 50 and 30 end of the ORF, and a 30 poly-A tail. The final iVT product can be mRNA or self-amplifying
mRNA. Right, solid-phase synthesis of noncoding and antisense oligonucleotides. Abbreviations: ASO, antisense oligonucleotides; mRNA, messenger RNA; UTR,
untranslated region; rNTP, ribonucleoside triphosphates; miRNA, microRNA; siRNA, small interfering RNA. Adapted from an image created with BioRender.com.

Table 1. Advantages and disadvantages of RNA- compared with
DNA- andprotein-based therapeutics (data from references 8–12).

RNA DNA Protein

Synthesis þ þ �
Manufacture timea þ/� þ/� �
Genome integration � þ/� �
Self-adjuvancy þ/� þ/� �
Storageb þ/� þ/� þ
Administration þ þ �

aRNA manufacture time is fast but depends on a DNA template.
bStorage requirements depend on the formulation used for the therapeutic
product.
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and reduce binding to plasma proteins, and decreasing renal clear-
ance (39). However, reduced target affinity is also observed, and
therefore 20-methoxyethyl, 20-deoxy-20-fluoro, and 20-O-methyl mod-
ifications were introduced on the ribose of the RNA to improve
specificity (20).

A similar manufacturing approach is exploited for the synthesis of
RNA aptamers. A widely used method to design aptamers is by
Systematic Evolution of Ligands by Exponential enrichment (SELEX).
In short, a high diversity library of single-stranded RNA (ssRNA) is
synthetized by in vitro transcription (40). From the RNA library, a
selective target binding ssRNA is isolated through repeated rounds of
exposure, binding, selection, and amplification. Once the desired
sequence/design of the RNA aptamers is obtained, the aptamers are
manufactured using solid-phase synthesis (41).

RNA as a Vaccination Strategy
Therapeutic cancer vaccines aim to generate antigen-specific T-cell

responses targeting tumor cells and potentially achieve long-term
clinical benefits (42, 43). The approval of two mRNA vaccines for
COVID-19 prevention has highlighted the potential of mRNA tech-
nology (44). Two main RNA-based approaches have been extensively
explored for cancer vaccination: ex vivo mRNA-loaded dendritic cell
(DC) vaccines (45, 46) and mRNA-LNP vaccines (ref. 47; Fig. 2). In
both strategies, mRNA is used to deliver the tumor-associated antigen

(TAA) or tumor-specific antigen to elicit an antitumor immune
response. Upon cellular entry followed by translation of the mRNA,
the proteasome processes the mRNA-encoded protein into peptides
that ultimately will be processed and presented by human leucocyte
antigen (HLA) class I molecules to CD8þ T cells (48). CD4þ T-cell
stimulation is also recommended to support the CD8þ T-cell
response (49). In this regard, coupling an HLA class II sorting signal,
such as the signal sequence of the invariant chain, lysosomal-
associated membrane protein (LAMP), or DC-LAMP, to the antigen
sequence is required to ensure that antigen-derived peptides enter the
HLA class II presentation pathway, despite the protein being synthe-
sized in the cytosol of the cell (50, 51).

Cancer vaccines, mostly targeting cancer–testis and differentiation
antigens, as monotherapy, have not shown significant activity thus far.
Most clinical trials have been ineffective, and the induced immune
reactivity was insufficient, limited in time, and narrow. The lack of
clinical efficacy fromvaccine treatment alone can be attributed to weak
antigen delivery modalities that induced low T-cell titers as well as
immune checkpoints remaining intact, which ultimately prevented
tumor cell killing. It is now thought that neoantigens generated by
somatic alterations could be differentially recognized by the immune
system as these proteins/peptides would be unique to the tumor and
the T-cell repertoire recognizing such neoantigens would not have
been subjected to central tolerance mechanisms, as is the case for
cancer–testis- and differentiation antigen-specific T cells (8, 52).
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Figure 2.

Overview of active mRNA-based immunotherapeutic strategies. Left, LNP-antigen mRNA vaccine delivered systemic or locally, followed by antigen expression
resulting in T-cell priming and eventually cancer cell killing. Right, monocytes or hematopoietic progenitor cells are isolated from blood, further cultured, and
differentiated into DCs. mRNA is then used to load the DCs ex vivowith tumor antigens. Themodified DCs are administered to patients, where theywill prime T cells,
eventually resulting in the killing of cancer cells. Adapted from an image created with BioRender.com.
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mRNA-based dendritic cell vaccines
mRNA-based DC cancer vaccination was introduced more than

two decades ago (53). At present, more than 30 clinical trials have been
published, recently reviewed by Dorrie and colleagues (46). For DC
generation, monocytes or hematopoietic progenitor cells are isolated
from blood and further cultured and differentiated into DCs (54).
mRNA is then used to load the DCs ex vivo with tumor antigens. The
modified DCs are administered to patients (Fig. 2) via intravenous,
intradermal, subcutaneous, or intranodal injections (55). DC matu-
ration is most often induced using a cytokine cocktail (56), feasible
with both protein and mRNA delivery (57). Examples of mRNA-
induced functional manipulation of DCs include TriMix mRNA, a
mixture consisting ofCD40 Ligand (CD40L), CD70, and constitutively
active Toll-like receptor 4 (TLR4) encoding mRNA. Several studies
showed that TriMix-DC vaccination induces robust, TAA-specific
T-cell responses in the majority of analyzed patients (58–60). Other
strategies to improve the activation of T cells by mRNA-modified DC
have been studied and show promising results (61–65).

DC-based vaccines have shown to induce adaptive immune
responses, and RNA transfection is emerging as an ideal method
for antigen-loading and functional manipulation of the applied
cells. DC vaccination rarely produces adverse events and has a
highly safe profile (46). However, challenges that call for imperative
improvements such as the manufacturing process, the optimal
choice of DC subset or their in vitro generation, the antigen choice,
the route of administration, and vaccination schedule still need to
be addressed (66).

mRNA-based vaccines
First clinical results were observed with intradermal or intrano-

dal naked mRNA administration, resulting in mRNA uptake by
antigen-presenting cells in the dermis or lymph nodes followed by
antigen presentation and T-cell stimulation (67). Even though it has
a positive clinical outcome and favorable safety profile, the many
limitations, such as limited mRNA uptake, resulting in low bio-
availability of antigens and lowered immune responses, hampered
its implementation (15).

Recent attempts opted for intramuscular or intravenous adminis-
tration of mRNA encapsulated by delivery carriers (24). Four recent
clinical trials, using mRNA packaged in LNPs, have shown promising
clinical and immunologic results in patients with solid tumors. In
the Lipo-Merit trial (NCT02410733; Table 2), a vaccine consisting
of nonmodified lipoplexed mRNA targeting a variety of TAAs
(NY-ESO-1, MAGE-A3, tyrosinase, and TPTE) was administered
intravenously to advanced melanoma patients. The adverse events
(pyrexia, chills, and flu-like symptoms) were mild to moderate and
transient. Expansion and activation of antigen-specific T cells with
cytolytic activity against tumor cells could be documented. Continuous
vaccination resulted in the persistence of antigen-specific memory
T cells. Encouraging clinical responses have been reported (68, 69).

In the R07198457-trial (NCT03815058; Table 2), the administra-
tion of nonmodified mRNA encoding up to 20 patient-specific
neoantigens has been studied as monotherapy and in combination
with a PD-L1 inhibitor, in patients with advanced solid tumors (breast
cancer, prostate cancer, ovarian cancer, melanoma, non–small cell
lung cancer, bladder cancer, and colorectal cancer; refs. 70, 71). Also, in
this trial, the adverse events were mostly of grade 1–2 and transient.
Neoantigen-specific T-cell responses were observed in most of the
patients. Promising clinical results in these often heavily pretreated
patients were noted.

In both the KEYNOTE-603 trial (NCT03313778; Table 2) and
the KEYNOTE-942 trial (NCT03897881; Table 2; Moderna and
Merck), the safety and immunogenicity of intramuscularly adminis-
tered lipid-protected modified mRNA encoding neoantigens were
evaluated, either as monotherapy or in combination with anti–PD-1
monoclonal antibodies (mAb, pembrolizumab) in patients with solid
tumors (72–74). ThismRNA-basedpersonalized cancer vaccine has an
acceptable safety profile along with observed clinical responses in
combination with pembrolizumab. Preliminary efficacy analysis from
checkpoint inhibition-na€�ve relapsed/refractory human papillomavi-
rus (HPV) negative head and neck squamous cell carcinoma (cohort
suggests activity of this combination (73).

An alternative mRNA-based approach uses SAM, originating
from positive ssRNA alphaviruses, consisting of the RNA replica-
tion machinery of the alphavirus (self-assembly genes; Fig. 1) and
replacing other genetic regions with the gene sequence encoding the
antigen(s) of interest. SAM amplifies over time (up to 2 months)
and consequently induces more potent and persistent immune
responses (75, 76). Clinical applications using SAM have been
promising in preventing infectious diseases (77) and are transition-
ing into the cancer immunotherapy field. Gritstone, a California-
based company, is performing clinical studies, where a viral prime
and a SAM boost are used to induce immune responses against
private or shared neoantigens (78).

RNA in Passive Immunotherapy
Passive immunotherapy is used as an umbrella term to describe

any strategy designed to help a patient to fight disease by admin-
istration of immune system components that have been generated
in the laboratory, including delivery of proinflammatory cytokines,
immune-modulatory mAbs, or ex vivo manipulated autologous
effector immune cells (79, 80). As with active immunotherapies,
passive strategies can also benefit from the implementation of not
only iVT-mRNA but also ncRNA, as passive immunotherapy covers
a broader range of strategies (Fig. 3).

mRNA for protein therapy in vivo
In vivo delivery of antibody encoding mRNA

Since the development of the hybridoma technique in 1975 by
Milstein and K€ohler, therapeutic mAbs have been introduced for
numerous indications. The mAb-mediated blockade of immune
checkpoints, such as programmed cell death-1 (PD-1) and cytotoxic
T lymphocyte-associated protein 4 (CTLA-4), has revolutionized
cancer treatment (81–83). Besides full-sizedmAb, antibody fragments,
such as single-chain variable fragments (scFv) and heavy-chain VH

domains, have been heavily studied. In parallel, a variety of tumor-
associated targets, such as TAAs, vascular, and stromal cells, have been
explored as targets (10, 80, 84, 85).

Although mRNA-based antibody therapies have yet to face tech-
nical and clinical challenges (e.g., frequency and route of administra-
tion; ref. 86), the use of mRNA for in vivo production of therapeutic
antibodies remains a promising approach (10).

In 2019, Rybakova and colleagues demonstrated the delivery of
mRNA encoding the humanized anti-human epidermal growth factor
receptor 2 (HER2) antibody, trastuzumab, via LNP in tumor-bearing
mice. The reported serum–antibody concentrations were detectable up
to 14 days after LNP injection, demonstrating more favorable phar-
macodynamics compared with the recombinant mAbs. In general, the
mRNA transcribed antibody retained its cell toxicity properties in vivo,
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which contributed to a significant delay in HER2-positive tumor
growth when administered weekly (87).

The potential of bispecific T-cell–engaging antibodies is high, but
their manufacturing is often challenging. Stadler and colleagues tested

the in vivo production of bispecific antibodies by treating mice
with pharmacologically optimized, nucleoside-modified iVT-mRNA
encoding the bispecific antibody. Sustained endogenous synthesis of
the bispecific antibody was achieved, eliminating advanced tumors as

Table 2. Overview of active and recruiting clinical trials using mRNA-based therapeutics.

IT type Cancer Study Phase Target Formulation Combination

CAR Solid tumors NCT04981691 Phase I MESO EP autologous T cells NA
Vaccine NSCLC, CRC, PDAC NCT03948763 Phase I KRAS V941 mRNA Pembrolizumab
siRNA (CAS3/
SS3)

B-cell NHL NCT04995536 Phase I TLR9, STAT3 siRNA linked to CpG
oligonucleotide

Radiotherapy

Synthetic
nakedmRNA

BC NCT03788083 Phase I TriMix NA NA

Vaccine OC NCT04163094 Phase I 3 OC TAA LNP Carboplatin/paclitaxel
Vaccine Esophageal, NSCLC NCT03908671 Pilot study Neoantigen Undisclosed NA
Vaccine Melanoma NCT03897881 Phase II Neoantigen LNP Pembrolizumab
Vaccine Solid tumors NCT03313778 Phase I Neoantigen LNP Pembrolizumab
Vaccine Melanoma NCT03815058 Phase II Neoantigen RNA-LPX Pembrolizumab
Vaccine Melanoma NCT02410733 Phase I 4 TAA RNA-LPX NA
Vaccine Prostate NCT04382898 Phase I/II 5 PC TAA LNP Cemiplimab
Vaccine Esophageal, gastric

cancer, CRC, PC
NCT03468244 Pilot study Neoantigen Undisclosed NA

Vaccine GBM NCT03688178 Phase II CMV pp65 mRNA-Loaded autologous
DC

Varlilumab

Vaccine GBM NCT02649582 Phase I/II WT-1 mRNA-Loaded autologous
DC

Temozolomide

Vaccine NSCLC NCT03164772 Phase I/II 6 NSCLC TAA BI 1361849 Durvalumab, tremelimumab
Vaccine Melanoma NCT01456104 Phase I Melanoma TAA Autologous LC EP with

TAA mRNA
NA

Vaccine GBM NCT03927222 Phase II CMV Pp65-LAMP mRNA-
loaded autologous DC

Temozolomide, GM-CSF
Tetanus-diphteria, toxoid

Vaccine GMB NCT02465268 Phase II CMV Pp65-shLAMP mRNA-
loaded DC

GM-CSF

Vaccine Brain metastasis NCT02808416 Phase II Neoantigen mRNA tumor antigen
pulsed DC

NA

Vaccine GBM NCT00639639 Phase I CMV Pp65-LAMP mRNA-
loaded autologous DC

Tetanus toxoid

Vaccine PC NCT01197625 Phase I/II Tumor antigen Tumor mRNA-loaded DC hTERT Survivin
Vaccine AML NCT01686334 Phase I/II WT1 antigen mRNA EP autologous DC (Potentially) low-dose

chemotherapy
Vaccine MM NCT01995708 Phase I CT7, MAGE-A3, WT1 mRNA EP autologous LC Standard of care
Vaccine AML, HRMS NCT03083054 Phase I/II WT1 antigen mRNA EP autologous DC NA
Vaccine NSCLC, GEA, mUC,

MSS-CRC
NCT03639714 Phase I/II Neoantigen SAM ChAd, nivolumab,

ipilimumab
Vaccine MSS-CRC, NSCLC,

PDAC
NCT03953235 Phase I/II Shared neoantigen

Kras
SAM ChAd, nivolumab,

ipilimumab
Vaccine CRC NCT05141721 Phase II/III Neoantigen SAM ChAd, standard of care

atezolizumab, ipilimumab
RNAi PDAC NCT01676259 Phase II KRAS siG12D-LODER Gemcitabine, paclitaxel,

FOLFIRINOX
RNAi Advanced malignant

solid neoplasms
NCT01591356 Phase I EPHA2 DOPC encapsulation NA

Vaccine Melanoma NCT02410733 Phase I NYESO-1, MAGE A3
tyrosinase, TPTE

Lipo-MERIT NA

Vaccine Melanoma NCT03815058 Phase II Neoantigen Lipoplex Pembrolizumab
mAB Solid tumors NCT04683939 Phase I/II CLDN18.2 Undisclosed Paclitaxel, gemcitabine
Immune
inducers

Solid tumors,
lymphoma

NCT03739931 Phase I/II NA OX40L, IL23, IL36y coding
mRNA

Durvalumab

Note: Data from Meisel et al. (74) and Wang et al. (76).
Abbreviations: BC, breast cancer; ChAd, chimpanzee adenovirus; CMV, cytomegalovirus; EP, electroporated; GBM, glioblastomamultiforme; GEA, gastroesophageal
adenocarcinoma; HRMS, high-riskmyelodysplastic syndrome; IT, immunotherapy; LCs, Langerhans cells; AML, acutemyeloid leukemia;MESO,mesothelin; MSS-CRC,
microsatellite stable colorectal cancer; mUC, metastatic urothelial carcinoma; NA, not applicable; NHL, non-Hodgkin lymphoma; NSCLC, non–small cell lung
carcinoma; OC, ovarian cancer; PC, prostate cancer; PDAC, pancreatic ductal adenocarcinoma; pHGG, pediatric high-grade glioma; STAT3, signal transducer and
activator of transcription 3; TAA, tumor-associated antigens; TLR9, Toll-like receptor 3.
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effectively as the corresponding purified bispecific antibody was
achieved. This approach could accelerate the clinical development of
novel bispecific antibodies (88).

A clinical trial by BioNTech is investigating the safety and phar-
macokinetics of BNT141 (NCT04683939; Table 2) and BNT142, both
mRNA encoding antibodies targeting CLDN18.2 and CD3�CLDN6,
respectively, in unresectable or metastatic claudin 18.2-positive solid
tumors for which no available standard therapy is likely to confer
clinical benefits.

mRNA-engineered adoptive cell therapies
Although immune-checkpoint blocking and mAb-based methods

have shown promising results in breast cancer (89), melanoma (90),
and non–small cell lung carcinoma (91, 92), among others, many
patients still develop disease progression after these therapies, requir-
ing additional treatment options (80, 93, 94). This demand was met
with the introduction of adoptive cell therapy (ACT), pioneered by
Steven A. Rosenberg, who demonstrated the in vivo antitumor activity
of tumor-infiltrating lymphocytes (TIL; refs. 80, 88, 94). Over the
years, ACT moved beyond the use of TILs. New strategies include
ex vivo expansion and modification of tumor-residing or peripheral
T cells with TCRs or CARs that convey specificity for the cancer
cells (94, 95). Although ACT mainly focuses on the introduction of
T cells expressing a TCR or CAR, Exteberria and colleagues showcased
the therapeutic effect of the intratumoral administration of T cells

transiently expressing IL12 in combination with transient CD137
ligand expression resulting in antitumor toxicity (96).

Successful clinical outcome has been reported with CAR-T thera-
pies in hematologic malignancies. For instance, CAR-T therapy
targeting CD19 in chronic lymphocytic and acute lymphoblastic
leukemia (97), CD33 and CD123 CAR targeting in acute myeloid
leukemia (AML; refs. 97, 98), and anti-BCMA CAR-T cell therapy in
multiple myeloma (MM; ref. 99). This success was unmet when
translated to solidmalignancies as it is among others more challenging
to identify the right target molecules.

At present, the clinical implementation of engineered T cells still
raises many questions, including cross reactivity, controllability of
permanently modified cellular products, and safety assessments (100).
Because of these safety concerns, there has been an increasing interest
for mRNA-based T-cell manipulation as transient expression is
ensured in both TCR andCAR approaches (97, 100). However, despite
this major advantage, other disadvantages such as insufficient lon-
gevity of mRNA-encoded CAR or TCR expression need to be
addressed. This drawback also results in higher T-cell demands as
repeated administration would be necessary to compensate the
reduced half-life of CAR or TCR expression (97).

In 2020, Parayath and colleagues reported on the use of an injectable
nanocarrier to deliver CAR or TCR encoding mRNA directly to
circulating T cells, eliminating the need for ex vivo T-cell expan-
sion (101). In this study, using leukemia and prostate cancer mouse
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Overview of passive immunotherapeutic strategies. Left, systemic administration of TCR and CAR LNP-mRNA causes specific uptake by CD8þ T cells, followed by
expression and antigen recognition, resulting in cancer cell death. Top right, ex vivo TCR/CAR LNP-mRNA manipulation of T cells, followed by systemic
administration. Bottom right, intratumoral or systemic delivery of LNP-mRNA encoding monoclonal antibodies (mAbs), immune-inducing cytokines, or stimulatory
receptors. Abbreviations: TCR, T-cell receptor; CAR, chimeric antigen receptor. Adapted from an image created with BioRender.com.
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models, the nanoparticles were manufactured using poly b-amino
ester, which self-assembles into nanocomplexes when interacting with
anionic nucleic acids. These nanoparticles specifically targeted CD8þ

T cells by incorporation of an anti-CD8–linked polyglutamic acid. For
CAR therapy, the nanoparticles were administered weekly, as the CAR
expression lasted up to 8 days. A similar duration of TCR expression
was achieved. The authors demonstrated that the use of injectable
nanocarrier for mRNA delivery was sufficient to bring disease regres-
sion (101). More recently, the successful in vivo generation of CAR-T
cells by delivery of modified mRNA packaged into T-cell targeted
LNPs was reported. Transient expression and functionality of the CAR
were observed (102).

Phase I trials in mesothelioma (NCT01355965) and pancreatic
cancer (NCT01897415) have been initiated using autologous T cells
transfectedwithmRNAencoding amesothelin targetingCAR. The use
of such mRNA-engineered T cells appeared to be feasible and safe.
Early signs of antitumor activity and absence of overt off-tumor on-
target toxicity were observed (103). A phase I clinical trial using
autologous cMet-redirected T cells administered intratumorally in
patients with breast cancer (NCT01837602) has shown that cMet-
CAR-T cell injections were well tolerated, as no patients experienced
above grade 1 adverse events, whereas tumor necrosis, and a conse-
quential inflammatory response, was present when IHC was per-
formed on tumor resections (104).

mRNA-based modulation of the tumor microenvironment
The intratumoral delivery of therapeutic compounds is an attractive

option to increase the in situ bioavailability and, thus, the efficacy of
immunotherapies. This applies to compounds targeted to tumor tissue
as well as for compounds targeting immune cells that play an impor-
tant role in immune evasion, such as regulatory T cells, tumor-
associated macrophages (TAM), neutrophils (TAN), and immature
DCs (105–109). Therefore, delivery of mRNA encoding such com-
pounds can contribute to antitumor immunity, as shown before by
delivery of mRNA encoding a fusokine consisting of IFNb and the
ectodomain of the TGFb type III receptor (110). In a study reported by
Haabeth and colleagues, charge-altering releasable transporters were
used for the intratumoral delivery of mRNA encoding immune
modulators (111). In this study, a monotherapy with mRNA encoding
for IFNg, IL12, CD70, CD80, CD86, and CD40L was investigated, and
in particular a significant tumor growth delaywas observed forCD40L,
CD80, and CD86, as confirmed also by Van Lint and colleagues
through intratumoral delivery of TriMix mRNA (112). More recent
studies have published similar results withmRNA formulated in saline
solution (113).mRNA encoding IFNa, IL12 single chain, granulocyte–
monocyte colony stimulation factor (GM-CSF), and IL15 sushi was
administered intratumorally, resulting in an increase of immune cell
populations accompanied by intratumoral IFNg induction, systemic
antigen-specific T-cell expansion, increased granzyme Bþ T-cell infil-
tration, and formation of immune memory (113). In another preclin-
ical study, iVT-mRNA encoding IL15 was administered in vivo. This
mRNA was complexed using a protamine/liposome system. In both
local and systemic administration, the CLLP/IL15 mRNA resulted in
significant tumor-inhibitory effects in subcutaneous, abdominal cav-
ity, and pulmonary metastasis models (114).

Several clinical trials using intratumoral delivery of mRNA are
ongoing. A phase I study (NCT03739931; Table 2) is evaluating the
intratumoral delivery of LNP-encapsulated mRNA encoding human
OX40L, IL23, and IL36g , either as monotherapy or in combination
with immune-checkpoint blockade in patients with advanced malig-
nancies. BioNTech is testing the intratumoral delivery of BNT131 or a

mRNA mixture encoding IL12 single chain, IFN-alpha2b, GM-CSF,
and IL15 sushi as monotherapy and in combination with PD-1
targeting cemiplimab in advanced solid tumors. Another phase I
study by eTheRNA in collaboration with VUB-UZ aims to deliver
synthetic nakedmRNA encoding TriMix intratumorally in early-stage
breast cancer (NCT03788083; Table 2).

ncRNA for the reduction of expression
RNA interference–based therapeutic interventions

All the above-mentioned applications involve the use of mRNA to
mediate the expression of immune-boosting proteins. Notably, pro-
gressively more studies have focused on RNA as an intermediary, not
only for expression but also for the regulation of expression, since RNA
interference (RNAi) has been discovered in 1998 (115). The starting
feature of RNAi is siRNA, short hairpin RNA (shRNA), or
miRNA (116, 117), which after cleavage by the Dicer enzyme and
after association with the RISC/ago2 enzyme complex has the capacity
to hybridize with a complementary mRNA strand and results in the
cleaving of that strand (118–120). This was successfully applied in
immuno-oncology by Li and colleagues, where siRNA-PD-L1 (siPD-
L1)was codeliveredwith imatinib in liposomal nanoparticles, resulting
in the reduced expression of PD-L1, synergistically causing a tumor
delay more significant than the monotherapies (121). Similar results
were achieved in a mouse melanoma model by Wang and collea-
gues (122), indicating that, in combination with chemotherapy, or
extracellular targeting, RNAi-mediated cell disruption can significant-
ly promote the antitumor effects of already clinically available cancer
treatment (116). Moreover, RNAi can as well be exploited beyond the
alleviation of inhibitory pathways, but also for TME remodeling on
TAMs, TANs, and immature DCs (123, 124) and in conjugation with
mRNA for DC vaccination (61, 125). Although RNAi holds promise,
important improvements regarding clinical applications, such as
pharmacodynamics and pharmacokinetics, as well as toxicity need
to be addressed (120). However, improvements regarding toxicity have
already been booked with LNP formulations, as toxicity is often due to
unintended and on-target off-tissue RNAi activity.

Beyond RNAi
Besides their role in RNAi, small ncRNA, such as miRNA, could act

not only as tumor suppressor miRNA (TS-miR), but also as oncogenes
(oncomiR), depending on the target (126). miRNAmimics, classifiable
as ASOs can be implemented for anticancer therapy. Around 20–25
bases long, ASOs bind to their miRNA targets, preventing interaction
of that miRNA with its target mRNA, and resulting in RNase H–
mediated degradation (127). The use of ASOs has already been
demonstrated in a preclinical setting for glioma using anti-miR-21
with miR-21 being on oncomiR, suppressing IL12 (126) for anticancer
therapy. Around 20–25 bases long, ASOs bind to their miRNA targets,
preventing the interaction of that miRNA with its target mRNA and
resulting in RNaseHmediated degradation (127). The use of ASOs has
already been demonstrated in a preclinical setting for glioma using
anti-miR-21 with miR-21 being on oncomiR, suppressing IL12 (126).
Next to ASOs, aptamers have also entered the scope of RNA-mediated
immunotherapy. Aptamers possess a small molecular weight, making
them suitable for TME entry. Moreover, their longer shelf-life and
low immunogenicity, combined with their possibility of cell-free
manufacturing, give them advantageous features for clinical applica-
bility (128). In a study by Gao and colleagues, aptamers targeting
PD-L1 were developed and validated (129). Besides this, aptamers
targeting CXCL12 (NOX-A12) and CCL-2 (NOX-E36) have been
tested in clinical trials (130), from which monotherapy of NOX-A12
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showed induction of T helper 1 cytokines and resulted in prolonged
time on treatment versus prior therapy in 35% of patients with
metastatic microsatellite stable colorectal or pancreatic cancer in
combination with pembrolizumab (131). These studies concluded
that aptamers can be considered a valid alternative compared with
mAbs, as the production costs are significantly lower and similar
tumor inhibition and binding affinity as for mAbs was obtained (128).

Conclusion and Perspectives
The SARS-CoV-2 pandemic has unlocked the great potential of

mRNA as a therapeutic agent, due to the extreme need for a prompt
development of an effective COVID-19 vaccine. This rapid progress
was possible only because of the preexisting long-term experience and
already developed mRNA technology of the past three decades. Next,
the mRNA format’s high versatility could push further the imple-
mentation of mRNA-based personalized cancer therapies into the
clinic, relying on an easily convertible manufacturing process (132).
Nevertheless, personalized therapies still require the identification of
novel, cancer-specific targets (including neoantigens) for which abun-
dance and immunogenicity studies remain the main challenge. How-
ever, improvements in in silico prediction algorithms and next-
generation sequencing (are expected to address this implementation;
refs. 132, 133).

Despite high versatility, reduced costs, and quick manufacturing
of mRNA vaccines, further insights are still required, especially
regarding the mechanisms of action and therefore understanding the
contribution of the innate immunogenicity of mRNA (134). The two
SARS-CoV-2 mRNA-based vaccines, BNT162b2 (Tozinameran) and
mRNA-1273 (Elasomeran), showed that mRNA chemical modifica-
tions and purity play an important role in reducing intrinsic immu-
nogenicity, and this is key for intramuscular injected prophylactic
vaccines (28). Low intrinsic immunogenicity is also necessary for other
RNA therapeutics, where the protein level needs to be as high as
possible including antibody encoding mRNA andmRNA-based mod-
ulation of the TME (28). Furthermore, the use of adjuvants and even
the mRNA self-adjuvancy level has not yet been extensively evaluated
in terms of potential benefits or adverse effects in mRNA cancer
vaccine studies (21, 135).

The prompt optimization of LNP for clinical formulations contrib-
uted to the success of RNA as a therapeutic agent. However, many
parameters need further investigation, such as biodegradability, tissue
and cell tropism, long-term side effects, route of administration and
delivery, all having amajor effect on the overall cost, efficacy, and safety
profile of LNP (23, 136).

Regarding RNAi, hereditary transthyretin amyloidosis and
acute hepatic porphyria can already benefit from treatment
options (137). Nevertheless, for the treatment of cancer, RNAi
and ncRNA formulations have not yet been approved. The main
challenge here is the scarce delivery of effector molecules in tumor
cells to induce a clinically significant response. Two clinical trials
(NCT01676259 and NCT01591356) are ongoing, using RNAi
targeting KRAS and EPHA2, respectively. Positive results from
this work could further accelerate the implementation of RNAi
into the clinic (Table 2).

The use of RNA in passive immunotherapeutic approaches is
catalyzed by current results from ongoing clinical trials (Table 2;
ref. 2). More preclinical studies are necessary to thoroughly investigate
RNA kinetics and dosage (80).

If, on the one hand, RNA therapeutics boast of a high safety
profile (138) due to a transient dwelling time, on the other hand,
more frequent administrations are required, which in terms of ACT
might hamper the manufacturing process, as T cells are limited. In
addition to this, injected T cells might also fail to induce a potent
response as expression could be lost before reaching the tumor site.
Local administrations could work as an efficient alternative, but to date
have been unsuccessful in human clinical trials (98).

Altogether, the mentioned developments in the RNA field indicate
its potential as an ideal candidate anticancer therapeutic agent,
expanding on its current use for antiviral vaccination. Because of its
manufacturing benefits, RNA therapeutics could establish a general
presence in the drug development industry, going even beyond
implementation for cancer immunotherapy.
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